**Abstract.** There are numerous methods for rational approximation of real numbers. Continued fraction convergent is one of them and Newton's iterative method is another one. Connections between these two approximation methods were discussed by several authors. Householder's methods are generalisation of Newton's method. In this paper, we will show that for these methods analogous connection with continued fractions hold.

**2010 Mathematics Subject Classification.**
11A55.

**Key words and phrases.** Continued fractions, Householder's iterative methods.

DOI: 10.3336/gm.48.2.02

**References:**

- G. Chrystal, Algebra, Part II, Chelsea, New York, 1964.

MathSciNet - A. Dujella,
*Newton's formula and continued fraction expansion of*, Experiment. Math.*√d***10**(2001), 125-131.

MathSciNet CrossRef - A. Dujella and V. Petričević,
*S*quare roots with many good approximants, Integers**5(3)**(2005),`#A6`. (electronic)

MathSciNet - N. Elezović,
*A note on continued fractions of quadratic irrationals*, Math. Commun.**2**(1997), 27-33.

MathSciNet - E. Frank,
*O*n continued fraction expansions for binomial quadratic surds, Numer. Math.**4**(1962), 85-95.

MathSciNet CrossRef - E. Frank and A. Sharma,
*Continued fraction expansions and iterations of Newton's formula*, J. Reine Angew. Math.**219**(1965), 62-66.

MathSciNet - A. S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, 1970.

MathSciNet - T. Komatsu,
*Continued fractions and Newton's approximants*, Math. Commun.**4**(1999), 167-176.

MathSciNet - J. Mikusiński,
*Sur la méthode d'approximation de Newton*, Ann. Polon. Math.**1**(1954), 184-194.

MathSciNet - R. A. Mollin,
*Infinite Families of Pellian Polynomials and their Continued Fraction Expansions*, Results Math.**43**(2003), 300-317.

MathSciNet CrossRef - R. A. Mollin and K. Cheng,
*Continued Fraction Beepers and Fibonacci Numbers*, C. R. Math. Rep. Acad. Sci. Canada**24**(2002), 102-108.

MathSciNet - O. Perron, Die Lehre von den Kettenbrüchen I, Dritte ed., B. G. Teubner Verlagsgesellschaft m.b.H., Stuttgart, 1954.

MathSciNet - V. Petričević,
*Newton's approximants and continued fraction expansion of*, Math. Commun.*(1+√d)/2***17**(2012), 389-409.

MathSciNet - P. Sebah and X. Gourdon,
*Newton's method and high order iterations*, preprint, 2001,`http://numbers.computation.free.fr/Constants/Algorithms/newton.ps` - A. Sharma,
*On Newton's method of approximation*, Ann. Polon. Math.**6**(1959), 295-300.

MathSciNet - K. S. Williams and N. Buck,
*C*omparision of the lengths of the continued fractions of*√D*and*(1+ √D)/2*, Proc. Amer. Math. Soc.**120**(1994), 995-1002.

MathSciNet CrossRef