Glasnik Matematicki, Vol. 48, No. 1 (2013), 91-96.

COMMUTING AUTOMORPHISMS OF SOME FINITE GROUPS

S. Fouladi and R. Orfi

Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Ave., Tehran 1561836314 , Iran
e-mail: s_fouladi@tmu.ac.ir

Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
e-mail: r-orfi@araku.ac.ir


Abstract.   Let G be a group. An automorphism α of G is called a commuting automorphism if xxα=xα x for all x G. We denote the set of all commuting automorphisms of G by A(G). Moreover a group G is called an AC-group if the centralizer of every non-central element of G is abelian. In this paper we show that A(G) is a subgroup of the automorphism group of G for all finite AC-groups, p-groups of maximal class, and metacyclic p-groups.

2010 Mathematics Subject Classification.   20F28, 20D15.

Key words and phrases.   Commuting automorphisms, AC-groups, minimal non-abelian p-groups, metacyclic p-groups, p-groups of maximal class.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.48.1.08


References:

  1. J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137-143.
    MathSciNet     CrossRef

  2. H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92-101.
    MathSciNet     CrossRef

  3. Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin, 2008.
    MathSciNet     CrossRef

  4. M. Deaconescu, G. Silberberg and G. L. Walls, On commuting automorphisms of groups, Arch. Math. (Basel) 79 (2002), 423-429.
    MathSciNet     CrossRef

  5. N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III. 49 (1955), 19-22.
    MathSciNet    

  6. B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin-New York, 1967.
    MathSciNet     CrossRef

  7. D. L. Johnson, Presentation of groups, 2nd ed., Cambridge University Press, Cambridge, 1997.
    MathSciNet     CrossRef

  8. I. N. Herstein, J. L. Brenner and W. A. Newcomb, Problems and solutions: elementary problems: E3039-E3040, Amer. Math. Monthly 91 (1984), 203.
    MathSciNet     CrossRef

  9. I. N. Herstein, T. J. Laffey, and J. Thomas, Problems and solutions: solutions of elementary problems: E3039, Amer. Math. Monthly 93 (1986), 816-817.
    MathSciNet     CrossRef

  10. C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, Oxford University Press, Oxford, 2002.
    MathSciNet    

  11. J. Luh, A note on commuting automorphisms of rings, Amer. Math. Monthly 77 (1970), 61-62.
    MathSciNet     CrossRef

  12. M. Pettet, Personal communication.

  13. P. Schmid, Normal p-subgroups in the group of outer automorphisms of a finite p-group, Math. Z. 147 (1976), 271-277.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page