Glasnik Matematicki, Vol. 47, No. 2 (2012), 351-372.
THE FRANKE FILTRATION OF THE SPACES OF AUTOMORPHIC FORMS
SUPPORTED IN A MAXIMAL PROPER PARABOLIC SUBGROUP
Neven Grbac
Department of Mathematics,  University of Rijeka,  Radmile Matejčić 2, HR-51000 Rijeka,  Croatia
e-mail: neven.grbac@math.uniri.hr
Abstract.   The Franke filtration is a finite filtration of certain spaces of automorphic forms on the
adèlic points of a reductive linear algebraic group defined over a number field whose quotients can be
described in terms of parabolically induced representations. Decomposing the space of automorphic
forms according to their cuspidal support, the Franke filtration can be made more explicit. This
paper describes explicitly the Franke filtration of the spaces of automorphic forms supported in
a maximal proper parabolic subgroup, that is, in a cuspidal automorphic representation of its
Levi factor. Such explicit description is important for applications to computation of automorphic
cohomology, and thus the cohomology of congruence subgroups. As examples, the general linear
group and split symplectic and special orthogonal groups are treated.
2010 Mathematics Subject Classification.  
22E55, 11F70.
Key words and phrases.   Automorphic forms, Franke filtration, Eisenstein series.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.2.10
References:
- 
 J. Arthur, An introduction to the trace formula,
in: Harmonic analysis, the trace formula, and Shimura varieties (J. Arthur, D. Ellwood, R. Kottwitz, eds.), Clay Math. Proc. 4,
 Amer. Math. Soc., Providence, 2005, 1-263.
 MathSciNet
 
- 
 J. Arthur,
The endoscopic classification of representations: orthogonal and symplectic groups,
preprint, http://www.claymath.org/cw/arthur/pdf/Book.pdf.
 
- 
 A. Borel and H. Jacquet,
Automorphic forms and automorphic representations, in:
Automorphic forms, representations and L-functions (A. Borel, W. Casselman, eds.),
Proc. Sympos. Pure Math. XXXIII Part 1, Amer. Math. Soc., Providence, 1979, 189-207.
 MathSciNet
 
- 
A. Borel and N. Wallach,
Continuous cohomology, discrete subgroups, and representations of reductive groups,
Second edition,
Amer. Math. Soc., Providence, 2000.
 MathSciNet
 
- 
 N. Bourbaki,
Groupes et algèbres de Lie,
Chapitre IV,V,VI, Hermann, Paris, 1968.
 MathSciNet
 
- 
 J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro and F. Shahidi,
Functoriality for the classical groups,  Publ. Math. Inst. Hautes Études Sci.
99 (2004), 163-233.
 MathSciNet    
CrossRef
 
- 
 J. Franke,
Harmonic analysis in weighted L2-spaces,
Ann. Sci. École Norm. Sup. (4)
31 (1998), 181-279.
 MathSciNet    
CrossRef
 
- 
 J. Franke and J. Schwermer,
A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups,
Math. Ann. 311 (1998), 765-790.
 MathSciNet    
CrossRef
 
- 
 D. Goldberg,
Reducibility of induced representations for Sp(2n) and SO(n),
Amer. J. Math. 116 (1994), 1101-1151.
 MathSciNet    
CrossRef
 
- 
 N. Grbac,
On the residual spectrum of split classical groups supported in the Siegel maximal parabolic subgroup,
Monatsh. Math. 163 (2011), 301-314.
 MathSciNet    
CrossRef
 
- 
 N. Grbac and H. Grobner,
The residual Eisenstein cohomology of Sp4 over a totally real number field, to appear in Trans. Amer. Math. Soc.
 
- 
 N. Grbac and J. Schwermer,
On residual cohomology classes attached to relative rank one Eisenstein series for the symplectic group,
Int. Math. Res. Not. IMRN 2011, 1654-1705.
 MathSciNet    
CrossRef
 
- 
 N. Grbac and J. Schwermer,
An exercise in automorphic cohomology - the case GL2 over a quaternion algebra,
in: Arithmetic Geometry and Automorphic Forms (J. Funke, J. Cogdell, M. Rapoport, T. Yang, eds.),
Adv. Lect. Math. (ALM) 19,
Higher Education Press and International Press, Beijing-Boston, 2011, 209-252.
 MathSciNet
 
- 
 R. P. Langlands, Letter to A. Borel, dated October 25, 1972.
 
- 
 R. P. Langlands,
On the functional equations satisfied by Eisenstein series,
Springer-Verlag, Berlin-New York, 1976.
 MathSciNet
 
- 
 S. MacLane, Categories for the working mathematician,
Springer-Verlag, New York-Berlin, 1971.
 MathSciNet
 
- 
 C. Mœglin and J.-L. Waldspurger,
Le spectre résiduel de GL(n),
Ann. Sci. École Norm. Sup. (4) 22 (1989), 605-674.
 MathSciNet    
Numdam
 
- 
 C. Mœglin and J.-L. Waldspurger,
Spectral decomposition and Eisenstein series,
Cambridge University Press, Cambridge, 1995.
 MathSciNet    
CrossRef
 
- 
 F. Shahidi,
On certain L-functions,
Amer. J. Math. 103 (1981), 297-355.
 MathSciNet    
CrossRef
 
- 
 F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups,
Ann. of Math. (2) 132 (1990), 273-330.
 MathSciNet    
CrossRef
 
- 
 F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups,
Duke Math. J. 66 (1992), 1-41.
 MathSciNet    
CrossRef
 
- 
 J. A. Shalika,
The multiplicity one theorem for GLn,
Ann. of Math. (2) 100 (1974), 171-193.
 MathSciNet    
CrossRef
 
- 
 M. Tadić,
Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case),
Ann. Sci. École Norm. Sup. (4) 19 (1986), 335-382.
 MathSciNet    
Numdam
 
- 
 D. A. Vogan Jr.,
The unitary dual of GL(n) over an Archimedean field,
Invent. Math. 83 (1986), 449-505.
 MathSciNet    
CrossRef
Glasnik Matematicki Home Page