Glasnik Matematicki, Vol. 47, No. 2 (2012), 351-372.

THE FRANKE FILTRATION OF THE SPACES OF AUTOMORPHIC FORMS SUPPORTED IN A MAXIMAL PROPER PARABOLIC SUBGROUP

Neven Grbac

Department of Mathematics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
e-mail: neven.grbac@math.uniri.hr


Abstract.   The Franke filtration is a finite filtration of certain spaces of automorphic forms on the adèlic points of a reductive linear algebraic group defined over a number field whose quotients can be described in terms of parabolically induced representations. Decomposing the space of automorphic forms according to their cuspidal support, the Franke filtration can be made more explicit. This paper describes explicitly the Franke filtration of the spaces of automorphic forms supported in a maximal proper parabolic subgroup, that is, in a cuspidal automorphic representation of its Levi factor. Such explicit description is important for applications to computation of automorphic cohomology, and thus the cohomology of congruence subgroups. As examples, the general linear group and split symplectic and special orthogonal groups are treated.

2010 Mathematics Subject Classification.   22E55, 11F70.

Key words and phrases.   Automorphic forms, Franke filtration, Eisenstein series.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.2.10


References:

  1. J. Arthur, An introduction to the trace formula, in: Harmonic analysis, the trace formula, and Shimura varieties (J. Arthur, D. Ellwood, R. Kottwitz, eds.), Clay Math. Proc. 4, Amer. Math. Soc., Providence, 2005, 1-263.
    MathSciNet    

  2. J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, preprint, http://www.claymath.org/cw/arthur/pdf/Book.pdf.

  3. A. Borel and H. Jacquet, Automorphic forms and automorphic representations, in: Automorphic forms, representations and L-functions (A. Borel, W. Casselman, eds.), Proc. Sympos. Pure Math. XXXIII Part 1, Amer. Math. Soc., Providence, 1979, 189-207.
    MathSciNet    

  4. A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Second edition, Amer. Math. Soc., Providence, 2000.
    MathSciNet    

  5. N. Bourbaki, Groupes et algèbres de Lie, Chapitre IV,V,VI, Hermann, Paris, 1968.
    MathSciNet    

  6. J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro and F. Shahidi, Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163-233.
    MathSciNet     CrossRef

  7. J. Franke, Harmonic analysis in weighted L2-spaces, Ann. Sci. École Norm. Sup. (4) 31 (1998), 181-279.
    MathSciNet     CrossRef

  8. J. Franke and J. Schwermer, A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups, Math. Ann. 311 (1998), 765-790.
    MathSciNet     CrossRef

  9. D. Goldberg, Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math. 116 (1994), 1101-1151.
    MathSciNet     CrossRef

  10. N. Grbac, On the residual spectrum of split classical groups supported in the Siegel maximal parabolic subgroup, Monatsh. Math. 163 (2011), 301-314.
    MathSciNet     CrossRef

  11. N. Grbac and H. Grobner, The residual Eisenstein cohomology of Sp4 over a totally real number field, to appear in Trans. Amer. Math. Soc.

  12. N. Grbac and J. Schwermer, On residual cohomology classes attached to relative rank one Eisenstein series for the symplectic group, Int. Math. Res. Not. IMRN 2011, 1654-1705.
    MathSciNet     CrossRef

  13. N. Grbac and J. Schwermer, An exercise in automorphic cohomology - the case GL2 over a quaternion algebra, in: Arithmetic Geometry and Automorphic Forms (J. Funke, J. Cogdell, M. Rapoport, T. Yang, eds.), Adv. Lect. Math. (ALM) 19, Higher Education Press and International Press, Beijing-Boston, 2011, 209-252.
    MathSciNet    

  14. R. P. Langlands, Letter to A. Borel, dated October 25, 1972.

  15. R. P. Langlands, On the functional equations satisfied by Eisenstein series, Springer-Verlag, Berlin-New York, 1976.
    MathSciNet    

  16. S. MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971.
    MathSciNet    

  17. C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4) 22 (1989), 605-674.
    MathSciNet     Numdam

  18. C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge University Press, Cambridge, 1995.
    MathSciNet     CrossRef

  19. F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1981), 297-355.
    MathSciNet     CrossRef

  20. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273-330.
    MathSciNet     CrossRef

  21. F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J. 66 (1992), 1-41.
    MathSciNet     CrossRef

  22. J. A. Shalika, The multiplicity one theorem for GLn, Ann. of Math. (2) 100 (1974), 171-193.
    MathSciNet     CrossRef

  23. M. Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), 335-382.
    MathSciNet     Numdam

  24. D. A. Vogan Jr., The unitary dual of GL(n) over an Archimedean field, Invent. Math. 83 (1986), 449-505.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page