Glasnik Matematicki, Vol. 47, No. 2 (2012), 265-275.

A REMARK ON THE INJECTIVITY OF THE SPECIALIZATION HOMOMORPHISM

Ivica Gusić and Petra Tadić

Faculty of Chemical Engin. and Techn., University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
e-mail: igusic@fkit.hr

Geotechnical faculty, University of Zagreb, Hallerova aleja 7, 42000 Varaždin, Croatia
e-mail: petra.tadic.zg@gmail.com, ptadic@gfv.hr


Abstract.   Let E:y2=(x-e1)(x-e2)(x-e3), be a nonconstant elliptic curve over Q(T). We give sufficient conditions for a specialization homomorphism to be injective, based on the unique factorization in Z[T] and Z. The result is applied for calculating exactly the Mordell-Weil group of several elliptic curves over Q(T) coming from a paper by Rubin and Silverberg.

2010 Mathematics Subject Classification.   11G05, 14H52.

Key words and phrases.   Elliptic curve, specialization homomorphism, rank, generators.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.2.03


References:

  1. J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
    MathSciNet    

  2. A. Dujella, A parametric family of elliptic curves, Acta Arith. 94 (2000), 87-101.
    MathSciNet    

  3. D. Husemöller, Elliptic Curves, Second Edition GTM 111, Springer, New York, 2004.
    MathSciNet    

  4. Pari/GP, version 2.3.3, Bordeaux, 2008.
    link

  5. K. Rubin and A. Silverberg, Rank frequencies for quadratic twists of elliptic curves, Experiment. Math. 10 (2001), 559-569.
    MathSciNet     CrossRef

  6. J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151, Springer, Berlin, 1994.
    MathSciNet     CrossRef

  7. C. L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary forms, J. Amer. Math. Soc. 8 (1995), 943-973.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page