Glasnik Matematicki, Vol. 47, No. 2 (2012), 225-252.

2-MODULAR REPRESENTATIONS OF THE ALTERNATING GROUP A8 AS BINARY CODES

L. Chikamai, Jamshid Moori and B. G. Rodrigues

School of Mathematical Sciences , University of KwaZulu-Natal , Durban 4041, South Africa
e-mail: chikamail@ukzn.ac.za, luciechikamai@yahoo.com

School of Mathematical Sciences , North-West University (Mafikeng) , Mmabatho 2735, South Africa
e-mail: Jamshid.Moori@nwu.ac.za

School of Mathematical Sciences , University of KwaZulu-Natal , Durban 4041, South Africa
e-mail: rodrigues@ukzn.ac.za


Abstract.   Through a modular representation theoretical approach we enumerate all non-trivial codes from the 2-modular representations of A8, using a chain of maximal submodules of a permutation module induced by the action of A8 on objects such as points, Steiner S(3,4,8) systems, duads, bisections and triads. Using the geometry of these objects we attempt to gain some insight into the nature of possible codewords, particularly those of minimum weight. Several sets of non-trivial codewords in the codes examined constitute single orbits of the automorphism groups that are stabilized by maximal subgroups. Many self-orthogonal codes invariant under A8 are obtained, and moreover, 22 optimal codes all invariant under A8 are constructed. Finally, we establish that there are no self-dual codes of lengths 28 and 56 invariant under A8 and S8 respectively, and in particular no self-dual doubly-even code of length 56.

2010 Mathematics Subject Classification.   05B05, 20D45, 94B05.

Key words and phrases.   Derived, symmetric and quasi-symmetric designs, self-orthogonal designs, codes, optimal linear code, automorphism group, modular representation, alternating group.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.2.01


References:

  1. E. F. Assmus, Jr and J. D. Key, Designs and their codes, Cambridge: Cambridge University Press, 1992. Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993).
    MathSciNet    

  2. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235-265.
    MathSciNet     CrossRef

  3. S. Braić, A. Golemac, J. Mandić and T. Vučičić, Primitive symmetric designs with prime power number of points, J. Combin. Des. 18 (2010), 141-154.
    MathSciNet     CrossRef

  4. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), 97-122.
    MathSciNet     CrossRef

  5. J. Cannon, A. Steel, and G. White, Linear codes over finite fields, In J. Cannon and W. Bosma, editors, Handbook of Magma Functions, pages 3951-4023. Computational Algebra Group, Department of Mathematics, University of Sydney, 2006. V2.15, Magma

  6. L. Chikamai, J. Moori and B. G. Rodrigues, 2-modular codes admitting the simple group L3(4) as an automorphism group, submitted.

  7. L. Chikamai, J. Moori and B. G. Rodrigues, Binary codes from some 2-(64, 28, 12) designs and their orbit matrices, submitted.

  8. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985.
    MathSciNet    

  9. G. M. Conwell, The 3-space PG(3,2) and its group, Ann. of Math. (2) 11 (1910), 60-76.
    MathSciNet     CrossRef

  10. D. Crnković and M.-O. Pavčević, Some new symmetric designs with parameters (64,28,12), Discrete Math. 237 (2001), 109-118.
    MathSciNet     CrossRef

  11. A. De Wispelaere and H. Van Maldeghem, Unitals in the Hölz-design on 28 points, J. Combin. Theory Ser. A 114 (2007), 265-277.
    MathSciNet     CrossRef

  12. U. Dempwolff, Primitive rank-3 groups on symmetric designs, Des. Codes Cryptogr. 22 (2001), 191-207.
    MathSciNet     CrossRef

  13. L. E. Dickson, Linear groups with an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, New York, 1958.
    MathSciNet    

  14. J. D. Dixon and B. Mortimer, Permutation groups, Springer-Verlag, New York, 1996.
    MathSciNet    

  15. S. M. Dodunekov, S. B. Encheva and S. N. Kapralov, On the [28, 7, 12] binary self-complementary codes and their residuals, Des. Codes Cryptogr. 4 (1994), 57-67.
    MathSciNet     CrossRef

  16. M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, online version, 2007. Accessed on 27-04-2011.

  17. W. H. Haemers, Eigenvalue techniques in design and graph theory, PhD thesis, Eindhoven University of Technology, 1979.
    MathSciNet    

  18. W. H. Haemers, R. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr. 17 (1999), 187-209.
    MathSciNet     CrossRef

  19. N. Hamada, On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes, Hiroshima Math. J. 3 (1973), 153-226.
    MathSciNet     CrossRef

  20. C. Jansen, K. Lux, R. Parker, and R. Wilson, An atlas of Brauer aharacters, Clarendon Press, 1995.
    MathSciNet    

  21. D. Jungnickel and V. D. Tonchev, On symmetric and quasi-symmetric designs with the symmetric difference property and their codes, J. Combin. Theory Ser. A 59 (1992), 40-50.
    MathSciNet     CrossRef

  22. W. M. Kantor, Symplectic groups, symmetric designs, and line ovals, J. Algebra 33 (1975), 43-58.
    MathSciNet     CrossRef

  23. C. Parker, E. Spence and V. D. Tonchev, Designs with the symmetric difference property on 64 points and their groups, J. Combin. Theory Ser. A 67 (1994), 23-43.
    MathSciNet     CrossRef

  24. R. Peeters, Uniqueness of strongly regular graphs having minimal p-rank, Linear Algebra Appl. 226/228 (1995), 9-31.
    MathSciNet     CrossRef

  25. J. D. Key, J. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin. 25 (2004), 113-123.
    MathSciNet     CrossRef

  26. J. D. Key, J. Moori and B. G. Rodrigues, Binary codes from graphs on triples, Discrete Math. 282 (2004), 171-182.
    MathSciNet     CrossRef

  27. A. Neumaier, Some sporadic geometries related to PG(3, 2), Arch. Math. (Basel) 42 (1984), 89-96.
    MathSciNet     CrossRef

  28. B. G. Rodrigues, On the stabilizers of the minimum-weight codewords of the binary codes from triangular graphs, Ars Combin. 82 (2007), 353-364.
    MathSciNet    

  29. B. G. Rodrigues, On the dual binary codes of the triangular graphs, European J. Combin. 28 (2007), 266-272.
    MathSciNet     CrossRef

  30. B. G. Rodrigues, Some optimal codes related to graphs invariant under the alternating group A8, Adv. Math. Commun. 5 (2011), 339-350.
    MathSciNet     CrossRef

  31. C. M. Roney-Dougal and W. R. Unger, The affine primitive permutation groups of degree less than 1000, J. Symbolic Comput. 35 (2003), 421-439.
    MathSciNet     CrossRef

  32. L. D. Rudolph, A class of majority logic decodable codes, IEEE Trans. Information Theory 13 (1967), 305-307.
    CrossRef

  33. M. S. Shrikhande and S. S. Sane, Quasi-symmetric designs, Cambridge University Press, Cambridge, 1991.
    MathSciNet    

  34. V. D. Tonchev, The uniformly packed binary [27, 21, 3] and [35, 29, 3] codes, Discrete Math. 149 (1996), 283-288.
    MathSciNet     CrossRef

  35. V. D. Tonchev, Combinatorial configurations designs, codes, graphs, Longman Scientific & Technical, Harlow, 1988.
    MathSciNet    

  36. R. A. Wilson, R. A. Parker, and J. N. Bray, Atlas of finite group representations

Glasnik Matematicki Home Page