#### Glasnik Matematicki, Vol. 47, No. 1 (2012), 143-148.

### A NOTE ON CHARACTER SQUARE

### Guohua Qian and Tianze Li

Department of Mathematics,
Changshu Institute of Technology,
Changshu, Jiangsu, 215500,
P. R. China.

*e-mail:* `ghqian2000@yahoo.com.cn`
Department of Mathematics,
Changshu Institute of Technology,
Changshu, Jiangsu, 215500,
P. R. China.

*e-mail:* `tzli@cslg.edu.cn`

**Abstract.** We study the finite groups with an irreducible
character *χ* satisfying the following hypothesis: *χ*^{2} has
exactly two distinct irreducible constituents, and one of which is
linear, and then obtain a result analogous to the Zhmud's
([8]).

**2010 Mathematics Subject Classification.**
20C15.

**Key words and phrases.** Finite group, character square.

**Full text (PDF)** (free access)
DOI: 10.3336/gm.47.1.11

**References:**

- Y. G. Berkovich and E. M. Zhmud,
Characters of finite groups, Part 1 and 2, Translations of
Mathematical Monographs
**172** and **181**, AMS, Providence, RI, 1998.

MathSciNet

MathSciNet

- A. M. Cohen,
*Finite complex reflection groups*, Ann. Sci. École Norm. Sup. (4) **9** (1976), 379-436.

MathSciNet
CrossRef

- P. Du Val, Homographies, quaternions and rotations, Clarendon
Press, Oxford, 1964.

MathSciNet

- I. M. Isaacs, Character theory of finite groups,
Academic Press, New York, 1976.

MathSciNet

- I. M. Isaacs and I. Zisser,
*Squares of characters with few irreducible constituents in finite groups*,
Arch. Math. (Basel) **63** (1994), 197-207.

MathSciNet
CrossRef

- G. Malle, G. Navarro and J. B. Olsson,
*Zeros of
characters of finite groups*, J. Group Theory **3** (2000),
353-368.

MathSciNet
CrossRef

- G. Qian, W. Shi and X. You,
*Conjugacy classes
outside a normal subgroup*, Comm. Algebra **32** (2004),
4809-4820.

MathSciNet
CrossRef

- E. Zhmud,
*Finite groups with a faithful real-valued
irreducible character whose square has exactly two distinct
irreducible constituents*,
Glas. Mat. Ser. III **45(65)** (2010), 85-92.

MathSciNet
CrossRef

*Glasnik Matematicki* Home Page