Glasnik Matematicki, Vol. 47, No. 1 (2012), 81-93.


Petra Tadić

Martićeva 23, 10000 Zagreb, Croatia

Abstract.   Let E be the elliptic curve over Q(T) given by the equation

We prove that the torsion subgroup of the group E(C(T)) is trivial, rankQ(T)(E)=3 and rankC(T)(E)=4. We find a parametrization of E of rank at least four over the function field Q(a,i,s,n,k) where s2=i3-a2i. From this we get a family of rank ≥ 5 over the field of rational functions in two variables and a family of rank ≥ 6 over an elliptic curve of positive rank. We also found particular elliptic curves with rank ≥ 11.

2010 Mathematics Subject Classification.   11G05, 14H52.

Key words and phrases.   Elliptic surface, elliptic curve, parametrization, function field, rank, family of elliptic curves, torsion.

Full text (PDF) (free access)

DOI: 10.3336/gm.47.1.06


  1. A. Antoniewicz, On a family of elliptic curves, Univ. Iagel. Acta Math. 43 (2005), 21-32.

  2. I. Connell, APECS,

  3. A. Dujella, A. S. Janfada and S. Salami, A search for high rank congruent number elliptic curves, J. Integer Seq. 12 (2009), Article 09.5.8, 11pp.

  4. A. Dujella, A. Pethơ and P. Tadić, On arithmetic progressions on Pellian equations, Acta Math. Hungar. 120 (2008), 29-38.

  5. A. Dujella, On the Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. Ser. III 42 (2007), 3-18.
    MathSciNet     CrossRef

  6. E. V. Eikenberg, Rational points on some families of elliptic curves, University of Maryland, 2004, PhD thesis.

  7. J.-F. Mestre, Construction d'une courbe elliptique de rang ≥12, C. R. Acad. Sci. Paris Sér. Math. I 295 (1982) 643-644.

  8. R. Miranda, An overview of algebraic surfaces, in: Algebraic geometry (Ankara,1995), Lecture Notes in Pure and Appl. Math. 193, Dekker, New York, 1997, 197-217.

  9. K. Nagao, An example of elliptic curve over Q with rank 20, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.
    MathSciNet     CrossRef

  10. C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, The computer algebra system PARI - GP, Université Bordeaux I, 1999,

  11. N. F. Rogers, Elliptic curves x3+y3=k with high rank, Harvard University, 2004, PhD thesis.

  12. T. Shioda,On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240.

  13. J. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151, Springer-Verlag, New York, 1994.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page