Glasnik Matematicki, Vol. 46, No. 2 (2011), 513-519.

A NOTE ON TRIVIAL FIBRATIONS

Petar Pavešić

Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska 19, 1111 Ljubljana
e-mail: petar.pavesic@fmf.uni-lj.si


Abstract.   We study the conditions on spaces B and F given which, every fibration with base B or with fibre F is fibre-homotopy trivial. In particular, we prove that every fibration whose base is a CW-complex and fibre an Eilenberg-MacLane space K(G,1) with G a complete group is fibre-homotopy trivial.

2000 Mathematics Subject Classification.   55R35.

Key words and phrases.   Fibration, fibre-homotopy equivalence, complete group.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.46.2.19


References:

  1. M. Arkowitz, Co-H-spaces, in: Handbook of Algebraic Topology, North-Holland Amsterdam, 1995, 1143-1173.
    MathSciNet     CrossRef

  2. G. Didierjean, Homotopie de l'espace des equivalences d'homotopie, Trans. AMS 330 (1992), 153-163.
    MathSciNet     CrossRef

  3. A. Dold, Partitions of unity in the theory of fibrations, Annal of Math. (2) 78 (1963), 223-255.
    MathSciNet     CrossRef

  4. D. Gottlieb, The total space of universal fibrations, Pacific J. Math, 46, (1973), 415-417.
    MathSciNet     CrossRef

  5. D. Gottlieb, Fibering suspensions, Houston J. Math. 4, (1978), 49-65.
    MathSciNet    

  6. I. James, Fibrewise topology, Cambridge Tracts in Mathematics 91, Cambridge University Press, Cambridge, 1989.
    MathSciNet    

  7. J. Rotman, An introduction to the theory of groups, Graduate Texts in Mathematics 148, Springer-Verlag, New York, 1995.
    MathSciNet    

  8. E. Schwamberger and R. Vogt, Dold spaces in homotopy theory, Algebr. Geom. Topol. 9 (2009), 1585-1622.
    MathSciNet     CrossRef

  9. J. Smrekar, CW-type of inverse limits and function spaces, arXiv:0708.2838v1.

  10. A. Zabrodsky, Hopf spaces, North-Holland, Amsterdam, 1976.
    MathSciNet    

Glasnik Matematicki Home Page