Glasnik Matematicki, Vol. 46, No. 2 (2011), 513-519.


Petar Pavešić

Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska 19, 1111 Ljubljana

Abstract.   We study the conditions on spaces B and F given which, every fibration with base B or with fibre F is fibre-homotopy trivial. In particular, we prove that every fibration whose base is a CW-complex and fibre an Eilenberg-MacLane space K(G,1) with G a complete group is fibre-homotopy trivial.

2000 Mathematics Subject Classification.   55R35.

Key words and phrases.   Fibration, fibre-homotopy equivalence, complete group.

Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.46.2.19


  1. M. Arkowitz, Co-H-spaces, in: Handbook of Algebraic Topology, North-Holland Amsterdam, 1995, 1143-1173.
    MathSciNet     CrossRef

  2. G. Didierjean, Homotopie de l'espace des equivalences d'homotopie, Trans. AMS 330 (1992), 153-163.
    MathSciNet     CrossRef

  3. A. Dold, Partitions of unity in the theory of fibrations, Annal of Math. (2) 78 (1963), 223-255.
    MathSciNet     CrossRef

  4. D. Gottlieb, The total space of universal fibrations, Pacific J. Math, 46, (1973), 415-417.
    MathSciNet     CrossRef

  5. D. Gottlieb, Fibering suspensions, Houston J. Math. 4, (1978), 49-65.

  6. I. James, Fibrewise topology, Cambridge Tracts in Mathematics 91, Cambridge University Press, Cambridge, 1989.

  7. J. Rotman, An introduction to the theory of groups, Graduate Texts in Mathematics 148, Springer-Verlag, New York, 1995.

  8. E. Schwamberger and R. Vogt, Dold spaces in homotopy theory, Algebr. Geom. Topol. 9 (2009), 1585-1622.
    MathSciNet     CrossRef

  9. J. Smrekar, CW-type of inverse limits and function spaces, arXiv:0708.2838v1.

  10. A. Zabrodsky, Hopf spaces, North-Holland, Amsterdam, 1976.

Glasnik Matematicki Home Page