Glasnik Matematicki, Vol. 46, No.1 (2011), 249-268.

A 2-EQUIVALENT KELLEY CONTINUUM

Carlos Islas

Department of Mathematics, Faculty of Sciences, Universidad Autónoma de la Ciudad de México, 04510 México DF, México
e-mail: islas@matem.unam.mx, carlos.islas@uacm.edu.mx


Abstract.   The main purpose of this paper is to construct a 2-equivalent compactification X of a ray whose remainder is homeomorphic to X and such that X is a Kelley Continuum. In order to construct this example, we prove a theorem which gives conditions for an inverse limit of arcs X to be the compactification of a ray and X is a Kelley continuum.

2000 Mathematics Subject Classification.   54F15, 54F50.

Key words and phrases.   2-equivalent continuum, Kelley Continuum, inverse limits.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.46.1.18


References:

  1. R. A. Beane and W. J. Charatonik, Kelley remainders of [ 0, ∞), Topology Proc. 32 (2008), 101-114.
    MathSciNet    

  2. R. Bennett, On inverse limit sequences, Master's Thesis, University of Tennesse, 1962.

  3. J. J. Charatonik and W. J. Charatonik, Fans with the property of Kelley, Topology Appl. 29 (1988), 73-78.
    MathSciNet     CrossRef

  4. W. J. Charatonik, Inverse limits of smooth continua, Comment. Math. Univ. Carolin. 23 (1982), 183-191.
    MathSciNet    

  5. H. Cook, Tree-likeness of hereditarily equivalent continua, Fund. Math. 68 (1970), 203-205.
    MathSciNet    

  6. G. W. Henderson, Proof that every compact decomposable continuum which is topologically equivalent to each of its nondegenerate subcontinua is an arc, Ann. of Math. (2) 72 (1960), 421-428.
    MathSciNet     CrossRef

  7. W. T. Ingram, Periodicity and indecomposability, Proc. Amer. Math. Soc. 123 (1995), 1907-1916.
    MathSciNet     CrossRef

  8. W. T. Ingram, Families of inverse limits on [0,1], Topology Proc. 27 (2003), 189-201.
    MathSciNet    

  9. S. Macías, Topics on continua, Chapman & Hall/CRC, Boca Raton, 2005.
    MathSciNet    

  10. T. Mackowiak, Singular arc-like continua, Dissertationes Math. 257 (1986), 40 pp.
    MathSciNet    

  11. W. S. Mahavier, Continua with only two topologically different subcontinua, Topology Appl. 94 (1999), 243-252.
    MathSciNet     CrossRef

  12. S. Mazurkiewicz, Problem 14, Fund. Math. 2 (1921), p. 286.

  13. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581-594.
    MathSciNet     CrossRef

  14. S. B. Nadler Jr., Continuum theory. An introduction, Marcel Deker, Inc., New York, 1992.
    MathSciNet    

  15. S. B. Nadler Jr., Hyperspaces of sets. A text with research questions. Aportaciones Matemáticas, Serie Textos 33, Sociedad Matemática Mexicana, Mexico, 2006.
    MathSciNet    

  16. G. T. Whyburn, A continuum every subcontinuum of which separates the plane, Amer. J. Math. 52 (1930), 319-330.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page