Glasnik Matematicki, Vol. 46, No.1 (2011), 25-30.
THE LONELY RUNNER PROBLEM FOR MANY RUNNERS
Arturas Dubickas
Department of Mathematics and Informatics, Vilnius
University,
Naugarduko 24, Vilnius LT-03225,
Lithuania
e-mail: arturas.dubickas@mif.vu.lt
Abstract. The lonely runner conjecture asserts that for any positive integer
n and any positive numbers v1 < ... < vn there exists a
positive number t such that ||vi t|| ≥ 1/(n+1) for every
i=1, ...,n. We verify this conjecture for n ≥ 16342 under
assumption that the speeds of the runners satisfy
vj+1/vj ≥ 1+33 log n/n for
j=1, ...,n-1.
2000 Mathematics Subject Classification.
11J13, 11J25, 11J71.
Key words and phrases. Lonely runner
conjecture, Diophantine approximation, Lovász local lemma.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.1.01
References:
- N. Alon and J. Spencer, The probabilistic method,
Wiley-Interscience, New York, 2000, 2nd ed.
MathSciNet
CrossRef
- J. Barajas and O. Serra, The lonely runner with seven runners, Electron. J. Combin. 15 (2008), R48, 18 pp.
MathSciNet
CrossRef
- J. Barajas and O. Serra, On the chromatic number of circulant graphs,
Discrete Math. 309 (2009), 5687-5696.
MathSciNet
CrossRef
- U. Betke and J.M. Wills, Untere Schranken für zwei diophantische Approximations-Funktionen, Monatsh. Math. 76 (1972),
214-217.
MathSciNet
CrossRef
- W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebő and M. Tarsi, Flows, view obstructions and the lonely runner, J. Combin.
Theory Ser. B 72 (1998), 1-9.
MathSciNet
CrossRef
- T. Bohman, R. Holzman and D. Kleitman, Six lonely runners, Electron. J. Combin. 8(2) (2001), R3, 49 pp.
MathSciNet
CrossRef
- T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin.
Theory Ser. A 16 (1974), 1-11.
MathSciNet
CrossRef
- T. W. Cusick and C. Pomerance, View-obstruction problems III, J. Number Theory 19
(1984), 131-139.
MathSciNet
CrossRef
- A. Dubickas, An approximation by lacunary sequence of vectors, Combin. Probab. Comput. 17 (2008), 339-345.
MathSciNet
CrossRef
- A. Dubickas, An approximation property of lacunary
sequences, Israel J. Math. 170 (2009), 95-111.
MathSciNet
CrossRef
-
P. Erdős and L. Lovász, Problems and results of
3-chromatic hypergraphs and some related questions, in: A. Hajnal
et al., eds. Infinite and finite sets (dedic. to P. Erdős on
his 60th birthday), Vol. II. North-Holland, Amsterdam, 1975, pp.
609-627.
MathSciNet
- L. Goddyn and E. B. Wong, Tight instances of the lonely runner, Integers 6 (2006),
#A38, 14 pp.
MathSciNet
- D. D. F. Liu, From rainbow to the lonely runner: a survey on coloring parameters
of distance graphs, Taiwanese J. Math. 12 (2008),
851-871.
MathSciNet
- R. K. Pandey, A note on the lonely runner conjecture, J. Integer Seq. 12 (2009), Article 09.4.6, 4 pp.
MathSciNet
- J. Renault, View-obstruction: a shorter proof for 6 lonely runners,
Discrete Math. 287 (2004), 93-101.
MathSciNet
CrossRef
- I. Ruzsa, Zs. Tuza and M. Voigt, Distance graphs with finite chromatic number,
J. Combin. Theory Ser. B 85 (2002),
181-187.
MathSciNet
CrossRef
- J. M. Wills, Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen, Monatsh. Math. 71 (1967), 263-269.
MathSciNet
CrossRef
Glasnik Matematicki Home Page