Glasnik Matematicki, Vol. 45, No.2 (2010), 357-372.
ON VAN DER CORPUT PROPERTY OF SQUARES
Siniša Slijepčević
Department of Mathematics, University of Zagreb,
Bijenička 30, 10000 Zagreb, Croatia 
e-mail: slijepce@math.hr
Abstract.   We prove that the upper bound for the van der Corput property of the set of
perfect squares is O((log n)-1/3), giving an answer to a problem
considered by Ruzsa and Montgomery. We do it by constructing non-negative
valued, normed trigonometric polynomials with spectrum in the set of perfect
squares not exceeding n, and a small free coefficient
a0=O((log n)-1/3).
2000 Mathematics Subject Classification.  
11P99, 37A45.
Key words and phrases.   Sárközy theorem, recurrence, difference sets, positive
definiteness, van der Corput property, Fourier analysis.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.2.05
References:
-  V. Bergelson and E. Lesigne, Van der Corput
sets in Zd, Colloq. Math. 110 (2008), 1-49.
MathSciNet    
CrossRef
 -  J. Bourgain, Ruzsa's problem on sets of
recurrence, Israel J. Math. 59 (1987), 151-166.
MathSciNet    
CrossRef
 -  H. Furstenberg, Ergodic behaviour of diagonal
measures and a theorem of Szemerédi on arithmetic progressions, J.
Analyse Math., 31 (1977), 204-256.
MathSciNet    
 -  B. Green, On arithmetic structures in dense sets of
integers, Duke Math. J., 114, (2002) (2) 215-238.
MathSciNet    
CrossRef
 -  T. Kamae, M. Mendès France, Van der Corput's
difference theorem, Israel J. Math. 31 (1978), 335-342.
MathSciNet    
CrossRef
 -  J. Lucier, Intersective sets given by a polynomial, Acta Arith. 123 (2006), 57-95.
 -  J. Lucier, Difference sets and shifted primes,
Acta Math. Hungar. 120 (2008), 79-102.
MathSciNet    
CrossRef
 -  H. L. Montgomery, Ten lectures on the
interface between analytic number theory and harmonic analysis, AMS, Providence,
1994.
MathSciNet    
 -  J. Pintz, W. L. Steiger, E. Szemerédi, On sets
of natural integers whose difference set contains no squares, J. London
Math. Soc. 37 (1988), 219-231.
MathSciNet    
CrossRef
 -  J. B. Rosser, L. Schoenfeld, Approximate formulas
for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
MathSciNet    
CrossRef
 -  W. Rudin, Fourier analysis on groups, Wiley, 1962.
 -  I. Z. Ruzsa, Uniform distribution, positive
trigonometric polynomials and difference sets, in Semin. on Number Theory, 1981/1982,
Univ. Bordeaux I, Talence, 1982, Exp. No. 18, 18pp.
MathSciNet    
 -  I. Z. Ruzsa, Connections between the uniform
distribution of a sequence and its differences, in Topics in Classical Number
Theory, Vol. I, II (Budapest, 1981), Colloq. Math. Soc. Jànos
Bolyai, 34, North-Holland, Amsterdam, 1984, 1419-1443.
MathSciNet    
 -  I. Z. Ruzsa, On measures of intersectivity, Acta
Math. Hungar. 43 (1984), 335-340.
MathSciNet    
CrossRef
 -  I. Z. Ruzsa and T. Sanders, Difference sets and the
primes, Acta Arith. 131 (2008), 281-301.
MathSciNet    
CrossRef
 -  A. Sárközy, On difference sets of
integers I, Acta Math. Acad. Sci. Hungar. 31 (1978), 125-149.
MathSciNet    
CrossRef
 -  A. Sárközy, On difference sets of
integers III, Acta Math. Acad. Sci. Hungar. 31 (1978), 355-386.
MathSciNet    
CrossRef
 -  S. Slijepčević, A polinomial Sárközy-Furstenberg theorem with upper bounds, Acta Math. Hungar. 98
 (2003), 111-128.
MathSciNet    
CrossRef
 
Glasnik Matematicki Home Page