Glasnik Matematicki, Vol. 45, No.2 (2010), 357-372.

ON VAN DER CORPUT PROPERTY OF SQUARES

Siniša Slijepčević

Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: slijepce@math.hr


Abstract.   We prove that the upper bound for the van der Corput property of the set of perfect squares is O((log n)-1/3), giving an answer to a problem considered by Ruzsa and Montgomery. We do it by constructing non-negative valued, normed trigonometric polynomials with spectrum in the set of perfect squares not exceeding n, and a small free coefficient a0 = O((log n)-1/3).

2000 Mathematics Subject Classification.   11P99, 37A45.

Key words and phrases.   Sárközy theorem, recurrence, difference sets, positive definiteness, van der Corput property, Fourier analysis.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.2.05


References:

  1. V. Bergelson and E. Lesigne, Van der Corput sets in Zd, Colloq. Math. 110 (2008), 1-49.
    MathSciNet     CrossRef

  2. J. Bourgain, Ruzsa's problem on sets of recurrence, Israel J. Math. 59 (1987), 151-166.
    MathSciNet     CrossRef

  3. H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., 31 (1977), 204-256.
    MathSciNet     CrossRef

  4. B. Green, On arithmetic structures in dense sets of integers, Duke Math. J., 114, (2002) (2) 215-238.
    MathSciNet     CrossRef

  5. T. Kamae, M. Mendès France, Van der Corput's difference theorem, Israel J. Math. 31 (1978), 335-342.
    MathSciNet     CrossRef

  6. J. Lucier, Intersective sets given by a polynomial, Acta Arith. 123 (2006), 57-95.

  7. J. Lucier, Difference sets and shifted primes, Acta Math. Hungar. 120 (2008), 79-102.
    MathSciNet     CrossRef

  8. H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, AMS, Providence, 1994.
    MathSciNet    

  9. J. Pintz, W. L. Steiger, E. Szemerédi, On sets of natural integers whose difference set contains no squares, J. London Math. Soc. 37 (1988), 219-231.
    MathSciNet     CrossRef

  10. J. B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
    MathSciNet     CrossRef

  11. W. Rudin, Fourier analysis on groups, Wiley, 1962.

  12. I. Z. Ruzsa, Uniform distribution, positive trigonometric polynomials and difference sets, in Semin. on Number Theory, 1981/1982, Univ. Bordeaux I, Talence, 1982, Exp. No. 18, 18pp.
    MathSciNet    

  13. I. Z. Ruzsa, Connections between the uniform distribution of a sequence and its differences, in Topics in Classical Number Theory, Vol. I, II (Budapest, 1981), Colloq. Math. Soc. Jànos Bolyai, 34, North-Holland, Amsterdam, 1984, 1419-1443.
    MathSciNet    

  14. I. Z. Ruzsa, On measures of intersectivity, Acta Math. Hungar. 43 (1984), 335-340.
    MathSciNet     CrossRef

  15. I. Z. Ruzsa and T. Sanders, Difference sets and the primes, Acta Arith. 131 (2008), 281-301.
    MathSciNet     CrossRef

  16. A. Sárközy, On difference sets of integers I, Acta Math. Acad. Sci. Hungar. 31 (1978), 125-149.
    MathSciNet     CrossRef

  17. A. Sárközy, On difference sets of integers III, Acta Math. Acad. Sci. Hungar. 31 (1978), 355-386.
    MathSciNet     CrossRef

  18. S. Slijepčević, A polinomial Sárközy-Furstenberg theorem with upper bounds, Acta Math. Hungar. 98 (2003), 111-128.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page