Glasnik Matematicki, Vol. 44, No.1 (2009), 141-153.


Shahabaddin Ebrahimi Atani

Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran

Abstract.   There is a natural graph associated to the zero-divisors of a commutative semiring with non-zero identity. In this article we essentially study zero-divisor graphs with respect to primal and non-primal ideals of a commutative semiring R and investigate the interplay between the semiring-theoretic properties of R and the graph-theoretic properties of ΓI(R) for some ideal I of R. We also show that the zero-divisor graph with respect to primal ideals commutes by the semiring of fractions of R.

2000 Mathematics Subject Classification.   16Y60, 05C75.

Key words and phrases.   Semiring, zero-divisor, graph, primal, ideal-based.

Full text (PDF) (free access)

DOI: 10.3336/gm.44.1.07


  1. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative rings, J. Algebra 217 (1999), 434-447.
    MathSciNet     CrossRef

  2. P. Allen, Ideal theory in semirings, Dissertation, Texas Christian University, 1967.

  3. L. Dancheng and W. Tongsuo, On ideal-based zero-divisor graphs, preprint, 2006.

  4. S. Ebrahimi Atani, On primal and weakly primal ideals over commutative semirings, Glas. Mat. Ser. III 43(63) (2008), 13-23.
    MathSciNet     CrossRef

  5. S. Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glas. Mat. Ser. III 42(62) (2007), 301-308.
    MathSciNet     CrossRef

  6. S. Ebrahimi Atani, The zero-divisor graph with respect to ideals of a commutative semirings, Glas. Mat. Ser. III 43(63) (2008), 309-320.
    MathSciNet     CrossRef

  7. S. Ebrahimi Atani and A. Yousefian Darani, Zero-divisor graphs with respect to primal and weakly primal ideals, J. Korean Math. Soc., 46 (2009), 313-325.

  8. L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.
    MathSciNet     CrossRef

  9. V. Gupta and J. N. Chaudhari, Right π-regular semirings, Sarajevo J. Math. 2 (2006), 3-9.

  10. J. A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, Inc., New York, 1988.

  11. T. G. Lucas, The diameter of a zero-divisor graph, J. Algebra 301 (2006), 174-193.
    MathSciNet     CrossRef

  12. J. R. Mosher, Generalized quotients of hemirings, Compositio Math. 22 (1970), 275-281.

  13. S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), 4425-4443.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page