Glasnik Matematicki, Vol. 44, No.1 (2009), 7-10.


Igor E. Shparlinski

Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

Abstract.   Given two relatively prime positive integers m < n we consider the smallest positive solution (x0, y0) to the equation mx - ny = 1. E. I. Dinaburg and Y. G. Sinai have used continued fractions to show that the ratios x0/n are uniformly distributed in [0,1], when n and m run through consequtive integers of intervals of comparable sizes. We use a bound of exponential sums due to W. Duke, J. B. Friedlander and H. Iwaniec to show a similar result when m and n run through arbitrary sets which are not too thin.

2000 Mathematics Subject Classification.   11D04, 11K38, 11L40.

Key words and phrases.   Linear equations, uniform distribution, exponential sums.

Full text (PDF) (free access)

DOI: 10.3336/gm.44.1.02


  1. M. Drmota and R.F. Tichy, Sequences, discrepancies and applications, Springer-Verlag, Berlin, 1997.

  2. E. I. Dinaburg and Y. G. Sinai, The statistics of the solutions of the integer equation ax - by = ± 1, Funct. Anal. Appl. 24 (1990), 165-171.
    MathSciNet     CrossRef

  3. D. Dolgopyat, On the distribution of the minimal solution of a linear Diophantine equation with random coefficients, Funct. Anal. Appl. 28 (1994), 168-177.
    MathSciNet     CrossRef

  4. W. Duke, J. B. Friedlander and H. Iwaniec, Bilinear forms with Kloosterman fractions, Invent. Math. 128 (1997), 23-43.
    MathSciNet     CrossRef

  5. A. Fujii, On a problem of Dinaburg and Sinai, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 198-203.
    MathSciNet     CrossRef

  6. H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society, Providence, 2004.

  7. L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, New York-London-Sydney, 1974.

  8. G. J. Rieger, Über die Gleichung ad - bc = 1 und Gleichverteilung, Math. Nachr. 162 (1993), 139-143.
    MathSciNet     CrossRef

  9. M. S. Risager and Z. Rudnick, On the statistics of the minimal solution of a linear Diophantine equation and uniform distribution of the real part of orbits in hyperbolic spaces, Contemp. Math., Amer. Math. Soc., to appear.

Glasnik Matematicki Home Page