Glasnik Matematicki, Vol. 43, No.2 (2008), 243-252.

THE ANTI-KEKULÉ NUMBER OF THE INFINITE TRIANGULAR, RECTANGULAR AND HEXAGONAL GRIDS

Darko Veljan and Damir Vukičević

Department of Mathematics, Faculty of Natural Sciences and Mathematics, University of Zagreb, Bijenička 30, HR-10000 Zagreb, Croatia

Department of Mathematics, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia
e-mail: vukicevi@pmfst.hr


Abstract.   The anti-Kekulé number is the smallest number of edges that must be removed from a connected graph with a perfect matching so that the graph remains connected, but has no perfect matching. In this paper the values of the Anti-Kekulé numbers of the infinite triangular, rectangular and hexagonal grids are found, and they are, respectively, 9, 6 and 4.

2000 Mathematics Subject Classification.   05C90, 05C69.

Key words and phrases.   Perfect matching, grid, anti-Kekulé number.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.2.02


References:

  1. B. Bollobás, Graph Theory. An introductory course, Graduate Texts in Mathematics 63, Springer-Verlag, New York-Berlin, 1979.
    MathSciNet

  2. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
    MathSciNet

  3. K. Kutnar, D. Marusic, J. Sedlar and D. Vukicevic, Anti-Kekulée number of leap-frog fullerenes, preprint.

  4. L. Lovász and M. D. Plummer, Matching Theory, North-Holland Publishing Co., Amsterdam, 1986.
    MathSciNet

  5. M. Randic, Aromaticity of Polycyclic Conjugated Hydrocarbons, Chem. Rev. 103 (2003), 3449-3606.
    CrossRef

  6. R. Todescini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

  7. N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
    MathSciNet

  8. D. Veljan, Kombinatorna i diskretna matematika, Algoritam, Zagreb, 2001.

  9. D. Vukicevic, Anti-Kekulé number of C60, preprint.

  10. D. Vukicevic and N. Trinajstic, On the anti-forcing number of benzenoids, J. Math. Chem. 42 (2007), 575-583.
    MathSciNet     CrossRef

  11. D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
    MathSciNet


Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.