Glasnik Matematicki, Vol. 43, No.2 (2008), 231-242.


Marc Röder

Department of Mathematics, National University of Ireland, University Road, Galway, Ireland

Abstract.   The projective planes of order 16 admitting a large (≥ 137) quasiregular group of collineations are classified. The classification is done using the theorem of Dembowski and Piper and a complete search by computer. No new planes are found.

2000 Mathematics Subject Classification.   05B10, 05B25.

Key words and phrases.   Projective planes, relative difference sets, quasiregular group of collineations, complete computer search.

Full text (PDF) (free access)

DOI: 10.3336/gm.43.2.01


  1. R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc. 78 (1955), 464-481.
    MathSciNet     CrossRef

  2. P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete 44, Springer-Verlag, Berlin-Heidelberg, 1968.

  3. P. Dembowski and F. Piper, Quasiregular collineation groups of finite projective planes, Math. Z. 99 (1967), 53-75.
    MathSciNet     CrossRef

  4. U. Dempwolff and A. Reifart, The classification of the translation planes of order 16. I, Geom. Dedicata 15 (1983), 137-153.
    MathSciNet     CrossRef

  5. The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.4,

  6. D. Ghinelli and D. Jungnickel, On finite projective planes in Lenz-Barlotti class at least I.3, Adv. Geom. Special Issue (2003), S28-S48.

  7. A. Pott, Finite geometry and character theory, Lecture Notes in Mathematics 1601, Springer Verlag, Berlin Heidelberg, 1995.

  8. M. Röder,

  9. M. Röder, Quasiregular projective planes of order 16 - a computational approach, Ph.D. thesis, Technische Universitäat Kaiserslautern, 2006,

  10. M. Röder, RDS - a GAP4 package for relative difference sets, 2006,

  11. G. Royle, Gordon Royle's planes of order 16,

  12. B. Schmidt, Characters and cyclotomic fields in finite geometry, Lecture Notes in Mathematics 1797, Springer-Verlag, Berlin, 2002.

Glasnik Matematicki Home Page