Glasnik Matematicki, Vol. 43, No.1 (2008), 41-57.
VERTEX OPERATOR ALGEBRAS ASSOCIATED TO CERTAIN ADMISSIBLE MODULES FOR AFFINE LIE
ALGEBRAS OF TYPE A
Ozren Perše
Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia
e-mail: perse@math.hr
Abstract. Let L(-(l+1)/2,0) be the simple vertex operator
algebra associated to an affine Lie algebra of type
Al(1)
with the lowest admissible half-integer level -(l+1)/2,
for even l. We study the category of weak modules for that vertex
operator algebra which are in category O
as modules for the
associated affine Lie algebra. We classify irreducible objects in
that category and prove semisimplicity of that category.
2000 Mathematics Subject Classification.
17B69, 17B67.
Key words and phrases. Vertex operator algebra, affine Kac-Moody algebra, modular
invariant representation.
Full text (PDF) (free access)
DOI: 10.3336/gm.43.1.05
References:
- D. Adamovic,
Some rational vertex algebras, Glas. Mat. Ser. III
(29)(49) (1994), 25-40.
MathSciNet
- D. Adamovic,
Representations of vertex algebras associated to symplectic affine
Lie algebra at half-integer levels (Croatian), Ph.D. Thesis,
University of Zagreb, 1996.
- D. Adamovic,
A construction of admissible A1(1)-modules of
level -4/3, J. Pure Appl. Algebra 196 (2005), 119-134.
MathSciNet
CrossRef
- D. Adamovic and A. Milas,
Vertex operator algebras associated to modular invariant
representations for A1(1),
Math. Res. Lett. 2 (1995), 563-575.
MathSciNet
- D. Adamovic and O. Perse,
Representations of certain non-rational vertex operator
algebras of affine type, J. Algebra 319 (2008), 2434-2450.
MathSciNet
CrossRef
- R. E. Borcherds,
Vertex algebras, Kac-Moody algebras, and the Monster,
Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.
MathSciNet
- C. Dong, H. Li and G. Mason,
Vertex operator algebras associated to admissible
representations of sl2,
Comm. Math. Phys. 184 (1997), 65-93.
MathSciNet
CrossRef
- B. Feigin and F. Malikov,
Fusion algebra at a rational level and cohomology of
nilpotent subalgebras of sl(2),
Lett. Math. Phys. 31 (1994), 315-325.
MathSciNet
CrossRef
- E. Frenkel and D. Ben-Zvi,
Vertex algebras and algebraic curves, Mathematical Surveys and
Monographs, 88, American Mathematical Society, Providence, RI, 2001.
MathSciNet
- I. Frenkel, Y.-Z. Huang and J. Lepowsky,
On axiomatic approaches to vertex operator algebras and
modules, Mem. Amer. Math. Soc. 104, 1993.
MathSciNet
- I. Frenkel, J. Lepowsky and A. Meurman,
Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol.
134, Academic Press, Boston, 1988.
MathSciNet
- I. Frenkel and Y.-C. Zhu,
Vertex operator algebras associated to representations of
affine and Virasoro algebras, Duke Math. J. 66 (1992),
123-168.
MathSciNet
CrossRef
- A. Ch. Ganchev, V. B. Petkova and G. M. T. Watts,
A note on decoupling conditions for generic level
sl(3)k and fusion rules, Nuclear
Phys. B 571 (2000), 457-478.
MathSciNet
CrossRef
- V. G. Kac,
Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press,
Cambridge, 1990.
MathSciNet
- V. G. Kac,
Vertex Algebras for Beginners, University Lecture Series, Second
Edition, AMS, Vol. 10 (1998).
MathSciNet
- V. Kac and M. Wakimoto,
Modular invariant representations of infinite dimensional
Lie algebras and superalgebras,
Proc. Natl. Acad. Sci. USA 85 (1988), 4956-4960.
MathSciNet
- V. Kac and M. Wakimoto,
Classification of modular invariant representations of
affine algebras, in: Infinite Dimensional Lie algebras and groups,
Advanced Series in Math. Phys. 7, World Scientific, Teaneck NJ, 1989.
MathSciNet
- V. Kac and W. Wang,
Vertex operator superalgebras and their representations,
in: Mathematical aspects of conformal and topological field theories
and quantum groups (South Hadley, MA, 1992), 161-191,
Contemp. Math. 175, AMS, Providence RI, 1994.
MathSciNet
- D. Kazhdan and G. Lusztig,
Tensor structures arising from affine Lie algebras, I, II,
J. Amer. Math. Soc. 6 (1993), 905-947, 949-1011.
MathSciNet
CrossRef
- D. Kazhdan and G. Lusztig,
Tensor structures arising from affine Lie algebras, III,
IV, J. Amer. Math. Soc. 7 (1994), 335-381, 383-453.
MathSciNet
CrossRef
- J. Lepowsky and H. Li,
Introduction to vertex operator algebras and their representations,
Progress in Math., Vol. 227, Birkhauser, Boston, 2004.
MathSciNet
- H.-S. Li,
Local systems of vertex operators, vertex superalgebras and
modules, J. Pure Appl. Algebra 109 (1996), 143-195.
MathSciNet
- F. Malikov, B. Feigin and D. Fuchs,
Singular vectors in Verma modules over Kac-Moody algebras
(Russian), Funktsional. Anal. i Prilozhen. 20 (1986),
25-37.
MathSciNet
- A. Meurman and M. Primc,
Annihilating fields of standard modules of
sl(2,C)~ and combinatorial identities,
Mem. Amer. Math. Soc. 137, AMS, Providence RI, 1999.
MathSciNet
- O. Perse,
Vertex operator algebras associated to type B affine Lie
algebras on admissible half-integer levels, J. Algebra 307
(2007), 215-248.
MathSciNet
CrossRef
- O. Perse,
Vertex operator algebra analogue of embedding of B4 into
F4, J. Pure Appl. Algebra 211 (2007), 702-720.
MathSciNet
CrossRef
- M. Wakimoto, Lectures on infinite-dimensional Lie algebra,
World Scientific, River Edge NJ, 2001.
MathSciNet
- Y.-C. Zhu,
Modular invariance of characters of vertex operator
algebras, J. Amer. Math. Soc. 9 (1996), 237-302.
MathSciNet
CrossRef
Glasnik Matematicki Home Page