Glasnik Matematicki, Vol. 43, No.1 (2008), 41-57.

VERTEX OPERATOR ALGEBRAS ASSOCIATED TO CERTAIN ADMISSIBLE MODULES FOR AFFINE LIE ALGEBRAS OF TYPE A

Ozren Perše

Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia
e-mail: perse@math.hr


Abstract.   Let L(-(l+1)/2,0) be the simple vertex operator algebra associated to an affine Lie algebra of type Al(1) with the lowest admissible half-integer level -(l+1)/2, for even l. We study the category of weak modules for that vertex operator algebra which are in category O as modules for the associated affine Lie algebra. We classify irreducible objects in that category and prove semisimplicity of that category.

2000 Mathematics Subject Classification.   17B69, 17B67.

Key words and phrases.   Vertex operator algebra, affine Kac-Moody algebra, modular invariant representation.


Full text (PDF) (free access)

DOI: 10.3336/gm.43.1.05


References:

  1. D. Adamovic, Some rational vertex algebras, Glas. Mat. Ser. III (29)(49) (1994), 25-40.
    MathSciNet

  2. D. Adamovic, Representations of vertex algebras associated to symplectic affine Lie algebra at half-integer levels (Croatian), Ph.D. Thesis, University of Zagreb, 1996.

  3. D. Adamovic, A construction of admissible A1(1)-modules of level -4/3, J. Pure Appl. Algebra 196 (2005), 119-134.
    MathSciNet     CrossRef

  4. D. Adamovic and A. Milas, Vertex operator algebras associated to modular invariant representations for A1(1), Math. Res. Lett. 2 (1995), 563-575.
    MathSciNet

  5. D. Adamovic and O. Perse, Representations of certain non-rational vertex operator algebras of affine type, J. Algebra 319 (2008), 2434-2450.
    MathSciNet     CrossRef

  6. R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.
    MathSciNet

  7. C. Dong, H. Li and G. Mason, Vertex operator algebras associated to admissible representations of sl2, Comm. Math. Phys. 184 (1997), 65-93.
    MathSciNet     CrossRef

  8. B. Feigin and F. Malikov, Fusion algebra at a rational level and cohomology of nilpotent subalgebras of sl(2), Lett. Math. Phys. 31 (1994), 315-325.
    MathSciNet     CrossRef

  9. E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, American Mathematical Society, Providence, RI, 2001.
    MathSciNet

  10. I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104, 1993.
    MathSciNet

  11. I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988.
    MathSciNet

  12. I. Frenkel and Y.-C. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123-168.
    MathSciNet     CrossRef

  13. A. Ch. Ganchev, V. B. Petkova and G. M. T. Watts, A note on decoupling conditions for generic level sl(3)k and fusion rules, Nuclear Phys. B 571 (2000), 457-478.
    MathSciNet     CrossRef

  14. V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990.
    MathSciNet

  15. V. G. Kac, Vertex Algebras for Beginners, University Lecture Series, Second Edition, AMS, Vol. 10 (1998).
    MathSciNet

  16. V. Kac and M. Wakimoto, Modular invariant representations of infinite dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA 85 (1988), 4956-4960.
    MathSciNet

  17. V. Kac and M. Wakimoto, Classification of modular invariant representations of affine algebras, in: Infinite Dimensional Lie algebras and groups, Advanced Series in Math. Phys. 7, World Scientific, Teaneck NJ, 1989.
    MathSciNet

  18. V. Kac and W. Wang, Vertex operator superalgebras and their representations, in: Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), 161-191, Contemp. Math. 175, AMS, Providence RI, 1994.
    MathSciNet

  19. D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, I, II, J. Amer. Math. Soc. 6 (1993), 905-947, 949-1011.
    MathSciNet     CrossRef

  20. D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, III, IV, J. Amer. Math. Soc. 7 (1994), 335-381, 383-453.
    MathSciNet     CrossRef

  21. J. Lepowsky and H. Li, Introduction to vertex operator algebras and their representations, Progress in Math., Vol. 227, Birkhauser, Boston, 2004.
    MathSciNet

  22. H.-S. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), 143-195.
    MathSciNet

  23. F. Malikov, B. Feigin and D. Fuchs, Singular vectors in Verma modules over Kac-Moody algebras (Russian), Funktsional. Anal. i Prilozhen. 20 (1986), 25-37.
    MathSciNet

  24. A. Meurman and M. Primc, Annihilating fields of standard modules of sl(2,C)~ and combinatorial identities, Mem. Amer. Math. Soc. 137, AMS, Providence RI, 1999.
    MathSciNet

  25. O. Perse, Vertex operator algebras associated to type B affine Lie algebras on admissible half-integer levels, J. Algebra 307 (2007), 215-248.
    MathSciNet     CrossRef

  26. O. Perse, Vertex operator algebra analogue of embedding of B4 into F4, J. Pure Appl. Algebra 211 (2007), 702-720.
    MathSciNet     CrossRef

  27. M. Wakimoto, Lectures on infinite-dimensional Lie algebra, World Scientific, River Edge NJ, 2001.
    MathSciNet

  28. Y.-C. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page