Glasnik Matematicki, Vol. 42, No.2 (2007), 357-362.
ON A CHARACTERIZATION OF QUASICYCLIC GROUPS
Dabin Zheng, Yujie Ma and Heguo Liu
Faculty of Mathematics and Computer Science, Hu Bei University,
Wuhan 430062, Hubei Province, China
e-mail: zhengdabin@mmrc.iss.ac.cn
KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100080, China
e-mail: yjma@mmrc.iss.ac.cn
Faculty of Mathematics and Computer Science, Hu Bei University,
Wuhan 430062, Hubei Province, China
e-mail: liuheguo0@163.com
Abstract. Let G be an infinite solvable group (resp. an infinite group
properly containing its commutator subgroup G'). We prove that G
is isomorphic to a quasicyclic group if and only if all proper
normal subgroups of G are finitely generated (resp. all proper
normal subgroups of G are cyclic or finite).
2000 Mathematics Subject Classification.
20E18, 20F16, 20E34.
Key words and phrases. Quasicyclic group, hypo-inner Σ group,
commutator subgroup, solvable group.
Full text (PDF) (free access)
DOI: 10.3336/gm.42.2.09
References:
- Z. Chen, Infinite inner Σ groups
and Zp∞,
Journal of Southwest China
Normal University 2 (1979), (in Chinese).
- Z. Chen, Inner Σ Groups (in Chinese),
Acta Math. Sinica 23 (1980), 239-243.
MathSciNet
- I. Kaplansky, Infinite Abelian Groups,
University of Michigan Press, Ann Arbor, 1954.
MathSciNet
- A. J. Ol'sanskii, Infinite groups with
cyclic subgroups, Dokl. Akad. Nauk SSSR. 245 (1979),
785-787.
MathSciNet
- D. J. S. Robinson, A Course in the Theory of Groups, Springer, 1982.
MathSciNet
- N. F. Sesekin and O. S. Shirokovsraya, A class of bigraded groups,
Mat. Sb. N. S. 46 (1958), 133-142.
MathSciNet
Glasnik Matematicki Home Page