Glasnik Matematicki, Vol. 42, No.1 (2007), 131-144.

A SPECTRAL SEQUENCE FOR THE GROUP OF SELF-MAPS WHICH INDUCE INDENTITY AUTOMORPHISMS OF HOMOLOGY GROUPS

Petar Pavešić

Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska 19, 1000 Ljubljana, Slovenija
e-mail: petar.pavesic@uni-lj.si


Abstract.   Let Aut*(X) denote the group of homotopy classes of self-maps of X which induce identity automorphisms of homology groups. We construct a spectral sequence converging to Aut*(X), induced by the cellular decomposition of X, and use it to obtain some structural and computational results.

2000 Mathematics Subject Classification.   55P10.

Key words and phrases.   Self-homotopy equivalence, cellular decomposition, spectral sequence, Cartan-Eilenberg method, nilpotent group, localization.


Full text (PDF) (free access)

DOI: 10.3336/gm.42.1.11


References:

  1. M. Arkowitz, The group of self-homotopy equivalences - a survey, in: Group of Self-Equivalences and Related Topics (Montreal, 1988), Lecture Notes in Mathematics 1425, Springer, Berlin, 1990, 170-203.
    MathSciNet

  2. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
    MathSciNet

  3. H. Cartan, Classes d'applications d'un espace dans un groupe topologique, d'après Shih Weishu, Topologie differentielle, Sem. H. Cartan 6 (1962/63), 19 p.
    MathSciNet

  4. C. R. Curjel, On the homology decomposition of polyhedra, Illinois J. Math. 7 (1963), 121-136.
    MathSciNet

  5. G. Didierjean, Homotopie de l'espace des équivalences d'homotopie fibrées, Ann. Inst. Fourier (Grenoble) 35 (1985), 33-47.
    MathSciNet

  6. G. Didierjean, Équivalences d'homotopie et crochet de Whitehead, preprint.

  7. E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), 187-197.
    MathSciNet     CrossRef

  8. P. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965.
    MathSciNet

  9. P. J. Kahn, Self-equivalences of (n-1)-connected 2n-manifolds, Math. Ann. 180 (1969), 26-47.
    MathSciNet     CrossRef

  10. A. Legrand, Homotopie des espaces de sections, Lecture Notes in Mathematics 941, Springer-Verlag, Berlin-New York, 1982.
    MathSciNet

  11. K. Maruyama, Localization of self-homotopy equivalences inducing the identity on homology, Math. Proc. Cambridge Philos. Soc. 108 (1990), 291-297.
    MathSciNet

  12. S. Oka, N. Sawashita and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9-28.
    MathSciNet

  13. P. Pavesic, On self-maps which induce identity automorphisms of homology groups, Glasg. Math. J. 43 (2001) 177-184.
    MathSciNet     CrossRef

  14. J. W. Rutter, On skeleton preserving homotopy self-equivalences of CW complexes, in: Group of Self-Equivalences and Related Topics (Montreal, 1988), Lecture Notes in Mathematics 1425, Springer, Berlin, 1990, 147-156.
    MathSciNet

  15. W. Shih, On the group ε[X] of homotopy equivalence maps, Bull. Amer. Math. Soc. 70 (1964) 361-365.
    MathSciNet

  16. G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics 61, Springer-Verlag, New York-Berlin, 1978.
    MathSciNet

Glasnik Matematicki Home Page