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THE CAUCHY FUNCTIONAL EQUATION AND SCALAR
PRODUCT IN VECTOR SPACES

Svetozar Kurepa, Zagreb

1. In this paper R={t,s,...} denotes the set of all real
numbers and X = {x,¥,...} a real vector space.

A functional n:X—> R is termed a quadratic functional if

n@ty)tn{r—y)=2nx) +2n) 1)

holds for all x, ¥y < X [3]. A quadratic functional n is continuous

along rays if the function t— n(tx) is continuous in ¢, for any x.

Improving some results of M. Fréchet [1], P. Jordan and

J. v. Neumann [2] have proved the following well-known
theorem:

Let X be a complexr vector space with distance defined in
terms of a norm |x|, so that
lety|<|z|+]|y|,|iz|=|x]| and }1_1310 |tx|=0.
“Then the identity . ,
|[z+y2+|z—yl2=2]|z|2+2]|y]|?

is characteristic for the existence of an inner product (x,y) con-
nected with the norm by the relations

|12 = (x, x).

In Section 2. of this paper we extend this result to an arbitrary
real vector space on which a quadratic functional n(x) is defined,
which is bounded on every segment of X. By a segment 4 = [x, y]
of X we understand the set of all vectors z < X of the form
z=tr+(1—1t)y with 0<t<1,

In Section 3. we replace the condition that n(x) is bounded on
every segment by the condition n(tx)=t2n(x) (t € R,z < X) and
we obtain some related results which will be used in Section 5.
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In Section 5. we find the general form (with respect to an algebraic
basic set of X) of a quadratic functional n(x) on X which has the
property that n(tx) =#n(x) t <R, x < X). It turns out that n(x)
is expressed by use of dv ivates omn R.

The principal results of this paper are summerised in the Main
Theorem. It turns out, therefore, that the problem of introducing
a scalar product in X by use of a quadratic functional is closely
related to some problems with the Cauchy functional equation,
i. e. with a function f: R— R such that

Ft+s8)=5(t)+ () )

holds for all t,s< R. It is well-known that a function f, which
satisfies functional equation (2), is not necessarily continuous. But,
if f is continuous or bounded (above or below) on an interval, then
it is of the form f(t) =1tf (1) [4].

In Section 4. we give a theorem about functional equation (2)
which is used in Section 3.

A derivative on R is a solution of the Cauchy functional
equation (2) which has the additional property that

fts)=1tf(s) +s5(1)

holds for all t,s R. The existence and abundance of nontrivial
derivatives on R follows from [6] (pp. 120—131).

2. Theorem 1. Let X be a real vector space and n: X —> R
a quadratic functional. .

If for any x € X there are two positive numbers A; >0 and
B; such that

|t| < Az implies |n(tx) | < B: N )]
then
n(tx) =12 n(x) @

holds for any t< R and x < X.
Proof If we set
f(t; x) =n(tx),

then by use of (1) we get

ftts;2x)+fEt—s;x)=2f(t;x) +2f(s; 2), ®)
for all t,s<R and < X. For t=s5=0, (5) implies f(0;x)=0.
Now, t=0 and (5) lead to f(—s;x)=7F(s;x). Hence, f(2t;x)=
=4f(t;x) and by induction f(kt;x)=k2f(t;x), for any natural

1 1
number k. Using this, we have f(l;x)=f(kz;x)=k2f(;c—;x),



The Cauchy functional... 25

1 1
i e —;x)=— f(1;x), which leads to
fs@)=— f1;2)

frix)=r2f(Q1,2),

for any rational number r. Now, (3) and Theorem 1 of [3] imply
fit;x)=1f(1,%), i. e. n(tx)==t2n(x).

Theorem 2. Let X be a real vector space and n:X—R a
real functional. If

a) n@ty)tax—y)=2nE@ +2n) (xy<X), and
b) sup |n(x)| <+ o holds for every segment 4 of X,
€A
then

m (z, 9) = %[n(ﬁy)—n(m—y)]

is a bilinear functional on X. Furthermore m(x, X) = n(x).
Corollary 1. Let X be a real vector space and n:X—>R
a real functional. If

o) n(z+y) +n@—y =2n@+2n0) @y<x),
b)n(tz)=t2n(x) t<R, 2<X),

c) inf n(x) >—o (x<X) and
reXx

d) n(@)=0(=)z =0 ,
then X is a normed vector space with || =[n@)]" as a norm
of x. Moreover X is a unitary space with a scalar product
1
@9 = [n(ao+ y)—n(x—y)], (@ 2) = n(@).
For the proof of Theorem 2 and for later use we need the
following lemma.

Lemma 1. Let X be a real vector space and n: X — R a qua-
dratic functional.

Then the functional
1
m(x,y)=7[n(x+y)—n(x——y)] (6)

is symmetric and additive, i. e.
m(x, y) =m(y, x) and 7 )
m(x+y,2)=m(x,2) +m(y,2) (9 2z<X)(cf. [5). 8
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Proof. Using (1), we have n(—x) =n(x), so that m(x,y) =
= m(y, x) holds. Furthermore we have :
dm@Exty=n@xtytz)—nxt+y—2)=
=2n(x+2)+2ny)—nx+tE—y)]—nzr—E—y)]l=
=2n(@x+2)+2n(y) —2n{y—2)—2n(x) =
=n(rtz)+2n(x) +2n@)—n(x+2)+2n(y)—2n(y—2)—2n(x) =
=nxt+2—nx—2+nyt+z)—nly—=2)=
=4m(x,2) +4m(y, 2).

Thus, (8) is also proved.

Proof of Theorem 2. Using Theorem 1, and assumptions
a) and b) of Theorem 2, for 4 = [—x, x], we have n(tx) = t? n(x).
Hence, by a) and b),

n(tx+y)+n(te—uy)
2

=n(tx)+ny) =2nx)+ny)),

which implies

ntzty)=n@) +t¥n(x)+2mt;x,v), 9
where :
. m(t;x,y)=mx,y). (10)

If in (8) we set tx instead of x, sy instead of ¥y and y instead of 2,
we get
m(t+s;x,y)=m(t;:c,y)+m(s;x,y)(t,s<R;x<X). (11)
Now, the assumption b) of Theorem 2 together with (9) implies
sup |m(t; :c,y)|<+°°

o<t .
From here it follows that the function t—>m(t;x; y) is bounded
on some interval. Since it satisfies the Cauchy functional equation
(11) it is continuous and, therefore, .

m(t;x,y)=tm(l; ) (12)
holds, for all t< R and x, y < X. By use of (12), (9) becomes
ntxe+y) =ny)+2tm(z, y) + 2 n(x). (13)

Replacing y by —y in (13), we get
n(tr—y)=n(y)—2tmx,y) +2n(x),
which together with (13) leads to '

%[n(tx+y)—n(tac——y)] =tm(x, vy), i. e.
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Using (14) and the symmetiry of the functional m we obtain
Theorem 2.

Proof of Corollary 1. It follows from c) that infn(tx)>
t€R
>-— oo, which together with n(tx) = t2n(x) implies n(x) >0, i. e.
the functional 7 is positive on X. But this and (9) lead to
2m(t; z, y) = —n(y) —tEn(x).

From here it follows that the function t— m (t;x,y) is bounded
from below on some interval. Since it satisfies the Cauchy func-
tional equation it is continuous and therefore (12) is satisfied,
which by use of d) implies the assertion of Corollary 1.

Remark 1. If X is a complex vector space and n a complex
valued functional defined on X such that *

a) n:X-—>R is a quadratic functional,
) n(tz)=ttn(x) ¢<R;z<X),
V) n(ix)=n() <X,
) n@)>0 (x<X) and
d) n(x)=0(=)z=0,
then X is a unitary space with a scalar product

(x,y) = %[n(x+y)—n(w——y)]+%[n(x +'iy)—'—n(w—iy)] )

(x, x) =n(x).

In order to prove this we note that, in the same way as in the
proof of Theorem 2, we find that m(tx, y) = tm(x, y) holds for all
t< R and x, y € X, where the functional m is defined by (6). Now
we set

(x, y) =m(x,y) +im(x, iy) (15)

and we find by use of b”) that
(iz,y) =1i(x,v) and (x,y) = (y, 7).
Hence for a complex number ¢ =t+is (t,s < R) we have
(C.‘Z:, y) = (tx + isx, y) = (tx: y) + (isx: y) = t(l‘, y) +
tis(x,y)=c= ),

which leads to the assertion. Remark 1 shows that in questions
of introducing scalar product by use of the quadratic functional
which posseses properties b") and b”) for all real numbers t, it is
sufficient to treat the case of a real vector space.
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If b') c) and d) are replaced by sup |n (x) | <<+ oo, for every
reh

segment 4, than (x, y) is a sesquilinear functional on X (i. e. x—
—> (x,9), (y,x) are linear functionals, for every y < X). The case,
when b’), b”), ¢) and d) are replaced by n(lx) =|1|2n(zx), for all
.complex 4, will be treated in the forthcomming paper »Quadratic
and sesquilinear functionals«.

3. Theorem 3. Let X be a real vector space and n:X—>R
a functional such that

agnxty)tanx—y)=2n@+2n) (ry<X)and
b) n(tx)y=t2n(x) (<R x<X)

hold true.
Then the functional

a(t;x,y)= m(t:-x:, y);m(x’ty)‘

is a skew symmetric bilinear functional in x and y, for every t < R.
Functionals a(t; x, y) and n(x) are connected by the equation:

t
n{tx+y)=n(y) + ?ln(x+y)—_n(x—y)]+ (16)
+en@) ta(t;x,y).

Furthermore, as an functi-on of t, the functional a(t; x,y) satisfies
the following functional equations:

at+s;zy) =a(t; 2, 9) +a(s; ),

a(t-s;x,y)=ta(s;x,y)+sa(t;x, ),
for all t,s<R and x,y< X.

Proof. In the proof of Theorem 3 we will make use of
Theorem 4 about functional equations, which will be proved later
on. Using (6), (10) and the assumption b): n(tx) = t2n(x), we get

m ("1‘; x, y) =—i‘ ["'(—i‘x—l-y)-‘“ (-%—x—y)] =

17

.=_1__i_[n(ty—{—x)—n(ty———x)] ie (18)

t!
» 1
m(t;x,y)=12m (——t HETRE IR

for all t<R, t3=0 and all x,y < X. If we set

alt;z,y) — m(t;x,y);m(t;y,x) , (19)
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and
, . t: )

we find, by use of (20), (19), (18) and (8),

at+s;x,9)=a(t;x,y) ta(s;x,9),

1 21

a(t;x,y)=—t2a(—t—;x,y) @b
and .

b{t+s;x,y)=b(t;x,y) +b(s;x,9),

b(t;x,y)=t2b(% ;x,y)- , ' (22)

In Theorem 4 we will prove that (21) leads to (17) and that
(22) implies b(t;x,9) =%tb(l;x,y). Hence,

m(t;x,y)=b(t;x,y) talt;x,y)=tmx,y) +a(t;z9),

which together with (9) implies (16).
From the definition of a it follows that

a{t;x, y) =—a(t;y,x) and a(t; x,—y) =—a(t; x,v). (23)
Now, (16) implies

nts- oty =)+ o [n(x+y)—n(x—y)] +

+@sn(x)+a(ts;x,y),

n(t-sx+1y)=n(@) + %ln(sx+y)—n(sx—y)]+

+t2n(sx)+alt;sx,y).
From here we get

% [a(tS;x, y)—a(t;sx,y)] =
—n(r+y) —n(sz—y) —s [n(x+y)—n(x—y)] -

Using once again (16), for n{sx -+ y) and n(sx —y), we get
a(ts;x,y)=ta(s;z,v) talt;sx ),
which together with (17) leads %o

a(t;sx,y)=sa(t;x, y). (24)
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Obviously ‘(24), (23) and (8) imply that a(t; x, y) is a bilinear fimc-
tional in x and v, for every t< R,

4. In this section we study functions f:R-> R, which satisfy
the Cauchy functional equation and some other subsidiary condi-
tions.

Theorem 4. Let f and g == 0 be two solutions of the Cauchy
functional equation.

Is
g(t)=P(t) f(1/1)

holds for all t=F 0, where P(t) is a continuous function such that
P(1)=1, then P(t)=t? and

F®+g®)=2tg(1).
Furthermore, the function
Ft)=5(t)—tf(1)
satisfies the following functional equations
Fit+s)=F@)+F(s),
F(ts)=tF(s)+sF(t),
forb all t,s<R.
Proof If we take t=5=0 and a rational number r==0, then

g(rt)=P(rt)f (it) together with g(rt) =rg(t) and
T

=6

imply
o= ().
T t
Hence,
[P(:t) —rw](3)=0. (25)
T t

for all r==0. If s3=0 is any real number and 7,30 a sequence
of rational numbers which tends to t, then (25) implies:

[P(st) _P(t)] f(i) —o
2 t

S

Since f==0, we get
P(st)=s2P(t),
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for all s=3=0 and for at least one t=3=0. If we take s =1/t we find
P(t) = t2 P (1) = t2 Hence P(s,t) = (st)2. If in this relation we replace
s by s/t we find P(s)=s2 Thus, .

gaﬁ=ﬂf(%)- @6)

From (26) it follows g(1) = f(1). Now, we set
Ft)=f@®)—tf(1) and G(t)=g@)—1tg(1)

Using (26) we find :
G(t) =t F(1/Y @n

and we conclude that F and G are solutions of the Cauchy functional
equation. Furthermore F (r) = G(r) =0, for any rational number 7.
We have, therefore,

1 ¢
GO =GU+t)=1+1BF [—— ) =@ +t2F (1— ——]| =
© dro=0+9 <1+t) 4 ( +t)

t

Thus,
Fit)=—G(, (28)

which together with (27) leads to
F() =— 82 F (%) (29)
and .
fFA)—tfQ)=— (@) —tg(1)), i. e. f(t)+g(t)=2tf(1).

It remains to prove that (29) and F (t + s) = F (t) + F(s) imply
F(ts)=1tF (s) + sF(t). By using (29) we have

F®)+ — F()=F (t-—i) —F (t’—l) :_(t2—1)2_.
12 ¢ . ;

2 2 2__
pics )=—~(t ) =)
t2—1 t t—1 t2—1 t

. t2—1\2 —1 o 1y
F(t 1)+( : )(tz_l)zF(t 1)

=(t+1)2F(t)—;lz—F(t2).

t— 1)=

t
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From here,
F(t3 =2t F(t). (30)
Replacing in (30) t by t + s and using' (30) we get
F(ts)y=tF(s)+sF(t).

Corollary 2. If a function f:R—>R satzsfzes the Cauchy
functional equation and

f(&) = f(1/t)
holds, for all t==0, then f{t)=tf()L

Remark 2. From Theorem 3 one can see that derivatives
on reals, i. e. functions F :R—> R such that

F(t+s)=F(t)+ F(s)
F(ts)=tF(s)+sF(t),F30
holds for all t,s <R, will play an important role in studying a
quadratic functional.

Let us prove that F (t) = 0 for any algebraic number t. Indeed,
if t is an algebraic number and

trtatri+, . tan1ttan=0 (32)

is the »least equation« for t with integral coefficients a1,..., aa,
then applying F' on (32) we get:

[ntqp—l-}_(n_—]_)aitn‘z"l‘...+an—'1]F(t)=0*’

(1)

which implies F (t) = 0. However, from here it is easy to conclude
that the set {t|F(t) =0, t< R} is an algebraically closed field, but
it is in general different from R.

5. Using results obtained so far in this section we find the
explicit expression for a quadratic functional n(x) (n(tx)=t*n(x),
t< R, x < X) in an algebraic basic set. We start with '

Remark 3. If F is a nontrivial solution of (31) and if e; and
ez is a basic set in a real two dimensional vector space X, then the
functional

ntes + seg) = {t,s<R)

] F @) F(s)
t s

satisfies all conditions of Theorem 3, but the function t— n (te; +
+ seg) is mot continuous, for all s.
More generally, we have the following Theorem.

1 This result was obtained independently by Prof. W. B. Jurkat
at the end of 1963. and will appear in Proc. Amer. Math. Soc. The present
author had this result at the end of October in 1963. and he presented it
in the Seminar on Algebra and Analysis in Zagreb on October 30, 1963.
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Theorem 5. Let X be a real k-dimensional vector space
(k>1) and n:X-—-> R a quadratic functional on X such that
n(tx)=t2n(x) holds for all t<R and x<X. If e1,...,ex is a
basic set in X, then

Kk

(Sue)= S S

i=1 i,j=1 1<i<j<k

(33)

ai; (ti) as; (t;)
t; t;

holds for all ti,...,tx <R, where bij=b;; <R are constants and
each function t— a;; (t) satisfies both functional equations (31).

K
Proof. Applying (16) for x =e1, y= 2 tje; and t = t1, we have
i=2
K k K

n ( Z tiei) = t12n(e1) + n(z t,-ei) + 2tym (el, Z t,-e,-) -+

i=1 i=2 i=2
k

~+ a(tl; el,z t,-ei) =

i=2

k K (34)

=t’nle) +n (Z tiei) + Zt1z m (e, tiei) +

i=2 i=2

k
+zt;a(t1; el, ei).

i=2

Applying once again (16), we find
1
m(ti; e, e)) = tim(ei, e;) — Iy a(ti; ey, €. (35)

Now (35) and (34) lead tol

k k k

n (z tie,-) =n (Z t,-ei) + ti?n (e)) + 2 z titim(er, e;) +

i=1 i= i=2

2
k
+ z [tia(t1;ei, ei)—t1a(ti:e1,ei)] .

i=2
If we set

aji(t)=a(t;e,e)(i=2,...,k) and bii=biy =m(ey, &), biy =n(e1),
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we get
k ’ ’ k

n (z tiei) = b1 t4>+ 2 Z brityit; 4
i=1 i=2
K K

b [l Wt (S ),
131 t;
ji=2 i=2

which by induction implies (33).
Now using Theorem 3 and Theorem 5 we can sum up the main
results of this paper in the following theorem:

The Main Theorem. Let X be a real vector space and
n: X — R a real valued functional such that:

a) n(z+y)+tnx—y)=2n)+2ny) (@Xy<X)
and

by n(tx)=tn(x) (<R x<X).

If {e.|]1<a<<Q} is an algebraic basic set in X then

(T 3 ot 3

a 1<e,f<0 1I<ae<B<Q

holds true for all t, < R, where in the sum only a finite number
of terms may be different from zero; ba.s = bsg. are real constants
and t— a.p (t) is a derivative on the set of all reals, i. e.

Qop(t + 8) = Gap (t) + aap (s) and a.p(ts) =ta.5(s) +saqp(t) (37)

holds for all t,s<R and 1<a<<B<H.
If in addition sup |n(x)| <<+ oo holds, for every segment 4
xTE€EA

Qg (ta) a“ﬂ (tﬁ) (36)
ty tg

of X, then in (36) the second sum equals to zero and

n(Ztee) = 2 bapta'ts.
@ B

Conversely, if {ea] 1< a<<Q} is an algebraic basic set in X,
bap = bga real constants and t — a.p (t) satisfies (37), for all a, (1 <
<a<p<), then by (36), a quadratic functional X> x—>n(x) €R
is defined such that n(tx) =t2n(x).

Remark 4. From the proofs of theorems derived in this
paper and from n(x+y)+n(x—y)=2n(x) +2n(y) it is obvious
how one can extend results of this paper to the case when n takes
values among matrices or vectors of some rather general vector
spaces. Since such generalisations are straightforward, we discussed
the case of the real — valued quadratic functional only.
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Acknowledgement. The motivation for these investi-
gations were the following questions communicated to us by Prof.
J. Aczél and raised by Prof. I. R. Halperin while lecturing
in Paris in 1963 on Hilbert spaces.-

1. Suppose that the function f:R— R satisfies the Cauchy
functional equation and that f(t) = t2 f(1/t), for all t==0. Does this
imply the continuity of f ?

Corollary 2 gives an affirmative answer to this question.

2. Suppose that X is a real, complex or quaternionic vector
space and that n is a functional such that

a) nz+y)+nx—y)=2n(x)+2n) (r,y<X)and

b) n(Ax)=|1]2n(x)
holds respectively, for all real, complex or quaternionic 4. Do a)
and b) imply the continuity of the function t—>n(tx +y)—
—n(tx—y), for ¢t real and for all x,y < X.

According to Remark 3 and the Main Theorem the answer to
this question is in the megative provided that the space X is real
and not one-dimensional. In our forthcomming paper »Quadratic
and sesquilinear functionals« we prove that the answer is in the
positive if X is a complex or a quaternionic vector space.

I would like to express my thanks to the members of the
Seminar on Algebra and Analysis, and in particular to Prof. S.
Marde§i¢, for their interest and fruitful discussions on the
subject of this paper.

Institute of Mathematics
University of Zagreb |
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KOSIJEVA FUNKCIONALNA JEDNADZBA I SKALARNI PRODUKT
U VEKTORSKIM PROSTORIMA

Svetozar Kurepa, Zagreb
Sadrzaj

Neka je R={t,s,...} skup realnih brojeva i X ={z,y,...}
vektorski prostor nad R. Funkcinal n:X — R zove se kvadratni
funkcional, ako vrijedi (1) za sve x,y iz X.

Teorem 1. Ako je X realan wvektorski prostor i kvadratni
funkcional n: X — R ima svojstvo da za svako x iz X postoje bro-
jevi Az i B, takovi da vrijedi (3) tada vrijedi i (4).

Teorem 2. Neka je X realan vektorski prostor i n: X~ R
kvadratni funkcional. Ako je sup |n(x)| <<+ o za svaki segment

x€EA
4 iz X, onda je sa (6) zadan bilinearan funkcional m(x,y) na X.
Pored toga je m(x,y) = n(x).

Teorem 3. Neka je X realan vektorski prostor i n:X— R
kvadratni funkcional. Ako je n(tx) =t2n(x), za svet < Rix < X,
onda vrijedi (16). Pri tome je a(t;x,y) bilinearan antisimetridan
funkcional u x,y, za svako %, i za svaki par x, y < X vrijedi (17).

Teorem 4. Ako su f i g0 dva rjefenja KoSijeve funkci-
onalne jednadZbe (2) i ako vrijedi g(t) =P (t) g(1/t), za sve t=F0,
pri ¢emu je P neprekidna funkcija i P(1) =1, onda je f(t) -+ g(t) =
=2tg(1), a funkcija F(t) = f(t)—tf(1) zadovoljava funkcionalne
jednadzbe (31).

Teorem 5. Neka je X realan k-dimenzionalan vektorski pro-
stor i n:X— R kvadratni funkcional takav da je n(tx) =tZn(x)
(t< R, x<X).

Ako je ey,..., e, baza u X, tada vrijedi (33) za sve t1,...,tx <R,
gdje su bij = bj; realne konstante, a svaka od funkcija t-—> ai;(t)
zadovoljava obje funkcionalne jednadZbe (31).

Iz ovih teorema slijedi

Osnovni teorem. Neka je X realan vektorski prostor i
n : X — R kvadratni funkcional sa svojstvom da je n(tx) =1 n(x).
Ako je {e.|1<a<<Q} algebarska baza u X, tada vrijedi (36),
gdje je to=0 samo za konaéno brojeva a;bss=bs. su realne
konstante, a funkcije t— a,p(t) zadovoljavaju (37). Ako je pritom
i sup |n(x)| <+ oo, za svaki segment 4 iz X, onda drugi &lan u

XEA
(36) isCezava.

Obratno, ako je {e.|1<a<<Q} algebarska baza u X, bep = bga
realne konstante i t — a,4(t) funkcije koje zadovoljavaju (37), onda
je sa (36) zadan kwvadratni funkcional X > xz— n(x) < R, koji ima
svojstvo da je n(tx) =12n(x), za svako t<R i x<X.

(Primljeno 6. I 1964.)



