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Introduction?)

The cardinal number kS (resp. kG) of an ordered set S (of a
graph G) depends on the cardinal numbers of its chains and anti-
chains. A particular kind of ordered sets — trees or ramified tables
T — was considered in our Thesis (Kurepa [1]) in connexion with
the Suslin problem, when I was lead to the hypothesis that kT is
the supremum of k. T and k:T? (for definitions see the glossary).
Another kind of this problematics is related to the question whether
the numbers k¢S, k; S are reached. In this connexion we proved
that every infinite »narrow« tree T contains a chain of the same
cardinality as the set T itself (cf. Kurepa [1] p. 80 Th. 5Pis also in
Kurepa [8] where the same theorem with its proof are reproduced).
As far as we know both kinds of these problems were considered
for the first time in our Thesis.

~ The next step was the same problematics for general ordered
sets. The question was resolved in 1937 (cf. »relation fondamentale«
(1) in Kurepa [3]; and [4]). In particular, kS depends exponentially
upon k.S and one has k S < (2 kz S)%cS (cf. § 5). The proof of this
item is extensionable to binary symmetrical relations as I found in
1950. I thought that the same result should hold for n-ary sym-
metrical relations (Kurepa [6], [7]); therefore, I postponed the com-
plete publication of this paper which was promised to the Journal

1) We delivered these lectures on the matter:

1. Uber bindre symmetrische Relation, Munich, 06.9. 1952 (Congress
of the »Deutsche Mathematikervereinigung«).

2. O simetri¢nim relacijama i grafovima, Zagreb, 03.12.1952 (Col-
loquium, Drustvo matemati¢ara i fizitara NR Hrvatske).

3. Sur les relations binaires, Paris, 24. 02. 1953 (Faculté des Sciences).

4. O kombinacijama, Zagreb 17.3. 1954 (Colloquium, Drustvo mate-
mati¢ara i fizitara NR Hrvatske).

2) The Suslin problem is equivalent to the problem whether every
tree is countable if each of its chains and antichains is countable (Kurepa
[1] pp. 106 (passage b), 124, 132).
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fiir die reine und angewandte Mathematik after my lecture on
the 09. 9. 1952 in Munich and sent for publicationly a part of it
(Kurepa [6]).

In 1952 I lectured on the same subject in Paris, at the Faculty
of Sciences; then I was informed by G. Riguet about the work of
Ramsey [1], P. Erd6s [1] and R. Rado. Anyway I delayed the publi-
cation of my paper hoping to extend the theorem 7.2 (resp. 9.2) in
the same form writing I+ instead of 12 (resp. writing r instead
of 2), for any integer r >1 (cf. Kurepa [7]) and not only to have
evaluation of kS contained in the theorem 8.3 (resp. 9.4) I was
stopped, too, by the problem we announce in § 10, in particular as
to the existence of the number R (7, n, 8,), for finite r and n. More-
over, I had the idea to gather all the results and publish them in
a particular work.

Now, that I was informed by P. Erdds that Hajnal proved that
the evolution of kS in theorem 8.3 (resp. 9.4) is the best one,
I decided to publish this paper jointly with reimpression of my
original paper [4]. )

Obviously, there are connexions between my papers and those
of Erdés — Rado.

It is instructive to notify how the tree considerations are play-
ing an important role in the theory of general symmetrical relations
(cf. §§ 3.2; 6.2, 8.4.5). We stress also the idea of product of relations:
this idea played an essential role in our proofs?.

1. Definitions and Notations.

1.1 Definition. For an ordered set (S;<<) let I'S denote
the first ordinal number which is not representable in (S; <).

In other words, I I'S denotes the system of all ordered types
of well ordered subsets of the ordering (S; <).

1.2. I'S* denotes I'(S;>>). Consequently, II'S* denotes the
order types of inversely well ordered subsets of (S; <).

1.3. K¢S resp. K:S denotes the first cardinal number non-
representable as chain resp. as antichain in (S; <).

1.4. In particular, let W, S denote the first cardinal non repre-
sentable as a well-ordered subset of (S;<<); W.S*= W, (S;>).
15. Definition.

we S = (WeS)—, waS = (WeS*)—;
kaS =%k:S = (K: §)—.
1.6. Analogously, for every binary graph (G; o) let
K.G resp. K: G = K,G ”

3) The idea of intersection of felations is the very basis of dimension
theory of ordered sets in the sense Dushnik-Miller.
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denote the first cardinal number which is not representable as a
chain resp. as an antichain of the graph (G; o)¥.

Let k.G = (K:G)—, kG = (K*G)—.

1.6. The R-operator. Let X be a part of an ordered set (S;<).
We denote by RX any maximal antichain of X such that RX D
2R, X; R, X denotes the set of all the initial points of X i. e.
R, X ={z|x =X, X (. ,2)=0}

Analogously, for any graph (G;p) and X © G we denote by
RX any maximal antichain of X.

1.7. Numbers NS, nS.

For a chain C of (S;<) let S(C,.) denote the set of all the
points x of S satisfying C <<x i. e. y <ax for each y = C. In par-
ticular, S(0,.) = R,S. We denote by N(S; <) or NS the first car-
dinal number > kRS (C,.) for each chain C & S. We denote by
n(s, <) or nS the number (N S)—.

2. Trees or Ramified Tables.

2.1. Definition. An ordered set T is said to, be a tree or
a ramified table, provided for every point x = T the set T(.,x)
is a well ordered subset of T. The void set @ is a tree too.

22. Definition. Let R,T be the set of all the points x < T
such that the set T (., x) be of order type a.

23. Definition. The first ordinal such that R,T =0 is
called the height or the rank yT of T.

2.4.1. One has this disjointed partition of T in rows R,T of T:
T=UR.T, (a<yT)
[
kT=3kR,T, (a<ypT),
«

from which it follows fhat
kT<mT.kyT with
mT =supkR,T.
a

and the more
kT <k.,T.-kyT
each row being an antichain.

2.4.2. According to our hypothesis we have

kT <koT. -k:T

1) o is a binary symmetric relation in the set G. If a subset of G
has no pair of o-comparable (resp. o-incomparable) distinct elements,
this subset is referred to as an antichain (resp. chain) of the graph (G; o).
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for every tree T. This hypothesis is equivalent to the positive answer
to the general Suslin problem: each ordered chain C contains a set
of cardinality sC which is everywhere dense in C9

25. Lemma. For every y <yT the set R,,T is non empty;
there exists at least on point x such that the order-type of T (., X)
be 7.

2.51. yT=1IT

2.6. A node of a tree T is each maximal subset in which the
mapping x — T (., x) is constant. In particular, R, T is a mode of T.

2.6.1. Lemma. For any tree T the cardinal NT or N is the
first cardinal number >k X, X being any node of T.

2.7.1. Theorem. For each a <yT one has kR, T <ka"s, where
ke, @, are cardinals satisfying ks < N—, a, < k(1 +a). T is similar
to a subset of the set T(n;y) of all the sequences of length <yT
of ordinals << w(n) ordered by -] relatzon 6 One has kT (n,y) =
= 2'nke, (a<y).

The proof is carried out by induction.

2.72. Theorem. There are two mappings a— K, a—>a, of
Iy T into cardinals such that k, <m,a, <k(l+a) and kT < Z ko2
(a<<yT).

The theorem is a consequence of the disjointed partition T =
=UR.T (¢a<yT) and of the 2.7.1.
[43

2.73. Theorem.
kR, T<(T)%T (¢ <yT) and kT < (n T)%Tw.T;
in particular KT < (nT)V T provided nT > 1.
The theorem is a consequence of 2.7.2.

2.8. Theorem (a) Let T be a tree and N =NT the first car-
dinal number greater than any node of T. There exist two yT-
sequences of cardinals

ke <N ,aa<k(lta),a<K: (a<yT) (1)
such that
kT <3 ka® (a<yT). 2y

If N is regular one could request, moreover, that
ke« <N for every a<<yT; 3)
(b) The general continuum hypothesis implies for any regular N the
existence of two mappings of 1 K. :
x—k; into IN
and x — a, into I K,

such that
kT S .}: kx ax (X \/ IKC)' (4)

5) sC denotes the supremum of the cardinals kF, F being a disjointed
system of open non empty intervals of C.
% x—y meaus: x is a proper initral part of y.
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Proof. 2.8.1. The coexistence of the relations (1) and (2) was
proved in § 2.7.1; only it remains to prove that the condition
a, < K; might be required. Now, supky <k.<kyT. If y is not
initial, then k. = ky and one could suppose a, << K. Let, therefore,
y bi initial. If k. <<ky, then ky’ <k, thus a, << K. There remains
the case ke = (ky)~ =ky; then ky <k Thus in any case we could
demand that a. << K.

2.8.2. Let us prove (2) under assumptions (4) for any regular N.

Let n=N—. We have n<N. If n <N, it is sufficiant to put
ke=mn, a,=k(l + a). Therefore, let us consider the case m = N.
One has either kT =kyT or kT > kyT. In the first case it is
sufficient to put ka=1 and a.=1 for every a <yT: the relations
(1), (2) hold good. In the second case kT >ky T we have kT =mT
with mT =sup kR. T, (¢ <yT). Now, either n>ky T or n <kyT.
If n>kyT we put k,=kR,T,k;,=3kR(x,.). Let 0 <<a<<yT

xeR,T
such that the cardinals kq, a., be determined and that
KRy T < 3ky % (o < a). (5)

If « is of the second kind we put
ke=supky, a=k(l+ a);

the number n (= N) being regular and > kT one has k,<n and
obviously kR, T < k,*1+%a Let now a be of the first kind. Then
the cardinal kR,_1 T is either <<n or > n. In the first case we put
ke=2KkRT(x,.), (x = R,1T), aua=k (1 + a); in the second case
put ke = k.-1. In both cases the numbers k,, a, are determined and
one sees that the equation obtained from (5) by the substitution
a— a + 1 holds.

2.8.3. Now, we shall prove that the domain of the mappings
x — ks, * — a, might be the set I K. of cardinals << K. (instead the
set Iy T of ordinals <<y T), provided both N be regular and the
general continuum hypothesis is holding.

We have to consider two alternatives, according as the number
k.= K. is reached or not reached.

2.8.3.1. k¢ is reached i. e. there is a chain of cardinality k.. Then
ke=ky or ke <<ky. Let ke=ky. If N<k then k.Fe <k.*c=2%
and X 2% =2%:.k.=2% i. e. (4) holds. If N> k., then k., <<N =)

<v :
=) k;%c <N and N*c = N (N is regular, and the continuum hypothe-
sis is assumed!) and kT <N — again (4) is satisfied.

In N—<N then N~ >k, and (N-)% <N ; if N~ is regular,
then (N-)%¢ = N— and kT < N— i. e. kT = N— — all right!

If N— is singular, then (N—)*c is either N— or N; in both cases
kT = (N—)ke = 2 (N—) %,

Tk,

2.8.3.2. k. is reached and k.<ky; then ind k.+1=ind ky,

where « = ind N .. The preceding reasoning applies in this case too.
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2.8.3.3. kc is not reached: k.= K=K, =k yT being initial.
We have these alternatives: N <k, and N > k..

2.8.3.3.1. If N <k, then k, <k, and one could take a, > k,,
thus k,%" = 2%, Therefore, kTgZ2"’ Now, a,» <k, and conse-

quently 2% <ky = N;. On the other hand one proves readily this

Lemma. To every y-sequence of cardinals b,y << §8; corresponds
a l-sequence of cardinals d;; << N8; such that Z‘b <Z (%)

oy

As a matter of fact cfw; = cf1. On the other hand the number
(*), is < N;; now, the number (¥), might be N;, although d << R

2.8.3.3.2. Let us now consider the case N > k.. We might sup-
pose k, > a, and k, to be regular and therefore k,”” =k, (conti-
nuum hypothesis!) and finally kT < N—.

Now, N— < N. The relation N— = N is not possible: otherwise
one would have kT = N and the number kT (= N) would be the
sum of a y-sequence of numbers << N — absurdity, N being regular.
Therefore, necessarily N—<<N; and in this case it is sufficient to
put k= N—, a; =1 for any x = IK., to convince us that the rela-

lation (4) holds.
The theorem is completely proved.
2.84. Remark. If N is not regular, the relation (2) might be

false under the assumption (3). This is shown by a tree T satisfying
yT =2, RoT = {ag,a1,...08n,...}, KRT (au, ) = R,

3. Ranged Sets.

31. Definition. An ordered set B is ranged provided each
of its chains is well ordered.

3.1.1. Lemma. The set RoB of all the initial points of a ranged
set is a maximal antichain of B i. e. RyB =RB (cf. § 1.6).

3.2. A tree T B associated to B (cf. Kurepa [4] § 2). Let us con-
sider the sets '

B(,x] (z = B).

The maximal chains of any of these sets form a well defined family
of chains of (B; <); we shall denote it by

T B or more explicitly (T B; —|) where the relation =| means
»to be an initial segment of«; in other words if X, Y are sequences
or well ordered sets then X =|Y means that X is a beginning part
of Y; in particular X—I Y means X=|Y and XF+Y i. e. X is a
proper initial portion? of Y.

By induction argument one sees that

<, <- of some of

=% =

7) The symbols =|, —| replace the symbols <
my previous papers.
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321 Lemma. RyT B = {ao}, (a0 = RoB)
RiT B = (ay, a1), (@0 = Ro B, (a1 = Ro T (a0)))
and for every a <I'B
R.,TB={X * (a)|X = R.-1 TB,a = RyB(X,.)} provided a« = I
R, TB={supC|C
being any maximal Z-chain in the set (U Ro T B; —|)}.

By definition, sup C means the least sequence s such that
x=|s for every x - C.

322. 'TB=TB

3.23. kc.TB=k:B

324. NTB=NB, nTB=nB.

33. Theorem on ranged sets. For each ranged set
(B; <) we have

kB < (n B)fcB . k. B.
In particular
k B < (n B)k¢® provided n B> 1.

The theorem is an immediate consequence of the obvious relation
kB < k(TB) and of the 2.7.3, 3.2.2, 3.2.3 and 3.2.4.
Since n B < k. B the theorem 3.3. implies this corollary:
33.1.Corollary. For any ranged set B one has kB < (2k, B)%:P
(cf. Kurepa [4] Lemma p. 63).

3.32. Theorem (a) For any ranged set B there are two I B-
sequences of cardinal numbers

ke <(NB)",a. <kl +a),a<Ke(a<<I B)

such that
kB < 3 k.a* (a << I'B).
@

If N is regular, one could require that, moreover,
ke <N B, (a < I' B).

(b) The general continuum hypothesis implies for any regular
N the existence of two mappings of IK.:x — ky into IN and x — ax
into I K. such that k B < X k¢, (x I1K,):

The theorem is implied by Th. 2.8. and the lemmas 3.2.2, 3.2.4.

3’. G-ranged Sets.

Let — be a binary antisymmetrical relation; this means that
for distinct points a, b the relations a— b and b— a are not possible
(the relation a— a is not excluded; the transitive property of — is
not excluded either).

3".1. Def. An oriented graph is any ordered pair (S; —) of a set
S and an antisymmetrical binary relation — in S.
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3.2. A g-ranged set is any oriented graph (G;—) in which
every non void chain C has an initial element i. e. an element e
such that e — x for every x <= C.

3’.3. For any X C G let R X be a maximal antichain containing
every initial point of X.

For any ranged set (G;—) and any X € G the antichain RX
is well determined just like for ranged sets (B; <).

3'.4. Dual g-ranged set of (S,—) is the structure (S, <) where
a <—b means b —a.

3'.5. The preceding considerations on ranged sets hold for g-
ranged sets too.

4. Ordered Chains.

4.1. Let E be a chain and » a normal well — ordering of E.
Let B be the set E ordered by superposition of the given order in
E and the well-order w. B is a ranged set and

K:B<W.E; (1)
K, B<W4E, (2)
I'GLTIE: (3)

Let us prove (2). Let A be any antichain in B. Now in the
wellorder w, the set A is well-ordered; the same set A in the given
chain E is inversely well -ordered, -otherwise A would be no
antichain in B: any couple of distinct points of A are distinctly
ordered in E and w.

Since k E =k B on applying the theorem 3.3 we conclude that

kE < (wqE)”cE.
Analogously on considering the order (S;>>) instead of the order
(S; <) we see that wq(S, >) = w.(S, <), w:(S;>) =waq(S, <) and
the preceding relation yields

kE < (wE)waE,

Thus we have the following result.
42. Theorem. For every totally ordered set E we have

kE <ab
where
a = sup {wc E, wq E}, b = inf {w. E, wa E}.
421. Corollary. For every ordered chain E we have
k E < 2% a=sup {w:E, wq E}. (Hausdorff).

The theorem 4.2. is a strengthening of the preceding corollary.
E. g. if for a chain w;E = 2%, wy E = 8, then the theorem yields
kE < (280)% — 20 by the corollary one has the weaker majoration
kE < 20,
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43. Remark. As application of the theorem 3.3.2. one gets a
corresponding statement for ordered chains.

4.4, The s-number of a chain E. For a family F of sets let SF
be the first cardinal > kD, D being any disjointed sistem of sets
which are elements of F. We put sF = (SF)—. Thus sF is the
supremum of kD, D having the same meaning. For an ordered set
E we denote by S E, sE respectively the numbers SF, sF, F meaning
the family of all the open intervals of E.

4.4.1. Lemma. For any ordered chain E sE>w.E, sE>wqE.

442. Theorem. kE < 2sF
The theorem is a corrolary of 4.2.1. and 4.4.1.

5. Ordered Sets.

5.1. Let (E; <) be any ordered set (partially or totaly ordered);
let w mean a normal well-order of E. Let (B, p) mean the ordering
of E obtained as the product of the orderings (E, <) and w i.e.
x oy means that x precedes y in (E; <) and in w. The set (B; p) is
ranged. By theorem 3.3 we have

kB < (nB)kB k. B. 1)
Now, k. B < w.(E, <); therefore
kB S (nB)ch we E. (2)
On the other hand
nB < kq(B, ). (3)

Now, let A be any antichain in (B; g); let (4; o) be the order of A
obtained as the product of the orders of A in (E,>) and in w. The
set (4; 0) in ranged and obviously )

_ Kq(A,0) < Kq(E, <) i.e kqe(A,0) <k E

ke(4, 0) <ke(E,>) =ka(E, <) =ka E. (4)
By the theorem 3.3. we have, therefore,
kA< (kg A)wed. we A< (ks E)vaf w, A. (5)

Taking here the supremum with respect to the antichain A in (A4, p)
one gets
ke B=supk A < (ks E)?dF wq A (6)
and the formula (2) yields
k B < [(kqa E)?dE wq AlfeB we B = (kq E)*“aE* “E (wq EywcB
i. e. (since kB =kE):
k E < (kq E)?cE waE (wy E)¥ecE, (7)

By permuting the indices ¢ and d, one gets another similar formula.
Therefore, we have the following theorem.
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5.2. Theorem on ordered sets. Putting for any ordered set E

x=sup {wcE,weE}, y = inf {wcE, wq E}
we have
k E < (ko E)* . xv. (@)

5.2.1. Corollary. For any chain E we have kE < x¥ (put
in (8) k¢ E =1; cf. Theorem 4.2).

52.2. Corollary. For any ordered set E we have kKE <~
< (2kqE)*, x =sup {wc E, wg E} (cf. relation (4) in Kurepa [4]).

As a matter of fact x¥ < ax”= 2%, and the relation (8) yields
k E < (kq E)* 27 = (2kq E)*. Q. E. D,

6. Binary Symmetrical Relations. Graphs.

6.1. As an immediate generalization of preceding considerations
on ordered sets one has the corresponding results for binary graphs
(G; o). The role of the comparability) (cesf. incomparability) relation
in ordered sets is played now by any binary symmetrical relation p.
Obviously, in this case the numbers W., W; are to be replaced by
the number K. defined as the first cardinal number > k C, C being
any o-chain of the graph (G; ). Analogously, K, or K; is the least
cardinal >k A, A being any antichain of the graph.

6.1.1. Dual graph (G;o*) of a graph (G;p) is obtained from
(G; 0) by permuting the connexion and the disconnection relation:

a0*b (=) a non pb.
Consequently,
ke (G, 0) = ke (G 0%)

ke (G, 0) = ke (G; ).

6.2. To every graph (G; o) we associate a tree (T G; =) in the
following way. (cf. § 3.2). Let w a normal well-order of the set G;
let the relation — mean the product of the p-relation and of the
well-order relation w i.e. a— b (=) aob and wa <wb. Then for
any — chain C we have the set G (C,.) =

{x|x =G\ C,c— x for every ¢ = C}

as well as the set R G(C,.) of the first points of G(C,.). Then to
every a _ G one associates a — -chain C(a) =C, (a), C, (@), ... such
that @ ~ C(a) and C’(a)-— a where C’(a) =C(a) — {a} and that
C:(a) = RG({C,(a);.C:(a)..},.). The set C(a) is a maximal — chain
of the'set G(,.a]. The length yC(a) of C(a) is < w(a), C(a) being
also a p-chain, one has necessarily yC(a)gw(M. The tree TG
will be formed of the chains C(a), (¢ = G) and ordered by the
relation =|.

6.2.1. Lemm a. The sets (G, p) and (T G; —|) are connected by
the relations:
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kG kTG (1)
7T G < g, (2)
NTG<K.,G 3)

Let us prove for instance the last relation. Let C be a chain in
(T G;=l); then U X = X’ is a chain in (G; —); the set G(X/,.) and
XeC
its initial row R are well determined; R is a p -antichain and one
sees that the elements X' U {x}, (x = R) form the node R (T G(C,.))
of (T G;—].

6.2.2. Theorem. For any graph (G; o) one has

kG <uxy
where
x =sup {ke G, ke G}, y=inf {keG,keG}.

As a matter of fact, the n° 2.7.3. and 6.2.1. imply
k G < (ke G)%eC . k. .G.

Now, for dual graph (G, p*) the analogous relation yields kG <
< (kcG)*aC.k,G. And the last two formulas yield the required
formula of the theorem.

6.23. Theorem. Let (G;p) be a graph of cardinality > 2R%;
then G contains a o-chain or a p-antichain of cardinality > N..
This is a direct consequence of 6.2.2. T.

7. On Symmetrical Mappings with 2 Variables.

71. Definition. Let I2= {0,1}; for any set S let S,,’2 be
the set of all the ordered pairs (x,y) such that * = S,y = S and
zFy.

7.2. Theorem. Let S be any set and f a symmetrical mapping
of S,,'? into In®, where for a given number n we denote by In the
set of numbers << n.

If kS > 2Raand n << w, then there exists a subset X of S such
that kX > N, and that f be constant in. X{;/2. The conclusion need
not hold provided kS < 2¥a or provided f be non symmetrical,
regardless of the number kS.

Proof 7.2.1. The proof will be carrled out by the induction
argument on n.

First step: n=2. Let us denote the relation f(a.b)=10 by
a o b; then we have the graph (S; p) and the wording »X is a chain
(antichain) in (S; o)« is equivalent to the wording X,,/2 7~ {10},
(resp. {f—!1}). Therefore, the theorem 6.2.3. implies the theorem 7.2
for n =2. :

%) i.e. f (x,9) = f (¥, x).
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Secondstep: let 2<<n<w and suppose that the theorem
7.2 holds for every n <<1. We shall prove that it holds also for n = L.
For this, let aob mean f(a,b)=1—1. On gets the graph (S; o).
We have these alternatives: First case: S contains a ¢ -chain X
of cardinality > N,; this means that the theorem holds for n =1.
Second case: every o-chain in (S;0) is < N, In this case, S
contains necessarily an o -antichain A of cardinality > 28%- in the
opposite case, one would have k A <<2R¢ for every o -antichain.
In virtue of the theorem 6.2.2. one would have k § < (2Re)Xe — 9R%/
contrarily to the hypothesis. Consequently, there exists a o -anti-
chain A of cardinality > 28¢; this means that the restriction of f
on A is a mapping of A!2 into I (l—1); by induction hypothesis, A
contains a subset X of cardinality > N, such that f be constant in
X112, Finally, the theorem holds for m =1 too. Thus it holds for
each n << w.

7.2.2. On the other hand, let M, be the set, ordered alphabeti-
cally, of ws-sequences of rational numbers and «» a normal well-
order of M, If we put f(a, b) =0 if and only if a precedes b and
and wa<<wb, and f(a, b) F0(=) f(a,b) =1, then f is a mapping
of M,/2 into I2 which is non constant in every square of cardinality
> N,; the cardinal number of M, is NoN®i.e. 28¢, Thus the con-
dition kS > 2R« of the theorem is necessary.

7.2.3. On the other hand, let S be any set and f a mapping of
S’2 onto I2 such that f(a,b)=f(b,a) for a==b. Then f is non-
constant on the square X2 for each X € S, k X > 1. Thus the sym-
metry condition of f in the theorem is necessary.

7.24. Remark. I thought that by induction argument the
theorem 7.2. holds for Ir instead of I2 for any integer r>1 (cf.
Kurepa [6], [7]); cf. also the theorems 8.3 and 8.4, 9.4, 9.5 and the
remark. 9.6).

8. On Symmetrical Mappings.

81. Definition. Let (4, B) be any ordered pair of sets and
A B or A,, (B) the set of all the one-to-one mappings of B into A.
In particular, r being any ordinal number, An” denotes all the
one-to-one r-sequences of elements of A.

By definition we put A=A "

82. Definitiomn. Let (m,n) be any ordered fair of numbers
and 7 any ordinal < w; we define m,n in the following way:

myn=mn, mn=m" mg,1=m"s"
E. g 3:4=3%"
83. Maintheorem. Let S be a set and r a positive integer

and N, any aleph. If there exists a symmetrical mapping f of S,,'r
into a set M of cardinality m such that the relations

X TS, KkfX, /=1 imply kX <R
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then
kS S my-1 xa.

The theorem is equivalent to the following theorem.

84. Theorem. For any positive integer r and set S let £ be
a symmetrical mapping of S;,'* into a set of cardinality m. If
m< R, and kS > m;_1 N, there exists a subset X of S such that
kX > N, and that Let f be constant in X, !

Therefore, let us prove the theorem 8.4. The proof will be car-
ried out by induction on 7.

8.4.1. The theorem holds for r=1: if a set of cardinality
>my X .(=N.) is mapped by f into M with kM <N, then j is
constant on a subset of S of a cardinality > R.. In the opposite
case, there would be k {—fa} < R, for each a = M and the relation
U{—fa} =S would imply kM. R.>kS i. e. 8,-Na>kS, con-
atM
trary to the hypothesis kS > R,.

Let now e be any integer > 1 and suppose that the theorem
8.3 holds for each r < e; we shall prove that it holds for r = e too.

8.4.2. Let

(W) ... wy, w,, w,,..

be a 1—1 mapping of Iw, onto S. For every a = S we define a
subsequence C(a) of points x = S satisfying —x <— wa?. We put
C (wo) = (w), C(w1) = (wo w1), ..., C(We-1) = (wo, Wy, ..., We-2).

For any other point a = S we put ap = wp, a1 = Wy, ..., 0e-2 = We-2
and define a.-; as the first element x in the well-order (w) such
that f(se-1x) = f(se-1a), where Se_.1=ap@a1...a.-2. Let a be an
ordinal such that the a-sequence a®= (as)s be defined and that
each of its e -subsequences s satisfies f(s) = f(s" a), where s’ means
the sequence s without it last term. We define then a, as the first
element x = S, ~x <~ wa in (w) such that f(y x) = f(y a) for each
(e —1) -subsequence y of a%.

The formation of C(a) is finished when the point a becomes an
element of C(a).

8.4.3. Obviously y C(a) <y w a.

8.4.4. The mapping a — C(a) (a = S) is one-to-one. First of all
the mapping is uniform. Secondly, the inverse mapping is uniform
too.

As a matter of fact if x, y are distinct elements of S then either
—wr<<—wy or —wx>—"wy. In the first case one has x = C(x),
y <’ C(x); in the second case, x = 'C(y). y = C(y); thus C(x)=(y).

8.4.5. Let T =TS be the tree whose elements are all the initial
portions of the sequences C(a), (¢ = S); we order TS by —|.

8.4.6. Every node of T is < m, i. e. for every sequence s =
=ayay...0y,... the number of the sequences of the form sx
satisfying sx = T, x = S is <m.

%) The relations w, = x, a = —w x are equivalent.
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In fact, for every subsequence y of (e —1) terms of s and every
value v = M let {—f(y) v} mean the set of all the x satisfying
x = S, f(yx) =v. For a given v = M the intersection of all these
sets is well determined as well as its first element u;u depends
upon s and v i.e. u = u (s; v). It might happen that for some v = M
the point u(s; v) does not exist; anyway the immediate followers
of s in T are of the form s, u(s; v), v running through M; therefore,
the number of these followers is < m. Q. E. D.

8.4.7. One has

kT < Smhe, (a<y,y<supyC(a),a < S).
@

This is an immediate consequence of 4. and § 2. 7. 1.
8.4.8. There exists an a — S such that

k C(a) > me_2 Rq (= b). 1)

In the opposite case, for every @ = S one would have k C(a) <b
and yC(a) <w@®) +1 thus

kTSZ m"a=R(b)+1-mb=(me_1Ra)*’-me-1Na=mearNa
R ORS
Hence kT < me. 1N, which is in contradiction with kS <k T and
kS > m._18.. This proves the relation (1).
8.4.9. Now, the definition of C(a) implies that

f(s) = f(s a) for every e-subsequence s of C(a). (2)
In this way we get a determined symmetrical mapping

x—f(xa) (x = C@)u'D ®3)

The relation (1) enables us to apply the induction hypothesis: the
set C(a) contains a subset X of cardinalitv > &, such that the
mapping (3) be constant in X;!(¢—1, This means, in virtue of (2),
that also the mapping f is constant in X/¢. Q. E. D.

8.5. Remark on the symmetry condition. The symmetry con-
dition in theorem 8.3, 8.4 is needed.

In fact, let S be any set and f a mapping of S onto I2 such
that f(x,y)Ff(y,x) for every x,y = S,x=y. Then f is non-
constant on the set Xi{/r for each X = S, kX > 1.

86. Remark. For r =2 the condition kS > m; R, is needed:

there exists a set S such that k S = 2R8% gnd a symmetrical mapping
of S1'2 into 12 which is non-constant in X11(12) for each subset X
of cardinality > N..

As a matter of fact let

S = Q(wa)
be a system of all the w,-sequences of rational numbers ordered by
the principle of the first differences; S is a chain, each interval of

S ha kS =2X" points and every strictly increasing (decreasing)
sequence in S is of a cardinality << N.. Now, let w be a normal
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well-ordering of S. Let then the order relation < be defined in S
as the superposition (product) of the preceding two orderings of
S:a <b means that a precedes b in (S; <) and in (S;w). Then
each chain (antichain) in (S; <) as a well-ordered (resp. a dually
well-ordered) subset of (S; <) is N, although k S = 2Ra(cf. Kurepa
18). If then f(a,b) =0 means that a,b are in (S; <) comparable
relative to =< and if f(a,b) =1 means that the points a,b are
incomparable relative to =, then we are dealing with a symmetri-
cal mapping f of S1;/2 into I2 and which is non-constant in X11/2
for each X C S with kS >N..

9. On Combinations.

9.1. Definition. For any set S and any cardinal number n
det (i) denote the system of all subsets of S,of cardinality n each.

If S, M are sets, then ( 1'31) denotes the set of all the subsets of
S, of cardinality kM each.

If n>kS and if kM>kS, one puts (i):g:(ﬁ). Any

mapping f of (;Sl) is a symmetrical mapping of Si;(B), where
kB =n.19)

Therefore the results of §§ 7 and 8 imply the following statements.
9.2. Theorem. Let 8,, be given. In order that for each map-

ping f of ('25) into M of cardinality << N. there exists a subset X of

S such that k X > N, and that f be constant in ()2{) it in necessary
and sufficient that kS > 28 (c¢f § 7).
93. Theorem. Let N, be given. In order that for each par-

tition P of (‘25) into m classes there exists a subset X of S of cardi-

nality > N, and such that (;) be entirely contained in one class of
the partition, it is necessary and sufficient that k S > 2Ne.
The statement 9.3. is equivalent to the statement 9.2 as it is

visible by the correspondence fx=A{(=)x ZA <= P, (x = (g))-

One gets in this way a mapping of (S) into the set P which takes
now the role of the set M in statement 9.2.

1) A mapping f of Sy (B) is symmetrical provided fg = fbg (g =
< S11(B), b = B!); B! denotes the set of all the permutations of B.
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94. Theorem. Let S,r, XN« be any set, any positive intéger
and any aleph respectively; il there exists a mapping f of (i) into
a set M of cardinality m such that the relations

X.< S, kf();) =1 imply kX < N,

then kS < m,_y8S.

The theorem 9:4 is a special case of the theorem 8.3.
95. Theorem. For any set S, any cardinal number N, and

any positive integer r let £ be a mapping of (?) into a set M of
cardinality m < Nq; if KS>m; | Noy, where my Neg = N;y, My Ne =
=mNe, my,1 = m"xNe then there erists a subset X of S such that
k X > R, and that f be constant in ( ) )

The theorem is an immediate consequence of the § 7.5.
9.6. Remark. The converse of the theorem 9.4 holds too for
r=12 (cf. § 8.6)1v

10. Problem.

10.1. Problem. Let 8, be given. Does there exist a cardinal
number R (N,) such that for every set S and for every mapping f

of ( ) into 12 the relation k S > R(h,.) implies the existence of a
set X in S such that f be constant in ( ) and that k X > N,.

10.2. Probl em Given cardmals m, N.. Let S be any set and
f any mapping of ( ) into 12; if every set X & S such that f be
constant in ( :a) is of a cardinality << m, determine sup kS.

10.3. General problem. Let a,m,c be given numbers
(each finite or infinite); let us consider any set S, the set (3) and
any mapping f of (S) into a set M of a cardinality << m. Does there
exist — and determine — a number R =R (a, m, ¢) sucht that the
relation k' S > R implies for any mapping f of(i) into M the exi-
stence of a subset X of S of a cardinality > ¢ and such that f be
constant in (f)? E. g. R(2,2, 8,)=28and R (2,n, 8,) =28 for

each 1 <n < N;. We thought that R (a, n,N.) = 2R for any finite
a>| (cf. Kurepa [6], [7]); therefore, the publication of this paper
stopped since 1952.

M) As I was told by P. Erdos, the converse was recently proved
in 1959 by Hajnal for each positive integer r.
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mT L T T . 2 | N
Nomo o s sl i v o o s s sy LB
Node . . . g e LS e D6
Oriented graph R SR P R, 5 |
RiR, .. . S SIS | {7
Range-d R e T o |
Rank . . . . . . . . . . . . . 22
| T T . 6
S T E T N e e e e e 44
Tree . . |
Tree assocxate«d to G e . . . . 62

x— =sup Ix; ¥’ means x’ <x
mix is the fu‘st ordinal of cardmallty x

We®D, Wa. . . o o « o o« + = 5 « 14
We, Wa . A e ) 5]
=| means »to be an Lmtlal part of« . (3.2)
—| means »to be a proper initial part of« (3.2)
TAE. o i e e w ow e e w82
! SRR s L s e e s s s s 5 91 (Note)

O KARDINALNOM BROJU UREDENIH SKUPOVA I STIMETRICNIH
STRUKTURA U ZAVISNOSTI OD KARDINALNIH BROJEVA NJIHOVIH
LANACA I ANTILANACAY)

Gjuro Kurepa, Zagreb

Sadrzaj

Neka je S (potpuno ili nepotpuno) ureden skup, T stablo, a G
graf (t. j. skup u kojem je definirana simetri¢na binarna relacija, p)
Tad se mogu promatrati brojevi K. G, K. G kao oni najmanji kar-
dinalni brojevi koji su veéi od kardinalnog broja svakog lanca
odnosno antilanaca iz G. Ve¢ se u Tezi pojavio problem da li je kT
supremum brojeva k. T = (K. T)—, k. T = K. T)— te problem da li su
brojevi K.T, k; T dostignuti u pojedinom T. Specijalno za »uske«
T-ove dokazano je da svako beskonaéno T ima isti kardinalni broj
kao nekoji lanac iz T (Kurepa [1] str. 80. T. 5%%; u [8] je taj teorem
reproduciran). Za uredene skupove S problem je rijeSen »osnovnom
relacijom« (1) u Kurepa [3] te [4]: vrijedi kS < (2k:S) k.S (isp. § 5).
Rezultat i dokaz se prenose na binarne simetri¢ne relacije. Mislio
sam da ¢e isti rezultat vrijediti i za n-arne simetri¢ne relacije ([6],
[7]) pa je zato potpuno objavljivanje sve dalje odgadano sve dok
nedavno nisam doznao od P. Erddsa da je procjena za kS u T. 8.3
(odn. 9.4) najbolja kao Sto je Hajnal dokazao.

) O tom predmetu govorio sam: 06.9. 1952 u Miinchenu na kongresu
njemackih matemati¢ara, 03.12.1952 na kolokviju u Zagrebu, 24.02. 1953.
na Faculté des Sciences u Parizu te 17.3.1954 na kolokviju u Zagrebu.
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Od interesa je imati u vidu kako razmatranja o stablima ulaze
u razmatranja o op¢éim simetri¢nim relacijama (cf. §§ 3.2, 6.2, 8.4.5).

§ 1. Definicije

1.1. I' S oznaéduje prvi redni broj koji je veéi od svakog rednog
broja koji se moze predstaviti unutar S.

1.4. WS je prvi glavni broj koji nije pretstavljiv kao glavni
broj nekog dobro uredenog podskupa iz S; WcS* = W, (S, >).

1.6. Ako je X © S, tad R X zna¢i bilo koji maksimalni antilanac
iz S koji obuhvata Ry X ; Ry X oznatuje mnozinu svih pocetnih ele-
menata iz X. Sli¢no, RX za X C G zna¢i bilo koji maksimalni anti-
lanac iz grafa G.

1.7. Za lanac C iz S neka S (C,.) znati skup svih x = S za koje
je y<<x za svako y — C. Neka NS znaéi prvi kardinalni broj
>kRS(C,.) za svako C < S. Stavljamo mS =n=(NS)—.

) § 2. Stabla.

2.71. Teorem.? Za svako a <<yT vrijedi k R,T < k,% gdje
su kg, a, kardinalni brojevi za koje je k., <N ,e, <kl + a). T je
slitno s nekim dijelom stabla T (n;y) sastavljenog od svih nizova
duzine <y T Tednih brojeva << ) i uredenog relacijom —{. Vri-
jedi kT (n,y) = 2 n*e, Teoremi 2.7.2 2.7.3 i 2.8 mogu se razabrati iz

a<ly
engleskog teksta.

§ 3. Razvrstani skupovi.

To su uredeni skupovi B kod kojih je svaki lanac dobro ureden.
Svakom B moze se pridruziti drvo T B (Kurepa [4] § 2) promatra-
juéi skupove B(., x] (x = B), njihove maksimalne lance i uvode¢i
medusobni .poredak pomoéu relacije —|. Tad se moZe pokazati
teorem 3.3 kao i teorem 3.3.2.

§ 3. G -razvrstani skupovi.

Tu se radi o binarnoj antisimetri¢noj relaciji; oznatujemo je sa
— pa se moze govoriti o orijentiranim grafovima (S;—) pri ¢emu
je S proizvoljan skup. Teoremi o razvrstanim skupovima prenose
se na t. zv. g-razvrstane skupove t. j. na orijentirane grafove kod
kojih svaki lanac ima potetan ¢&lan.

§ 4. Uredeni lanci.

4.1. Ako je E ureden lanac, a w normalno dobro-uredenje od
E, tad se superpozicijom tih dvaju uredenja dobije razvrstan skup
B za koje vrijede obrasci (1), (2), (3) kao i teorem 4.2.

?) O oznaci vidi alfabetski popis na kraju ¢lanka.
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4.4. s-broj lanca E. Pridruzimo svakoj obitelji F skupova broj
SF kao prvi kardinalni broj > kD, gdje je D proizvoljan disjunk-
tivan podsistem od F; stavljamo sF = (SF)—. Tad vrijede iskazi
4411 44.2.

§ 5. Uredeni skupovi.

Glavni iskaz o uredenim skupovima nalazi se u § 5.2.

§ 6. Binarne simetricne relacije. Grafovi.

Gornja razmatranja o wuredenim skupovima prenose se na
skupove snabdjevene proizvoljnom simetri¢nom binarnom relaci-
jom o koja zamijenjuje relaciju uporedljivosti kod uredenih sku-
pova. Specijalno vaZe teoremi 6.2.2. i 6.2.3.

§ 7. Simetri¢ne funkcije s 2 varijable.

7.2. Neka S,,’2 oznaduje skup svih uredenih pari (x, y) za koje
jex < S,y < S, x5 y. Ako je f simetri¢no preslikavanje os S,,’?
na In (n prirodan broj), pa ako je kS > 28e, tad S sadrzi dio X
od > N, ¢lanova i to tako da f bude konstantno u X, 72

7.24. Primjedba. Drzao sam ([6], [7]) da gornji iskaz vazi
i onda kad se mjesto I2 &ita Ir (za bilo koji prirodni broj r > 1)
pa je nastojanje da se prvobitni pogreSni »dokaz« toga popravi
oteglo objavljivanje samog ¢lanka.

§ 8. O simetricnim preslikavanjima.
1

8.3. Ako za neki skup S, prirodni broj r i alef X, postoji sime-
triéno preslikavanje f od S,,’” na skup M od m elemenata tako da
vrijedi relacija (1) tad je kS <m,_1 8. Pritom se posljednji sim-
bol definira rekurzijom u § 8.2. Drugim rije¢ima:

8.4. Ako je kS > m,_1 R, tad S sadrzi skup k od > R, ¢lanova
tako da f bude konstanta u X7

§ 9. O kombinacijama.
9.1. Za skup S i broj m neka (:;) oznatuje mnozinu svih dijelova

od S po m ¢lanova. Ako je M skup od m ¢lanova, stavljamo (1’75;) =

= ( Ii). Kako je svaki ¢lan iz S} u vezi odredenom r-kombinacijom

mogu se teoremi iz §§ 7 i 8 iskazati i pomoc¢u kombinacija.



On the Cardinal Number... 203

9.2. Teorem. Neka je N, zadano. Da bi za svako preslikava-

nje od (’g) na skup M od <N, elemenata postojao podskup X < S

tako da f bude u (}2() konstantno i kX > N,, treba a i dosta je da
vrijedi kS > 2R« (isp. § 7.).

93. Teorem. Zadano je N,; da bi za svaku podjelu P od('g
na m razreda postojalo neko X © S od > R, ¢lanova sa svojstvom
da ¢itavo (}2{) lezi u jednom ¢lanu od P potrebno je i dovoljno da
bude kS > 2N«

9.4. Neka su S, r, N« skup, prirodan broj i alef; postoji li sime-

triéno preslikavanje f od (f) na M od m ¢lanova tako da iz X © S,

kf(’f):l slijedi kX < 8., tad je kS <m,_1 Ra

9.5. Uz prepostavke kao u 9.4 relacija kS > m,_1 8. uslovljava
postojanje mnozine X iz S sa svojstvima kX > N, i da f bude kon-

stantno u (i().

96. Primjedba. Za r=1,2 procjena za kS u iskazu 9.4 je
najbolja (isp. 8.6); prema obavijesti P. Erdosa procjena 9.4 za kS je
najbolja za svako r kao $to je to Hajnal dokazao u 1959.

§ 10. Problem.

10.1. Problem. Neka je zadano N,; postoji li kardinalan broj
R = R(N.) sa svojstvom da za svaki skup S i svako preslikavanje

f od (:) na I2 relacija ks> R ima za posljedicu da S sadrzi dio
a )

X tako da f bude konstanta u (i_{a)?

10.3. Opé¢i problem. Neka su a, m, c brojevi (svaki od njih
konaéan ili beskonacan). Neka je S skup, a f preslikavanje od (i) na
M potencije <<'m. Postoji li broj R =R (a,.m, ¢) sa svojstvom da iz
kS > R slijedi da S obuhvata dio X od > c-¢lanova i da f u (f)
bude konstantno?

(Primljeno 20. V. 1959.)



