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THE GENERAL SOLUTION OF TWO FUNCTIONAL EQUATIONS
'~ BY REDUCTION TO FUNCTIONS ADDITIVE IN TWO
VARIABLES AND WITH THE AID OF HAMEL BASES

Jdnos Aczél, Koln

In this paper we give the general solutions of two important
functional equations with the aid of general antisymmetric resp.
symmetric additive functions of two wvariables, wich are then
represented with the aid of Hamel bases. It is remarkable, that
though the second equation is one for an unknown function of
one variable, still it leads to a functional equation for functions
of two variables. This reflects the connection between norms and
inner products.

1. S. Kurepa {15] (cf. also [22], [23], [24], [10]) has solved the
functional equation for real functions

F(x+y72)+F(1':y)ZF(y:Z)+F(x,y+Z), (1)

which is closely connected with the notion of the second homology
group (cf. e. g. [21]) under differentiability suppositions. J. Erdés
has proved in [5] that the general symmetric solution of (1) among
functions with variables in an arbitrary abelian group and values
in an arbitrary divisible abelian group is of the form

Flx,y)=f@x+y)—f@)—f) @)

and he reproduced in the same paper an argument of the pre-
sent author which proves that, under continuity or weaker (say,
boundedness) conditions, (2) is the most general solution of (1).
Recently M. Hossz G [11] has proved, relying upon the above
mentioned result of J. Erdos, that without any suppositions (except
the above restrictions on domain and range) the general solution
of (1) is

F,y)=f@@+y)—Ffx) —fw+ G, @)
where G is an arbitrary antisymmetric function
G(.’,’C, y):—G(yx {L‘), (4)
which is additive in its single variables: ’
Glx+tzy=Gxy+GEy %)

(the additivity in the other variable is a consequence of (4) and (5)).

Now we show that this last result follows dlso from our con-
siderations published in [5] (and give then also explicitly, in the
case of real functions, the general solution of (1)).



For this purpose we repeat that argument: Define

me—me_

Gx,y)= ;

(6)

This is evidently an antisymmetric function (cf. (4)). In order to
prove (5) we change the role of x and y in (1) and get

Fix+ty2)+Fly,x)y=F(x,2)+Fyx+z). (7
Similarly we change z and ¥ in (1) and get
Fa+tz,y)+F(r,2)=F(Ey)+Fxyt+z). (8)
By subtracting (1) from the sum of {7) and (8) we obtain
Ftz)—F@zta)=F(r,y)—Fux)+FEyY)—F@ 2,
which by (6) yields the equation (5) to be proved. On the other
hand with F (x, y) also
F(@y) +F o) ©

Hx,y) = .

satisfies equation (1) and is symmetric, thus by the quoted result
of J. Erdds [5] is of the form

Hz,y)=flx+y) —Ff@)—f@). (10)

6), (9) and (10) show that, as asserted, every solution of (1) is of
the form (3) while we have proved that also (4) and (5) hold.

On the other hand, (3) with (4) and (5) evidently always satisfies
(1) ((8) always satisfies (1) even if G is only additive in both
variables), which proves our above statement.

The statement just proved reduces the solution of the func-
tional equation (1) to the pair of functional equations (4), (5). The
question arises how to represent the general solution of the latter,
at least for real functions. As G. Hamel [6] has proved, there
exist subsets B of real numbers such that every real number x can
be represented in a unique way as

n
= I 13 bi (11)
k=1

with by € B and with rational coefficients r. Let the similar repre-
sentation of y be
m
y= 2 sjbj (12)
j=1
(b; € B, s; rational) and take into consideration that (4) and (5)
imply, as already mentioned, also

G(x, y1 T y2) = G(x, y1) + G (=, y2) - (13)
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From (5) and (13) by induction

n n
G(2 Y= 2 G(zr, Y) (14)
k=1 k=1
and
n n
Gz, 2 yr)= = Gz, yn) (15)
k=1 k=1
follow. Furthermore, with x1=2s=""' " =Tp=X, Y1 =Y2z=""~"=
=Yn=Y

G (nx, ¥) = nG (z, ¥) = G (z, ny)

m
and for t=-— x, that is nt = mx,
n

nG (t, y) = G (nt, y) = G (mz, y) = mG (x, y)

or
G(ﬂx,y)=ﬁG (2, y). )
. n n
As (5) also implies (with z=10)
and (with z=—ux)

G('—'x; y):_G(x: y):

the equation (16) remains also valid for nonpositive integers m.
The same argument applies to the second variable and so we have
for all rational r and for all real x,y

Gz, y) =1G (@, y) = G(x, 7). a7y
Now by (11), {14), (15) and (17), we have with

G (bx, bj) = ax;: (18)
n m n m
G, y)=G(2 rebr, 2 8jbj))= 2 1, G(bg, & 8;bj) =
k=1 i=1 k=1 j=1
nm n m
=23 318G bj)= 2 2 arjres;.
Kk=1j=1 k=1j=1

So we have proved the following

Lemma. The general real solution of the pﬁi'r (5), (13) of
functional equations is

G, y)= 2 agj & si, (19)
K, j
where

x= 2 15bx, Y= 2 sjb;,
K j



the 71, sj being rational while the b; are elements of a Hamel basis
B and the ai; arbitrarily depending upon by and b;. In any of these
sums only finite number of terms may be different from zero.
(The matrix a;; is infinite, even not-countable, but in (19) only
a finite segment of it figures.)
If we also take (4) into consideration, we get from (18)

arj = G(bx, bj) =— G (bj, br) = —ajx

and have thus the

Corollary 1. The general real solution of the pair (4), (5)
of functional equations is

Glx,y)= 2 ajri8;
k,j

where 11, S; are the rational coefficients figuring in (11), (12},
while the ai; are elements of an arbitrary antisymmetric matrix,
depending upon the basis elements by, b; figuring there.!

If we compare this with (3), (4) and (5) we get the following

Theorem 1. The general solution of

Flx+y,2)+F(lx,9)=F(y,2)+F(x,y +2 (03]

among functions defined on arbitrary abelian groups and with
values in an arbitrary abelian group, where every equation nxr =c¢
has a unique solution x (n being a positive integer), is of the form

Flz,9)=flx+y)—Ffx)—Ffy + G &)

with arbitrary f and with G fulfilling (4) and (5) or for real numbers
explicitly with
G, y)= 2 axjTrsi,

:

where
x=2 by, y= 2 s;b;
k j

and the ajj are elements of an arbitrary (antisymmetric) matrix,
depending upon by and b; (ri, S; rational, by, b; elements of a Hamel
basis).

(The theorem remains true both if we leave the matrix || a; ||
arbitrary and if we state that it is antisymmetric.)

As there is no continuwous function satisfying (4) and (5) except
that identically 0 (as — for G continuous in z, (5) implies G(x, y) =
=c(y) x see [1] and cf. (17)), while (4) gives ¢(¥) x = —c(x) y, thus

c
e = W = constant = 0), so we have also (cf. [5]) the

&L Y

! In this sum as well as in other sums of this paper only finite
number of terms may be + 0.
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Corollary 2. The general continuous real solution of (1) is
Fx,y)=f(x+y)—f(x)—F) '
with arbitrary continuous f.
The continuity condition can be considerably weakened (to
boundedness, measurability, etc.).
2. The functional equation

glx+y+gx—y) =2g9(x) +29®) (20)

is very important as it serves in certain abstract spaces for the
definition of the norm (resp. of the square of the norm). It was
repeatedly examined ([12], [13], [26], [3], [7], 114], [8], [25], [16], [17],
[91, (11, {181, [2], [4], [19], [20], [27]) and we will also make use here
of some of these results.

In order to solve or reduce (20), we define a function H of two
variables (this corresponds to the inner product) by

HE,y)=g=+y)—gx—1y). @0
We first prove, that if g satisfies (20), then H is symmetric
H(x,y)=H(y, x), (22)
additive
H(x,y+2)=H(x,y) + H(x, 2) (23)
and
g(@) =H(z, ). 24)

We register some consequences of (20). By substituting y =0,
we get

g(0)=0 (25)
and, for x =0,
g—=v =9, (26)
that is, g is even. Finally, with y =z, (20) gives
g(2x) =4g(x) . 27

Now, from (26} we have (22); (24) follows from (27) and (25),
while from (20) and (21) we have (23):

4H(x,y t2)=g@xty+2)—gx—y—2)=g(x+y+z)+
t9glx+ty—2)—glx—z+y) —g@@x—z—y =
=29(x+y) +29()—29(x—z)—29() =
=g(x+y +glx+y)—29() + 29—
—g{x—2z—gx—2)=g(x+y)+ 29 (x)—
—gx—y) tgx+z—29(x)—g(x—z2) =
=4H (x,y) + 4H(x, 2),

as asserted.



On the other hand, (24) always satisfies (20), if H is additive in
both variables:

gty tglx—y)=HEx+tyzx+ty +tHx—yxz—y =
=H(@x,x+ty)+Hy,x+y) +Hx,x—y)—H@y,x—y) =
=H(x,x) +H(x,y) + Hy,z) + H(y,y) + H(x, x) —
—H(x,y)—H(@y,x) + H(y,y) = 2H (x, x) + 2H (y, y) =
=2g(x) +29(y) .

Thus, every function of the form (24) with H (x, y) additive in
both variables satisfies the functional equation (20), but already (24)
with symmetric additive H gives the general solution of (20) among
the functions defined on abelian groups with values in abelian
groups in which equations of the form 4x = c have unique solu-
tions x.

Answering a problem raised by S. Kurepa at the Second Ober-
wolfach Symposium on Functional Equations [4], we give here the
general real solution of (20). By the above Lemma, H being additive
in both variables, has to be of the form
m

n
arims; (x= I rp;bp, y= 2 8 by,
k=1 j=1

H(x,y) =

I b=

URSE!

k=1j

where the 7%, s; are rational while the b; are elements of a Hamel
basis B and the ap; = H (bs, bj) arbitrarily depending upon b; and
b;. If H is symmetric, then

axj = H (br, bj) = H (bj, by) = aj

and we have similary to Coroliary 1 the

Corollary 3. The most general real symmetric additive
functions are of the form

H(x,y) =H(2 ribs, & sibj))= X a;jrrs;,
K j K, j

where the ay;, are elements of an arbitrary symmetric matriz,
depending upon the elements by, b; of the Hamel basis B.

Summarizing, and taking (24) into consideration, we have the

Theorem 2. The general solution of

g(x+y) +g(x—y) =2g(x)+ 29() (20)

among functions defined on arbitrary abelian groups and with
values in an arbitrary abelian group, where every equation 4x = ¢
has a unique solution x, is of the form

g@) =H(x x), (24)
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where H fulfills (22) and (23) or for real numbers explicitly

g@)= 2 ag;Tr7i, (28)
k,j
where

r= 2 11 by
k

and the a;; are elements of an arbitrary (symmetric) matrix,
depending upon bz and bj (r, rj rational, b, b; elements of a
Hamel basis).

(By methods of [18] the suppositions concerning the range of
g might still be somewhat reduced.)

The general continuous real solution of (22) and (23) evidently
is (cf. [17] or [1])

Hxy)=cxy

and so, by (24), we have the following
Corollary 4. The general continuous real solution of {20) is

g($) =C$2,

where ¢ is an arbitrary constant.

Here again the continuity supposition can be considerably
weakened. It is so much the more supprising, that although cx? =
= a(bx)?, h(x) =bx being the general continuous real solution of
the additive functional equation h(x + y) = h{x) + h(y), whose gene-

n n
ral real solution ([6]) is h(x) =h( 2 74 bz) = 2 r; h(bs), the general
k=1 k=1

real solution of (20) is not

g(x) = a(g' T h (br))? = g a h(bz) h(bj) rr7i,
k=1 k,j=1
but (cf. (28)):
g({x)= 2 H(i, bj)rer;.
k,j

The author is indebted to J. Erdds for some valuable remarks.
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OPCE RJESENJE DVIJU FUNKCIONALNIH JEDNADZBI
REDUKCIJOM NA FUNKCLJE ADITIVNE U DVIJE VARIJABLE I
POMOCU HAMELOVE BAZE

J. Aczél, Koln
Sadrzaj

Autor dokazuje slijedet¢a dva teorema:
Teorem 1. Opée rjeSenje funkcionalne jednadzZbe

Fxty,2)+Fy=F2+F(xyt2 M

u skupu funkcija definiranih ma proizvoljnoj Abelovoj grupi i
s vrijednostima u Abelovoj grupi u kojoj je djeljenje s prirodnim
brojevima definirano ima oblik

F,y)=fx+y—Ff@x—7@)+ G, ®3)

gdje je f proizvoljna funkcija, a G je antisimetriéna i aditivna u
obadvije varijable, tj. G zadovoljava (4), (5).

U sluéaju da su spomenute grupe realni brojevi, G ima oblik
(19), gdje je (aw;) proizvoljna antisimetridna matrica s konacéno ele-
menata razliditih od nule u svakom retku i svakom stupcu, a ar; je
vrijednost funkcije G na paru elemenata Hamelove baze.

Teorem 2. Opée rjefenje funkcionalne jednadibe (20), gdje
je g definirano na proizvoljnoj Abelovoj grupi s vrijednostima u
Abelovoj grupi u kojoj je djeljenje s 2 izvedivo ima oblik g(x) =
= H(x, x), gdje je 2H(x,y) =g(x + y) — g (x) — g(y) simetridéna i u
obadvije wvarijable aditivna funkcija. U sluéaju da su spomenute
grupe realni brojevi, g je dano s (28) pomoéu svojih vrijednosti aj
nae Hamelovoj bazi,

(Primljeno 4. XI 1964.)



