GLASNIK MATEMATICKI
Tom 6 (26) — No. 2 — 1971,

ON SPECTRAL CONCENTRATION FOR A CLASS
OF J-SELFADJOINT OPERATORS

K. Veselié, Zagreb

In this paper we consider the spectral concentration for a class
of J-selfadjoint operators which possess spectral decompositions like
ordinary selfadjoint operators.

Let X be a Hilbert space with a scalar product (x,y) and the
norm | x| = (x,x)”2. Let T be a closed operator in X defined on
T(T); by ¢(T), o(T), R(A4, T), T*, R(T) we denote its resolvent set,
spectrum, resolvent, adjoint and the range, respectively. If T is
selfadjoint, E(t) denotes its spectral family (continuous from the
right), while E (4) denotes the spectral measure of a Borel set 4
from the real line.

In the first part of this paper we generalize a result of R. C.
Riddell ([3]). Let T(e) (¢ real from some interval containing
zero) be a family of closed operators such that (JT (&) x,y) =
= (Jz, T (e) y) for x,y < T (T (¢)) and for a fixed operator J = J* =
=J 1 on X. Let a real point 2 be a pole of the first order of
R(4; T) and let the corresponding spectral projection Py have the
dimension m << oo such that the restriction of the form (Jx,y) on
Py X is strictly positive. If there are functions y;(¢) < D (T (¢)) and
real functions 2;(¢), j=1,2,...,m such that for ¢—>0 we have
lpi@|>K>0, (T@E—4E)yil) =0, (1—Poy;)—>0,
(Jy; (&), wr (€))~> djx, we call y;(e) the J— p-asymptotic basis for
T (¢). (cf. [3], [4]). We impose on T {¢) some further conditions which
ensure the existence of spectral decompositions of T (¢) and their
strong convergence when ¢— 0 in the sense of the well-known Rel-
lich-Kato’s theorem ([2], p. 432). The main result is: Any such
family T (¢) possessing a J— p-asymptotic basis has a spectral con-
centration of the p-th order in the sense of Riddell (3].

In the second part we give a sufficient condition for a J-sym-
metric family T (¢) to have a J— p-asymptotic basis. We call the
family T (¢) J-—p-smooth (cf. [4]) with respect to the point i <
< o(T (0)) if the subspace D, of vectors yw for which T (¢)yw has
the p-th derivative is sufficiently large (in the sense to be given
more precisely below). The main result is as follows: Any J—p-
smooth family possesses a J— p-asymptotic basis. For J =1 this
result is contained in [4]. However, Lemma 3. of [4] contains an
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error such that by [4] the (2p — 1)-smoothness is needed for the
existence of a p-asymptotic basis. Thus, our paper contains a cor-
rect proof of the mentioned result of [4].

The main results of the present work can be applied in stu-
dying the spectral concentration for the Klein-Gordon equation,
describing the motion of a spinless relativistic particle moving
in a potential barrier. This application will be the subject of a
subsequent paper.

1. ASSUMPTION. The domains of definition D (T'(g)) of T (¢)
and D (T (&)*) of T (¢)* coincide and are dense in X. The operator
T (0) has a real eigenvalue 2 which is a pole of the first order
for the resolvent of T (0). The corresponding eigenspace has the
dimension m < oo. The respective eigenprojection is denoted by Pa.

2. DEFINITION. (cf. C. Riddell [3]). Suppose that vector funct-

ions ¢— ywj(e) and scalar functions ¢—>/;(e), j=1,2,...,m, are
given on the interval I such that y;{(e) < T (T (¢)) and

(T (e) — 2 () wi (e) = o (&), i)~ K>0, e>0 (1)
for some p>>0. Then any pair of functions 4;(e), wi(e), j=1,...,m

is called a p-pair of the family T (¢) with respect to the point i.

If, in addition, a unitary selfadjoint operator J = J* =J—1 is
given such that the restriction of the form (x,y) = (Jx,y) on Po X
is strictly positive and such that

(I—Po)yi(e)=>0, (yi(e), wrle)) = ok, €0, @)

then the vector functions y;(e) are called a J— p-asymptotic basis
for T(e). If J =1, T (¢) is simply called a p-asymptotic basis. The
functions Z;(g) are pseudoeigenvalues.

3. DEFINITION. (cf. Riddell [3]). Let T {(¢) be a family of scalar
type operators with real spectra, for e < 1. Let p >0 and let I’ be
a real interval such that

E.I'\NC(@E)—~>0, uCE)=o(r), >0, 3)

where E, () denotes the spectral measure for T (¢), C(¢) is a family
of real Borel sets and u is the Lebesgue measure. In addition, let

<cc. (4)

sup || Ec(t,t)]
5, t, t’ )

Then we say that the part o.(I'Y = I'No(T (¢)) of the spectrum of
T (¢) in I’ is p-concentrated on {(S (8)}.

C. Riddell ({3]) has proved the fundamental theorem (see
also [1]).

THEOREM. Let T (¢) be a family of selfadjoint operators such
that T (¢) = T (0) strongly in the generalized sense (see [1], p. 427)
and that it satisfies Assumption 1. Let T (¢) have p-pairs 1; (), wi(€)
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such that w;(e) is a p-asymptotic basis. Then o.(J') is p-concen-
trated. As »concentration sets« € () we may take the unions of
intervals around ;(c), the length of which does not exceed o (¢?).

In what follows we shall prove the same result for a class of
J-selfadjoint families.

In [6], [7] we considered the operators of the form
T=8+V, S=S8*%, V bounded, (5)

and we proved the following: Let (—d,d) € o(S) for some >0
and J = sign S. If V is J-symmetric, i. e, V = JVJ* and | V| <4/2
then T is a scalar type operator with a real spectrum. Here we
consider a family

T()=S(e) + V(o) (6)
of such operators for which
(=8, SoSE), [V <é/z, (M
where ¢ >> 0 does not depend on ¢. Moreover, let
J =signS(e), V()= JV(e)*J, (8)

where J does not depend on ¢.

4. THEOREM. Let T (¢) satisfy (6), (7), (8) and Assumption 1.
with J as in (8) and A1>0. Moreover, let V(e)— V(0) and let

s
S ()= S (0) in the generalized sense.* Then T () possesses a spec-,
tral concentration in the way described by Riddell’s Theorem, pro-
vided that T (¢) has a J— p-asymptotic basis.

Proof. In [5] we proved that the integral
ig

K()=—" s-lim [ R(;T(e)dA )
W [C -]
—if
exists and that
K(e)—K(0), A(e)—> A(0), A(st— A0, -0, (10)
S. S
where
A(e) = (JK () (11)
are bounded symmetric operators with bounded inverses. Moreover
T()=A@E)T()A() (12)
are selfadjoint with
T (e) - T (0). (13)
8

* The strong convergence in the generalized sense means just the strong
convergence of resolvents (see T. Kato [2], p. 427).
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Therefore (see [2])
E(t, )~ E(t,0) (14)

for any t which is not an eigenvalue for T (0). Here E (t, &) denotes
the spectral family of T (¢).

Note also that
K (0) Py = PyK (0) = Py, (15)
which is a consequence of 1> 0.
Now, let 2;(g), wi(e), j=1,...,m be p-pairs for T (¢) and let

wi(e) be a J— p-asymptotic basis. Putting ¢;(e) = A(e) wi(e) the
formula (1) gives

(T () — 2 (2)) @i (e) = o (e?). (16)
Furthermore, we have
lim (1— A(0) Py A(0)1) A(e) wi(e) =

e—->0

= Tm (1 — A.(0) Po A (0 A(e) (Po () + (1 —Po) &) =
= A0 lim (1—Po) AO)* A () Poy; (e) =
= A 1lim (1—Py) Poy; (9) =
A lim (1P () = 0.
This means o
(1—Po)pi(e)—>0, >0, Py=A0)PoA(0). (17

Here we used (2), the finite dimensionality of Py and the fact that
A(g)— A(0).
S

Finaily, we have
linél (i (&), pr(8)) = lin; (AP yi(e), yr () =
= lirr; (J(K(0) + K(e)— K (0)) (Pow; (e) +

+ (1 — Po) w;(¢)), Poyz () + (1 — Po) yr (¢)).

Here, using the finite dimensionality of Py and the bounded-
ness of [y;(e)| for e—> 0, all vanishes except possibly

lin; (JK (0) Po w; (¢), Poyi (¢)) = lin% (JPoy;(e), v ()
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where we used the J-symmetry of Py and (15). Using both relations
in (2), we obtain

. 0 i+ k

lim (g (e), gx (e)) = (18)

0 K;>0, j=k.
Relations (16), (17), (18) mean that ;(¢), @;(e)/| @j(e)| are p-pairs
for T (¢) and that @; (¢)/||¢; (¢) || is a p-asymptotic basis. This permits
the use of Riddell’s theorem which tells that the spectrum of T (&)
is p-concentrated.

The spectral families of T(s) and T (¢) are connected by the
same similarity relation as in (12). So the p-concentration also
follows for the family T (¢). Q.E.D.

In the following we shall give a suifficient condition for a
J-symmetric family T (¢) to have a J— p-asymptotic basis. Some
proofs are quite analogous to those in [4]. We still include some of
them for the sake of completeness.

Let T (¢) be a family satisfying Assumption 1. For an integer
p >0 denote by D, the set of all vectors v < X such that D, ©
C D(T (¢)) and that the vector function

e—>T()y
has the derivative of the order p for ¢ = 0. Then
Dy2D2D...., 19)

where Dy denotes the set of all v < X, for which ¢— T(¢g)y is
continuous at ¢ = 0.

5. LEMMA. The set D, is a subspace of X and for wy <D,
we have

TEy=Toy +eTiy+...+eTry + o(e), (20)
where Ty,..., T, are linear operators, defined on D, as
1 dr
Top=— (7i;—1‘0)y,)5=° @1)

Proof. See [4].

In the following we shall require that D, is sufficiently large.
The later considerations will justify the following definition.

6. DEFINITION. Let a family T (&) satisfy Assumption 1. We
denote by

Z = — lim (1 — Pg) (u— T (0))1 (23)

u—A
the reduced resolvent of T (0) in the point A. Furthermore, for an
integer p >0 we denote by V, the set of all operators of the form



290 Kredimir Veselié¢

X X<{1,Z,ZT1,.‘.,ZT,,}
X1 X P RN A
142 Xl) Xz < {Z: ZTI ] s TP 1} (24)
X1X2...Xl X],-é{Z,ZTl}, k=1,2,...,p,
where we have taken
Vo= {1} (25)

We say that the family T (¢) is p-smooth at ¢ = 0 with respect
to the point 1 if any of the operators from V, is defined at least
on Py X and maps Py X into D,.

We may briefly say that V, contains 1 and any r-fold product
of the factors Z, ZT, such that r varies from 1 to p, and » does not
exceed p—1r + 1.

We see that the p-smoothness includes the s-smoothness for
P=s.

7. LEMIMA. The sets Vo, Vi... are ordered by inclusion i. e.,
VwCeViE.... It ASV,, BEV, then AB< V;, for n+ k<s.

Proof. See [4].

Let us introduce the subspaces

Y= 3 APyX, r=0,1,2,..., (26)
with the correspondingeg;thogonal projections R,. We see that all
Y, are finite dimensional and ordered as

YoEY,C....
Now, the p-smoothness implies
Y. D, r<p.
, 8. LEMMA Let A= X;X5...X, <V, and let T (¢) be p-smooth.
Then

XIX?“-XI'§PO:RI;X1'X2’...X,-’§P0,*
where

X, if X=21
“\x.R, if X,=2zT. 1’
s=12,...,7.

Proof. If X, X>... X, €V, then X, X;,1... X, € Vp, 1<s< .
Then by the p-smoothness

Xy

X1 Xs...X, Po=R,X1 X2 ... X, Py =
Ry Xi'X>...X, Py=...= Ry Xy’ Xo' ... X/ | Py.

* Here A !X denotes the restriction of A on Xj.
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Let us now introduce an operator family
p

P® (g) = 3 gt P", (27)
where n=0
n
P,= 3 (—1y+t > VALH: T’v1 Zky , , Zk) T,, ALY
r=1 ki+...vkrs1=1, ki >0
rit...Try=0v>1 (28)
Zk) =7k k>1, ZO =Py. (29)

9. LEMMA. Let T (¢) be p-smooth with respect to A. Then the
operator

PiPiTy, i+ji<Z<p, j+k<p (30)
is defined at least on PyX. The range of P; (and therefore of (30))
is contained in Y for k<p.*

Proof. The operator P; Ty is a linear combination of the ope-
rators

AL T, ALY T,, Z*) Ty, (31)

ki+...+ k=7, ki=0, »+...+w=4 »>1, j+k<p.

Since ki + ...+ k;.1 =7, at least one of the indices k; must
vanish. Taking into account all k; = 0, (31) can be written as

AP T,BPy Ty ... FPy T,y G, ¥,7",...,»@ <j. (32)

Here A,B,...,F,G are at most r-fold products of the factors
Z,ZT,. By v1 + ...+ v, = j, then index » entering A, B,...,F does
not exceed j—r + 1, thus A,B,...,F < V;. However, the index ¥,
entering G does not exceed

maxf[j—r+ 1L,p—jl<p—r+1
because of r << j<<p. Thus
G <V,
Similarly, P; is a linear combination of members of the form
APyT,BiPoT, ... F1 Pa Tt Gy, v, 0", .., v <4 (33)

where
Al,Bl,...,G1<Vi.

The operators P;P; T; will then be a linear combination of
products of operators of the forms (32) and (33). Since Gi <€ V;,
A<YV; i+ j<p implies Git A<V, (lemma 7), any such product
is of the form

* Since ToPg= T (0) Py = }Py, it is important that 2 == 0. This can
always be obtained by adding to T (¢) a sufficiently large multiple
of the identity.
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A3 PyTy BaPy Ty ... FaPyTot0) Go (34)
0,0",...,00<p,
As,...,G2 & V).

The family T (¢) is p-smooth, which implies that (34) and the-

refore P;P; Ty is defined on Py and maps Py X into Y, & Ds.
Q.E.D.

10. LEMMA. Let T (¢) be p-smooth with respect to /. Then

p—n

(PoPy+ ... TP, Py =Pyy, p& 2 TrPX, (35)
k=0
(TuPo+ ... TToP)g=PoTu+ ...+ P, To)g, o< PX, (36)

for n=20,1,...,p.
Proof. Set
T =Ty +eTy +...+&T,, Ty =T(0O), Ty =TrRy, k=>1.

The operators Ti" = Ty R,, k=>1 are bounded, since the project-
ion R, is finite (the products T; R, are well defined, since T
is defined on D, and Y, € D;). Thus, the family T (¢) is a holo-
morphic family of type (A) for all complex ¢ (see T. Kato,
[2], p. 375). Since T"(0) = T(0), and % is an isolated point of
o (T(0)) = o(T"(0)), there is a family of bounded projections
Pm:%MW,szw:m,

which is analytic in some neighbourhood of & =0, such that P (e)
projects on the root space belonging to the group of eigenvalues
coming by perturbations from the point Z. Since 1 is a pole of the
first order for the function ¢ — (u— T (0))~! we have (cf. Kato [2],

p. 76)
Py = (—1)+t b ZkOT, 20 T, Zk
1 ki +...7Tkrs1=7, ki>0

ri+...+tr,=n

k<p.

i b

r

Furthermore, P’ (¢)2 = P’ (¢) implies
PyPy + ...+ PPy =P, k=01,2,.... 37
On the other hand, the left-hand side of equality (35) consists
of summands of the form

P;P;Pjy, s+t<p, t+ji<p.
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Formula (34) together with Lemma 8 shows that
pP—n
PSP /Tyw=P;P:Tjyp for v< I TPy X.
k=0
Also, formula (31) with Lemma 8 shows that Py 'y = Pry, k<p,
p—k
v<E X TP X.
§=0
Thus, (35) follows.

To prove (36), we introduce the operator family
P ()T () P (e) =
o j pu—T @y Ldu = P T (&) = T (e) P e),
2
T

where I' is a small circle around A. The function e— T (e} P’ (¢)
is bounded analytic in some neighbourhood of zero.

On the other hand, for ¢ < (T (0)) the function T’ (¢) @ is ana-
lytic on (— oo, o0). Hence, for ¢,y < D (T (0)) we have

PO T O p,v) = (T &g, P () = 3 ez,

k=0
ze=(T 0o, P*y) + ...+ (Th @, Py*y) =
=({(Py'Ty +...+ P’ T)p,v).

Since
(T" (&) P (&) o, p) = 37 E((Th' Py + ...+ T Pi) g, v) T+ o(e?),
we have "
PyTy +... TP T)o = (To'Py + ... + T’ Py) @,
k=012,...,p,
for ¢ < PoX. Now, P;T; =P/ T/, TiP;=T{ P/, i+ j<p (Lemma

8) implies (36). Q.ED.
11. LEMMA. Let D be a subspace of a normed space N.and let
Py, Py,...,Py To, Ty,...,Tp be linear operators in N such that

1 PP T; is defined on D for 1+ k<p, k+ji<p

II the operator T; is bounded on D
the operator Pj is bounded on T;D, j+k<p
the operator Py is bounded on PrTiD, k+ji<p, k+1<p

I (PoPr+ ... + PPy =Py, n=20,12,...,p, for v <

p—n
<3 T;D.
3=0
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Then for any vector function &— x(e), which is bounded in
norm when ¢—> 0, the implication

p
Po 3 (PoTs + ...+ Py To) ek 7 (¢) = o(e?)=
k=0

P
2 (PoTry+ ...+ PpTo) b x{(e) = o(eP),
k=0
holds.
Proof. For p = 0 the assertion is trivially true by Pgy(e) =
= Pyx(¢). For p =1 the equalities
Pg (Pg To + e (P1 To + Py Tv)) x () = o{e)
£(P1 To + Py T1) 2 (¢) = 0(&%)
imply
PyToz(e) = 0(e9).
(Notice that P; To + P Ty is bounded on D.)
Hence,
0(¢) = Po (Po To + £(Po T1 + P1 To)) x (6) =
=PyTo+ e(PyT1+ (P1— P1Po) To)) x(2) =
=[Py Ty + (PoT1+ P1To)e] x(e)—eP1PoToy(e).
By PyToz(s) =0(c% and the boundedness of P; we have
eP1PyTox(c) = o(e). The assertion is, therefore, true if p =1. By

induction, suppose that the assertion is true if p=10,1,2,...5 and
that

s+1
o) =Py I (PoTr+ ...+ PrTo) ¥ x(e) =
k=0

kl
=Py Z & PoTr+ ...+ PrTo)x(e) +
k=0

s+1
+ 3 k=1 (Py Ty 4 ... + PrTo) 2 (¢).

k=k’+1
Since, by supposition, Pg(PyTx + ... + Py Tp) is bounded on D,
the second term of the sum is o(¢¥), k"= 0,1,...,%k. Hence, by

the assumption of induction we have

kl
S e PoTr+ ... T PeTo)x(e) =0(e¥), K =0,...,s.
k=0

Furthermore, using III. we have

s+1
o) = 3 &5 (PR2Tx + ...+ PyPpTo) () =
k=1

s+1
= Zosk(PoTk + (P1—P1Py) Tp-1+ ...
k=
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+ (Pk—Plpk_l—-...—PkPQ)To)x(E) =

s+1
= 3 e (PeTs + P1Tro1+ ...+ PrTo)y(e) —
k=0

s+1
— Py 3 & (PoTr_1+ ...+ Pr_1To) () —
k=0

s+1
— Py, 1Py Toy(e) = Z‘oe"(PoTk + ...+ PpTo) 2(e) —
k=

s
—¢eP; 2 & (PoTr+ ...+ Py To) x(e) —
k=0

s+1
— TP, 1Py Toy(e) = & ¥ (PoTx+ ...+ PxTo) x(e) +
k=0
+ceoef) + 2o(es) + ...+ esTlo (Y,

which proves the assertion for p =s + 1. Here we used the fact
that Py P;T; is bounded on D for k+1<s+1, 1 +j<s+ 1,
QE.D.

Note an important fact, which will be used in the following:
the boundedness condition II is automatically fulfilled if D is finite
dimensional.

In the following we introduce the J-symmetry.

12. ASSUMPTION. The operators T (¢), ¢ €I are J-symmetric
for some fixed J-J*=J"1, i. e,

(T@Exy) =0z, TEy) x2y<D(TE), (38)
and for x € Py X we have
(Jz,2) >0; (x,x)=0=>x=20. (39)

13. LEMMA. The operators Z, Pr, TePo+ ...+ ToPr, k=
=0,1,...,p, for a p-smooth family T (¢) which satisfies Assumpt-
ion 12. are J-symmetric. For the domain of Py, TPy + ...+ Ty Py
we take
p—k
S TiPyX, PgX,
i=0

respectively.

Proof. Put R(u) = (u—T(0))~'. Let I' be a circle with the
centre 1, isolating 1 from the rest of o(T (0)). Since A=41 and

I' = I we have
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JR(W) =R *J, u<o(T(0).
Hence

(JPyx,y) =

1
o Ff UR(,y) dz = (Jy, Py).

Thus, Py is J-symmetric.
Furthermore, 1 = 4 implies

(JZx,y) = —1lim (JR(z) 1 —Po) 2, y) =
z->h

— —1lim (Jz, (1 —Po) R(2) y) = —lim (Jz, (1 —P)) R(2) ) =
z—>h o
= (Jx, Zy).

Thus, Z is J-symmetric. The J-symmetry of T {¢) together
with (21) implies
UTky, @) = 9, Tk @), v, ¢ < D,p. (40)

The J-symmetry of P; follows from the fact that Ty, Z, Py are
J-symmetric and that expression (28) for P; is invariant under the

permutation of the indices k;,...,krs1.
Thus
p—k
(UPry, @) = (Jy,Pr ), v, < 20 TP X. (41)
i=
Finally, for v, < Py X formula (36) gives
(J(TxPo+ ...+ ToPr)y, @) = (Jy, (Tx Pot+ ... + To P) @), (42)
where we have used the J-symmetry of Ty, Pi. Q.E.D.

14. THEOREM. Any J-symmetric family T (g), p-smooth in & =
= 0, with respect to the point A, such that the restriction of the
form (x,y) = (Jx,y) on Py X is strictly positive, possesses a J— p-
asymptotic basis.

Proof. In the finite dimensional space Py X cosider the gene-
ralized eigenvalue problem

(AP (&) — 27 () BP () ¢’ (1) = 0, j=1,2,...,m, (43)
where
. r
AP(e) =Po X ¥ (PrTo+ ... + Py Ts) | Py X, (44)
k=0
P
B® () = Py 2k Py J\ Py X. (45)
k=0

The space PpX is a unitary finite dimensional space with the
scalar product (-, ), which is positive definite on Py X by sup-
position. The operators A (¢), B(?) (¢) are polynomials in ¢ and are
symmetric. Since B® (0) = 1| Pg X, for sufficiently small ¢ the ope-
rator B® will be strictly positive definite.
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Since

AW (0) = 1| Py X,

the solutions ;" (¢), ¢; (¢) of the problem (43) are analytic at e =0
and

27 (0) = 1.
(See [2], p. 419). The functions ¢; (¢) can be chosen such that

(Joi" (0), @x" (0)) = djis - : (46)
Put
® ® \
@i (e) = 2 @giMeF, 2 (e) = 2 2, ek,
k=0 k=

0
The function

g—> AP (e) — 25" (¢) B® (¢)
1s a power series, whose coefficient of the k-th order is
Py (PO (T].-—/:j(l"') + ...+ Py (TU——-Z)) } P()X,

k=0,...,p.
Omitting the powers higher than p, we obtain

P

Po 3 (Po(Th—4™) + ...+ Py (To—1) ébgi(e) = o(e?),  (47)
k=0

where

gile) =

&
I M
o

o .k‘
ek ;R

By (35) the operators Py, Ti— 4;®, the functions ¢;(6) € PoX and

the subspace D = Py X satisfy the conditions of Lemma 11 (PyX
is finite dimensional!). Thus (47) implies

P
S (Po(Th— 43Ny + ...+ Pr(To—4)) b gi(e) = o(e?).
k=0

Furthermore, (36) implies

P .
3 (Ti—4®) Py + ... + (To— 1) Py) e* @; () = o (7).
k=0

Since
D
3 (Tr—2®) Py + ... + (To—17) Py) b s (e) =
k=0
P D
=[ 2 (Ts—2/®) e[ 2 Prebe;(e)] + o(e?),
k=0 k=0
we have

2 (Tr—20)) b i (e) = o(e?), (48)
k=0
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where
wi' () = P@) (&) gj (&) . (49)
Note that ;" (¢) is a polynomial in ¢ whose order does not
exceed 2p.
Also, w; () €Y, independently of e Omitting all powers
higher than p in w; (¢), we obtain the polynomial

p s
pi(e) = X Fyi®, ;M <Y, E Dy,
k=0
where the last inclusion is implied by the p-smoothness. Lemma 5.
gives

P
T wi® = 3 Tigly;® + o(e?),

i=0

which together with (48) implies

(T (&) — {2 (&) wi (&) = o (e?), (50)
where
2iPi(e) = g ek iR, (51)
i=0
Since ;(0) = ;" (0) = Po; (0) = ¢; (0) = ¢, (0), (46) implies

(Jwi (&), wi () > ik, €—>0 (52)

and obviously
(1—Po)wx(e)—0, £—>0. (53)

The space Py X is finite dimensional and the norms generated
by (-,") and (-,-) are equivalent. Therefore

wie) > wi(0) F0, £—>0. (54)

According to Definition 2, formulae (50), (52), (53), (54) imply
that {y;(¢)} is a J—p-asymptotic basis for T (¢) with the eigen-
values 2;(?) (¢). Q.E.D.
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O SPEKTRALNOJ KONCENTRACIJI ZA JEDNU KLASU
J-HERMITSKIH OPERATORA

Kre$imir Veselié, Zagreb

SadrzZaj

U ¢lanku se poopéuju raniji rezultati R. C. Riddella [3] i
autora [4].

U prvom dijelu dokazuje se veza spektralne koncentracije i
asimptotskih baza za klasu J-hermifskih operatora promatranu u
[6], [7], dok se u drugom dijelu dokazuje postojanje asimptotskih
baza za neke klase J-hermitskih operatorskih familija.



