ON AN EXAMPLE OF NORMED KÖTHE SPACES

Mladen Alić, Zagreb

In this paper we consider a generalization of and discuss an interesting example of a function space defined in [3] (cf. also [4]). The example is as follows: let ϱ be the function norm

$$\varrho(u) = \sum_{n=1}^{\infty} 2^{-n} u(n) + \lim_{n \to \infty} \sup u(n), \quad u \ge 0, \quad (1)$$

defined on \mathbb{R}^N , where N denotes the set of positive integers, and R is the extended real continuum. Then, the Köthe function space $L_{\varrho}(N) = \{u: \varrho \mid | u| | < +\infty\}$ is not a complete function space; even more, the completion of $L_{\varrho}(N)$ cannot be realized as a set of classes of functions on N, i. e. $L_{\varrho}(N)$ has no function completion on N.

We say that a real vector space F is a regular function space of type (X, \mathfrak{A}) , where X is a given set and $\mathfrak{A} \subseteq \mathfrak{P}(X)$ an ideal, provided there exists a vector subspace $\mathfrak{F} \subseteq X^R$ and a linear surjection $\varphi: \mathfrak{F} \to F$ such that

$$u \leq \varphi^{-1}(0)$$
 iff $u \equiv 0 \pmod{\mathfrak{A}};$ (2)

here for $u, v \leq R^{X}$ we write $u \equiv v \pmod{\mathfrak{A}}$ if there is a set $A \leq \mathfrak{A}$ such that u(x) = v(x) for all $x \leq X \setminus A$. For the example quoted, it is obvious that $L_{\varrho}(N)$ has no regular function completion.

In the remainder of this paper X denotes a locally compact space and μ a given Radon measure on X. Let C(X) denote the set of all real continuous functions on X, $CB(X) \subseteq C(X)$ the set of bounded functions and $C_0(X) \subseteq CB(X)$ the set of all functions with compact support.

We say that a function norm ϱ , defined on μ -measurable functions (cf. [4]), is bounded provided $\varrho(u) < +\infty$ for every $u \le \le CB(X)$. Obviously, the norm (1) is a bounded function norm if we take the discrete topology and also a discrete measure μ on N. The boundedness of ϱ implies the inclusion $CB(X) \subseteq L_{\varrho}(X)$, where $L_{\varrho}(X)$ is the normed Köthe space (cf. [4]), and we denote by $K_{\varrho}(X)$ the Hausdorff completion of CB(X) in the topology generated by ϱ .

Ovaj rad je financirao Savezni fond za naučni rad i Republički fond za naučni rad SRH.

THEOREM 1. The space $K_{\varrho}(X)$ has a function completion on the Stone-Čech compactification bX of X, i. e. there exists an ideal $\mathfrak{A} \subseteq \mathfrak{P}(bX)$ such that $K_{\varrho}(X)$ is a regular function space of type (X, \mathfrak{A}) .

Proof. Let

$$C: CB(X) \rightarrow C(bX)$$

be the extension operator from X to bX and let $S_X = C^{-1}$ (cf. [2]). For every $u \in C$ (bX) we set

$$\beta(u) = \varrho(S_X u).$$

 β is a Radon seminorm in the terminology of [1] (More generally, for an arbitrary locally compact space X, by a Radon seminorm on X we mean a monotone seminorm on $C_0(X)$). We denote by $E_{\beta}(bX)$ the Hausdorff completion of the space C(bX) in the topology given by β . Then, by the main theorem of [1], $E_{\beta}(bX)$ is a regular function space of type (bX, \mathfrak{A}) for a σ -ideal \mathfrak{A} . Since C is an isometric isomorphism of the dense subspace $CB(X) \subseteq K_{\varrho}(X)$ to the dense subspace $C(bX) \subseteq E_{\beta}(bX)$, the theorem is proved.

Starting from this theorem we can give a simple characterization of bounded function norms:

THEOREM 2. For a bounded function seminorm ϱ there exist two Radon seminorms ϱ_0 and ϱ_d on X and $\Delta = bX \setminus X$ respectively such that

$$\frac{1}{2}[\varrho_0(u) + \varrho_A(Bu)] \leq \varrho(u) \leq \varrho_0(u) + \varrho_A(Bu), \quad u \in CB(X), \quad (3)$$

where Bu is the restriction of Cu to Δ .

Proof. For $u \in C(bX)$ we can write

$$u=u\xi_{\mathbf{X}}+u\xi_{\mathbf{A}},$$

where ξ_A denotes the characteristic function of the set A, and since β is a seminorm, we obtain

$$\beta(u) \leq \beta(u\xi_X) + \beta(u\xi_d).$$

Furthermore, since β is a monotone seminorm, it follows from the identity $|u| = |u\xi_X| + |u\xi_A|$

that

$$\beta(u\xi_X) \leq \beta(u)$$
 and $\beta(u\xi_d) \leq \beta(u)$

and we obtain finally

$$\frac{1}{2}\left[\beta\left(u\xi_{X}\right)+\beta\left(u\xi_{d}\right)\right]\leq\beta\left(u\right)\leq\beta\left(u\xi_{X}\right)+\beta\left(u\xi_{d}\right)$$
(4)

for $u \in C$ (bX). It remains to see that $\beta(u\xi_X)$ and $\beta(u\xi_A)$ can be interpreted as Radon seminorms on X and β respectively. For this purpose we define a Radon seminorm ρ_0 on X by setting

$$\varrho_0(u) = \varrho(u), \qquad u \leq C_0(X);$$

we also set

$$arrho_0\left(u
ight)=\sup\left\{arrho_0\left(v
ight):v\in C_0\left(X
ight),0\leq v\leq \left|u
ight|
ight\},\qquad u\in CB\left(X
ight).$$

Because of the inequality $\varrho_0(u) \leq \varrho(u)$, the real number $\varrho(u)$ is finite for every $u \in CB(X)$ and in fact ϱ_0 is a seminorm on CB(X) (cf. [1]; the proof of this assertion is identical to the proof of the analogous assertion for the Radon measure). Moreover we can prove that

$$\varrho_0\left(S_X\,u\right)=\beta\left(u\xi_X\right),\qquad u\leqslant C\left(bX\right).\tag{5}$$

Indeed, for $S_X u$ we have (because of the lower semi-continuity)

$$S_X u = \sup \{ v : 0 \leq v \leq |S_X u| \}, \quad v \in C_0 (X)$$
(6)

and because of Cv(x) = 0, $x \in \Delta$, we also have

$$u\xi_{\mathbf{X}} = \sup \{ Cv : 0 \leq Cv \leq |u\xi_{\mathbf{X}}| \}, \quad v \in C_0(\mathbf{X}).$$
(7)

By the argument as given above we obtain finally

$$\beta(u\xi_{X}) = \sup \beta(Cv) = \sup \varrho_{0}(v) = \varrho_{0}(S_{X}u),$$

where the supremum is taken over the same set as in (6) or (7). Thus (5) is proved.

For $u \in C$ (bX) we have $S_{\Delta} u \in C$ (Δ), where S_{Δ} is the restriction operator on Δ . Since bX is a normal topological space, for every $v \in C$ (Δ) there exists a function $u \in C$ (bX) such that v = $= S_{\Delta} u$. If we set

$$\varrho_{\Delta}(v) = \beta(S_{\Delta} u), \quad v \in C(\Delta),$$
(8)

where $S_{\Delta} u = v$, then ϱ_{Δ} is a Radon seminorm on Δ .

Finally, if we write w = Cu for an arbitrary $u \leq CB(X)$ and if we set $Bu = S_{\Delta}w$, then, by (5) and (8), we obtain (3).

In such a way the nonexistence of a functional completion on X for a bounded function seminorm ϱ is caused by the term ϱ_{Δ} (Bu) in (3). For example, the norm given by (1) can be written in the form

$$\varrho(u) = \sum_{n=1}^{\infty} 2^{-n} u(n) + \max_{x \in \Delta} u(x), \qquad (9)$$

where $\Delta = bN \setminus N$ and this shows that the unusual property of the normed Köthe space $L_{\varrho}(N)$ with respect to completion is in fact understandable.

Mladen Alić

BIBLIOGRAPHY:

- M. Alić, A general class of function spaces, Glasnik Mat. 5 (25) (1970), 293-302.
- [2] L. Gillman, M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960.
- [3] W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces I, Proc. Acad. Sci. Amsterdam 66 (1963), 135-147.
- [4] A. C. Zaanen, Integration, North-Holland, Amsterdam, 1967.

(Received 21. XII 1971.)

Institute of Mathematics University of Zagreb

O JEDNOM PRIMJERU PROSTORA FUNKCIJA

Mladen Alić, Zagreb

Sadržaj

U članku je generaliziran i razjašnjen zanimljiv primjer »neobičnog« prostora nizova realnih brojeva na kojem je norma zadana pomoću formule (1). Taj se prostor razlikuje od prostora koji se obično koriste u analizi po tome što se njegovo popunjenje nemože realizirati kao prostor klasa nizova. Uz korištenje osnovnog teorema iz [1] dokazano je međutim, u generalnom slučaju omeđene polunorme zadane na lokalno kompaktnom prostoru X, da se tada ustvari popunjenje općenito realizira na Stone-Čechovoj kompaktifikaciji bX prostora X (Teorem 1). U Teoremu 2 je taj rezultat nadopunjen time što je za svaku ograničenu polunormu ϱ dokazano postojanje dvaju Radonovih polunormi ϱ_0 i ϱ_d zadanih na X odnosno na $\Delta = bX \setminus X$ i takvih da je ρ ekvivalentno sa $\varrho_0 + \varrho_d$.