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NOTE ON CONCENTRATION VIA THE
CONJUGATE-LINEAR HODGE STAR OPERATOR

JUNHO LEE
University of Central Florida, USA

ABSTRACT. We construct conjugate-linear perturbations of twisted
spin® Dirac operators on compact almost hermitian manifolds of dimension
congruent to 2 or 6 modulo 8, employing the conjugate-linear Hodge star
operator rescaled by unit complex numbers depending on degree. These
perturbations satisfy the concentration principle.

1. INTRODUCTION

One of the most fruitful ideas in geometry is localization, which underlies
the celebrated Witten deformation. Based on this idea, consider a first-order
elliptic operator

D:T(E)—=T(F)
on a compact Riemannian manifold X, and a deformation of the form
D, =D + sA,

where s € R and A: E — F is a bundle map.
As shown in [4], if the perturbation A satisfies the following algebraic
condition:

(1.1) op«(y)o A+ A*oop(y)=0 VyeT*X,

where op denotes the principal symbol of D, then as s — oo, the kernel of Dy
(as well as low eigenspaces of D*D;) becomes concentrated near the singular
set Z 4 of A, defined by

Za:={x € X : ker(A;) # 0}.
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The most well-known example of this concentration principle is the Wit-
ten deformation [12], where D is the Hodge-de Rham operator. Taubes’
localization proof of the Riemann—Roch theorem is another well-known and
ingenious example [11].

When D is a Dirac operator, Prokhorenkov and Richardson [8] formulated
the concentration principle for complex-linear perturbations A and classified
such perturbations. Maridakis [4] later extended the principle to include real
elliptic operators as described above, yielding many interesting examples.

The concentration principle has appeared in various contexts; see, for
example, [9, 3, 1, 7, 5, 2]. In particular, Nagy [5] constructed conjugate-linear
perturbations A satisfying the concentration principle in a general setting,
using nondegenerate invariant bilinear forms on spinor modules.

The present work aims to generalize the conjugate-linear perturbations
introduced in [3] (see Remark 3.4) by constructing conjugate-linear perturba-
tions A, of the twisted spin® Dirac operator

(1.2) Dp:T(ST®FE) - T(S” ®E)

on a compact almost hermitian manifold X with dimX = 2,6 (mod 8).
These perturbations are defined via the conjugate-linear Hodge star opera-
tor rescaled by unit complex numbers depending on degree, together with a
section ¢ of Kx ® (E*)?, and satisfy the condition (1.1) (see Theorem 3.2).
The dimension restriction is due to X being an almost complex manifold and
the fact that the perturbations A, interchange St ® E and ST ® E when
dim X =2,6 (mod 8).

The rest of the paper is organized as follows. In Section 2, we briefly
review basic well-known facts about twisted spin® Dirac operators Dg, and
present observations central to our construction. In Section 3, we construct
conjugate-linear perturbations A, of the operator D satisfying (1.1), and
provide examples where the singular set Z 4, is empty; in such cases, the index
of the operator D is zero by the concentration principle (see Corollary 3.6).

2. PRELIMINARIES

Throughout this paper, X denotes a compact almost hermitian manifold
of dimension 2n, equipped with an almost complex structure J and a Rie-
mannian metric g compatible with the almost complex structure J, while £
denotes a hermitian vector bundle over X.

This section briefly reviews basis well-known facts relevant to our discus-
sion, fixes notation, and presents key observations to our construction.

2.1. Twisted Dirac operator. The almost complex structure J, extended by
complex linearity to TX ® C and T* X ® C, induces the decompositions:

TXQC=(TX)"°q((TX)*! and T"X ®C = (T"X)"*q (T*X)%,



CONCENTRATION VIA THE CONJUGATE-LINEAR HODGE STAR OPERATOR 3

where (TX)1Y and (TX)%?! are the +i-eigenbundles of J, and similarly for
T*X ®C.

Let gc denote the complex bilinear extension of the metric g to AgX =
A*X ® C. The associated hermitian metric on A7 X is defined by

<avﬂ> = gC(a7B)'

The almost hermitian manifold X carries a canonical spin® structure,
which comes with a spinor bundle

(2.1) S=ST@®S~ where st = AO,even/oddX’
and a Clifford multiplication ¢ : 7* X — End¢(S*,ST), given by
22) c(ai=V2(1 Aa =iy )a),

where ¢(7"%) denotes contraction by 7} ;, the vector dual to v* with respect
to gc. Note that

(A B) = (au(v)B) and (c(7)a, B) = — (e c(1)B).

A spin® connection V on the spinor bundle S, induced from the Levi-Civita
connection on X and a hermitian connection on K)_(l, preserves the chiral
grading in (2.1). The induced connection VT on S*, together with a hermitian
connection V¥ on the vector bundle E and the Clifford multiplication, defines
the twisted Dirac operator (1.2) via the composition

VteIldp+ldg @VF

(2.3) Dp :T(S*®E) N(T*X®SToE) <292 PSS~ 9 k).

Consequently, the principal symbols of Dg and its adjoint D}, are given by
opp(7) =c(y)®Idg and op:(v) = —op(y)" =c(y) @ 1dg

for all vy € T*X. (See, e.g., [6, 10] for more on Dirac operators.)

2.2. Conjugate-linear Hodge star operator. The conjugate-linear operator *,
which maps AP?X to A" P~ 92X  is defined by

aAx(8) = (a, B)dv,

for a, B € Q”9(X), where dv, denotes the volume form on X. The following
lemma is a key observation in our construction.

LEMMA 2.1. For any 8 € Q°P(X), v € QYX), and n € Q"0(X), we
have:

(a) [n*%(y>1 A B) = (=)W A (y 103 (n A B

(b) |n|? ;(L(’yl’o)ﬁ) = (=1t D@E=1) 5 A A0L A ;(77 A



4 J. LEE

PRrROOF. For any o € QYPT1 X we have:

a A #(ONAB) = n]* (a7t A B)dv, = [nf* (L(v"0)a, B)dv,

= <77 A L('yl’o)a,n A B>dvg =nA L(”yl’o)a A %(n A ﬁ)

= (1P Aa Ay 0)x(n A B)

= a A (=1 Y Ay 05 (n A B) ),
where the third equality follows from the definition of the hermitian metric
on A7 X, and the sign factors follow since contraction and wedge product are
antiderivations. This implies (a). The proof of (b) is similar. 0

2.2.1. Rescaling. For our purposes, we rescale the operator * as follows:

(2.4) T:=e% on AEX, where ¢ =iF*DEn

The unit complex number €, which also appears in the context of the signa-
ture operator, plays a useful role in our construction. Observe that

(2.5) #2=(-1)Id on AEX and 7%= (-1)"Id
The following identity is central to our construction.

PROPOSITION 2.2. For any 3 € Q"P(X), v € QY(X), and n € Q"0 (X),

we have
n(nt1)

Proc()(B)=(-1)"=2 TnActy)or(nAp).

PRrROOF. The proof follows from Lemma 2.1 and the identity:

n(n+1) 1

_1)n(17+1)+p =(-1)"=7 = ep_16n+p(_1)(n+1)(p—1).

—1
€p+1 6n+p (

O

2.2.2. Adjoint. Since T is conjugate-linear, its adjoint 7* is defined with
respect to the real part of the hermitian metric. By (2.5), we obtain:

LEMMA 2.3. 7% = (—1)"7.
ProOF. For any a € QL(X) and 8 € Q2" *(X), we have

(Byra)dvy =& (— 1) BAa = a A B =& eani(—1)""Fa Ax(1h)
= (=1)"(a, 7B)dv,.

This shows that Re{ra, ) = Re(w, (—1)"73), and hence proves the lemma.
a
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2.2.3. Operator with values in E. The hermitian metric on F, still de-
noted by (, ), defines a conjugate-linear isomorphism F — E* by £ — £* :=
(,&). This induces the map

fp i APIX @B —» AP IX @ F
defined by *g(a® &*) = *(a) ® £&. Now we set
TE = €x%g on AéX@E.

Note that 7g(a® £*) = 7(a) ® § and 75(a® &) = (—1)"1(a) ® £*.

3. CONJUGATE-LINEAR PERTURBATIONS

3.1. Concentrating condition. This subsection constructs conjugate-linear per-
turbations of the twisted Dirac operator D in (2.3) that satisfy the concen-
trating condition (1.1).

DEFINITION 3.1. Given a section ¢ € I'(Kx ® (E*)?), viewed as a
complez-linear bundle map ¢ : E — Kx ® E*, we define a conjugate-linear
bundle map

A, NPX@E - A" PX®FE

by the composition

A, AP @ B 129 N0 g Ky @ B* 2 AP @ BF T2, AP @ |,

Noting A, : ST ® E — ST ® E when dim X = 2,6 (mod 8), and using

the decomposition
F* ® E* = Sym”’E* @ A’E*,
we obtain concentrating pairs (¢p,, A,) in the sense of [4]:

THEOREM 3.2. Let Dg be the twisted Dirac operator in (2.3) and A, as
in Definition 3.1. Suppose p € T(Kx ® Sym?E*) if dim X = 2 (mod 8) and
0 € N(Kx®A?E*) ifdim X = 6 (mod 8). Then A, satisfies the concentrating
condition

(31) UDE(V)OA¢+AZOUDE(’Y):O V")/ET*X

PROOF. In unitary frames {¢;} for E (with dual coframe {¢*}) and n for
Kx (with dual coframe n*), the complex bundle map ¢ : E — Kx ® E* is
given by

(3.2) P=0in®P D¢ : & =Edr > @i D ¢

It follows that for any 8 ® £ € T'(ST @ E) and any v € Q'(X),

(3.3) op-(7) 0 Ap(B® &) = (c(v) ®IdE) o Tu(n A B ® ¢i;&;9")
= c(NT(n A B) @ ;€ 0i-
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On the other hand, since ||? = 1, by Lemma 2.3 and Proposition 2.2, we
have

(34)  Tpoop(MN(B@E) = (~1)"1(c(7)8) ® &

= (()"EF Iy Ac(y) o r(n A B) © Eu”.
Observe that the adjoint ¢* : Kx ® E* — E of the complex bundle map ¢ is
given by
P =000 R V=1 @ ¢F PjiViPi-
With the canonical isomorphism A™?X = A% @ Ky, from (3.4) we obtain
(3.5) Agoop(7)(B®E)

n(n+1)

= (71) 3 +n+11d®@*(c(’7)07(7]/\6)®gk77®¢k)
= (1) () o T(n A B) © B;E i

By the assumption on ¢, (3.3), and (3.5), the proof now follows from the
identity

(_1)'n(n2+1)+n+1 ! ifn=1 (mod 4)
a 1 ifn=3 (mod4)

The next two remarks are related to the motivation for our approach.

REMARK 3.3. For the twisted Dirac operator Dg : I'(ST® E) - I'(S™ ®
E), there is no complex-linear bundle map A : St ® E — S~ ® E that satis-
fies the concentrating condition (3.1). This explains why the Dolbeault and
signature operators do not admit such complex perturbations. (See Section 2

of [8].)

REMARK 3.4. When dim X = 2, the manifold X is a compact complex
curve, and the operator D = /2 0p : Q°(E) — Q¥1(E) is the usual Cauchy-
Riemann operator on E. In [3], when F is a holomorphic line bundle and
¢ is a holomorphic section of Kx ® (E*)?, a conjugate-linear bundle map
R:E — A®'X ® E is defined as the composition R = ¥g o ¢. In this case,
Ay =R and A7 = iR", so our construction generalizes the conjugate-linear
bundle map R.

Indeed, A, = iR satisfies the following equation, which is stronger than
the concentrating condition:

Dy oAy + A% oDy =0.

(See Lemma 2.1 of [3].) When E is a theta characteristic (i.e., E? = Kx), this
implies that A, restricts to a conjugate-linear isomorphism ker Dg — ker DF,,
which leads to a proof of the Atiyah—-Mumford theorem: h°(E) (= dimker D)
mod 2 is deformation invariant (see Section 3 of [3]).
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3.2. Concentration principle. Let Dg, A, : T(ST ® E) = I'(S™ ® E) be as in
Theorem 3.2 and consider the deformation of the twisted Dirac operator Dg
given by

Dy, =Dg+ 8A<p.

The following concentration principle shows that as s — oo, the kernel of D
(as well as low eigenspaces of D*D;) becomes concentrated near the singular
set

ZV’ = ZA<P = {1’ S X: det(ﬁpz) = 0}

THEOREM 3.5. Let Dy, = Dg + A, be as above. For each § > 0 and
C > 0, there exits a constant C" = C"(8, Ap, C) > 0 such that if € T(ST®E)
satisfies ||C||l2 = 1 and ||DsC||3 < C|s|, where ||-||2 denotes the L?-norm, then

we have
/ IC2du, <
X\Z, (6) sl

where Z,(3) is the 6-neighborhood of the singular set Z,,.

PROOF. Since A, satisfies the concentrating condition (3.1), the theorem
follows directly from Proposition 2.4 of [4]. O

In applying this principle, the singular set plays a crucial role. If Z, = X,
no concentration occurs. For example, this happens when

dimX =6 (mod 8) and rank(E) is odd,

since p;; = —pj; in (3.2), and thus det(p;;) = 0. On the other hand, when
Z, =0, we have:

COROLLARY 3.6. Let Dy and A, be as in Theorem 3.2. If Z, = 0, then

PROOF. By Theorem 3.5, the singular set Z, = () implies that for suffi-
ciently large s, the operator Dy has trivial kernel. It follows that

ind DE = %indRDs § 07

where the second term denotes the index of D, as a real operator, and the
equality follows since Dy is a compact perturbation of Dg. Applying the same
argument to the operator D + sA, yields ind D}, = —ind Dg < 0, so the
claim follows. 0

3.2.1. Compact spin almost hermitan manifolds. Suppose ¢1(X) = 0
(mod 2), so that X admits a spin structure. Fix a spin structure o on X,
which is equivalent to choosing a square root NN, of the canonical bundle
Kx, ie., N2 2= Kx. In this case, the complex spinor bundle S, of the spin
structure o is given by

Se =S® N,



8 J. LEE

Let E = N,®F, where F'is a hermitian vector bundle F over X. A section
¢ € T((F*)?) induces a section ¢ € I'(Kx ® (E*)?) via the isomorphism
(F*)? =2 Kx ® (E*)?%, which restricts to yield

Sym?F* = Kx @ Sym?E* and A%F* = Kx ® A’E*.
When dim X = 2,6 (mod 8), we set
Ay =A,:STQE=SI@F >STRE=SI®F

where A, is the conjugate-linear bundle map as in Theorem 3.2. The singular
set of this bundle map is then given by

Zy:=Z,={x € X :det(¢,) = 0}.

Below are examples of bundle maps A, whose singular set Z,, = 0.

(a) Let dim X = 2 (mod 8). The following are typical examples of nonde-
generate symmetric complex bilinear forms ¢ € F(SmeF *Yon F:
o F'=TX®C with ) = gc, the complex bilinear extension of the
metric g to TX ® C, or
e ' = Endc(W), where W is a hermitian vector bundle over X,
and 1 is the natural trace pairing given by (A, B) = tr(Ao B).
(b) Let dim X =6 (mod 8). A complex vector bundle F is called a com-
plex symplectic vector bundle if it is equipped with a nondegenerate
skew-symmetric complex bilinear form ¢ € T'(A?F*). Standard exam-
ples include:
o FF=TX ®C with ¢ = w¢, where we(u,v) = gc(u, Jv), or
o F=W&W* with ¢ defined by ¢ ((w1, f1), (U)Q,fg)) = fo(wy)—
fi(w2).
In all of the above examples (F,), the bundle map Ay (= A,) satisfies the
concentrating condition, and the singular set Z,;, = 0. Hence, by Corollary 3.6,
the twisted Dirac operator

Dn,or :T(Sf @ F) - I(S; ® F)
has index ind Dy, gr = 0.

REMARK 3.7. The vanishing of the index also follows easily from the
Atiyah-Singer index theorem:

ind Dy, o = / ch(F)A(X),
X
where A(X) is a polynomial in the Pontryagin classes py(X) = (—1)F¢o(X)
and ch(F) is a polynomial in the even Chern classes cg¢(F') (since F' = F* as
a complex vector bundle). As %dimX is odd, there is no top-degree term in
the integrand, and therefore the integral vanishes.
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