

SERIJA III

www.math.hr/glasnik

Junho Lee

Note on concentration via the conjugate-linear Hodge star operator

Manuscript accepted November 3, 2025.

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by Glasnik Production staff.

NOTE ON CONCENTRATION VIA THE CONJUGATE-LINEAR HODGE STAR OPERATOR

JUNHO LEE University of Central Florida, USA

ABSTRACT. We construct conjugate-linear perturbations of twisted spin $^{\rm c}$ Dirac operators on compact almost hermitian manifolds of dimension congruent to 2 or 6 modulo 8, employing the conjugate-linear Hodge star operator rescaled by unit complex numbers depending on degree. These perturbations satisfy the concentration principle.

1. Introduction

One of the most fruitful ideas in geometry is *localization*, which underlies the celebrated Witten deformation. Based on this idea, consider a first-order elliptic operator

$$D:\Gamma(E)\to\Gamma(F)$$

on a compact Riemannian manifold X, and a deformation of the form

$$D_s = D + sA,$$

where $s \in \mathbb{R}$ and $A : E \to F$ is a bundle map.

As shown in [4], if the perturbation A satisfies the following algebraic condition:

(1.1)
$$\sigma_{D^*}(\gamma) \circ A + A^* \circ \sigma_D(\gamma) = 0 \quad \forall \gamma \in T^*X,$$

where σ_D denotes the principal symbol of D, then as $s \to \infty$, the kernel of D_s (as well as low eigenspaces of $D_s^*D_s$) becomes concentrated near the *singular* set Z_A of A, defined by

$$Z_A := \{ x \in X : \ker(A_x) \neq 0 \}.$$

 $^{2020\} Mathematics\ Subject\ Classification.\ 53C27,\ 53C55.$

 $Key\ words\ and\ phrases.$ Twisted spin $^{\rm c}$ Dirac operator, Conjugate-linear perturbation, Concentration principle.

The most well-known example of this concentration principle is the Witten deformation [12], where D is the Hodge–de Rham operator. Taubes' localization proof of the Riemann–Roch theorem is another well-known and ingenious example [11].

When D is a Dirac operator, Prokhorenkov and Richardson [8] formulated the concentration principle for complex-linear perturbations A and classified such perturbations. Maridakis [4] later extended the principle to include real elliptic operators as described above, yielding many interesting examples.

The concentration principle has appeared in various contexts; see, for example, [9, 3, 1, 7, 5, 2]. In particular, Nagy [5] constructed conjugate-linear perturbations A satisfying the concentration principle in a general setting, using nondegenerate invariant bilinear forms on spinor modules.

The present work aims to generalize the conjugate-linear perturbations introduced in [3] (see Remark 3.4) by constructing conjugate-linear perturbations A_{φ} of the twisted spin^c Dirac operator

$$(1.2) D_E: \Gamma(\mathbb{S}^+ \otimes E) \to \Gamma(\mathbb{S}^- \otimes E)$$

on a compact almost hermitian manifold X with $\dim X \equiv 2,6 \pmod{8}$. These perturbations are defined via the conjugate-linear Hodge star operator rescaled by unit complex numbers depending on degree, together with a section φ of $K_X \otimes (E^*)^2$, and satisfy the condition (1.1) (see Theorem 3.2). The dimension restriction is due to X being an almost complex manifold and the fact that the perturbations A_{φ} interchange $\mathbb{S}^+ \otimes E$ and $\mathbb{S}^- \otimes E$ when $\dim X \equiv 2, 6 \pmod{8}$.

The rest of the paper is organized as follows. In Section 2, we briefly review basic well-known facts about twisted spin^c Dirac operators D_E , and present observations central to our construction. In Section 3, we construct conjugate-linear perturbations A_{φ} of the operator D_E satisfying (1.1), and provide examples where the singular set $Z_{A_{\varphi}}$ is empty; in such cases, the index of the operator D_E is zero by the concentration principle (see Corollary 3.6).

2. Preliminaries

Throughout this paper, X denotes a compact almost hermitian manifold of dimension 2n, equipped with an almost complex structure J and a Riemannian metric g compatible with the almost complex structure J, while E denotes a hermitian vector bundle over X.

This section briefly reviews basis well-known facts relevant to our discussion, fixes notation, and presents key observations to our construction.

2.1. Twisted Dirac operator. The almost complex structure J, extended by complex linearity to $TX \otimes \mathbb{C}$ and $T^*X \otimes \mathbb{C}$, induces the decompositions:

$$TX \otimes \mathbb{C} = (TX)^{1,0} \oplus (TX)^{0,1}$$
 and $T^*X \otimes \mathbb{C} = (T^*X)^{1,0} \oplus (T^*X)^{0,1}$,

where $(TX)^{1,0}$ and $(TX)^{0,1}$ are the $\pm i$ -eigenbundles of J, and similarly for $T^*X\otimes \mathbb{C}$.

Let $g_{\mathbb{C}}$ denote the complex bilinear extension of the metric g to $\Lambda_{\mathbb{C}}^*X =$ $\Lambda^*X\otimes\mathbb{C}$. The associated hermitian metric on $\Lambda^*_{\mathbb{C}}X$ is defined by

$$\langle \alpha, \beta \rangle := g_{\mathbb{C}}(\alpha, \bar{\beta}).$$

The almost hermitian manifold X carries a canonical spin^c structure, which comes with a spinor bundle

(2.1)
$$\mathbb{S} = \mathbb{S}^+ \oplus \mathbb{S}^- \text{ where } \mathbb{S}^{\pm} = \Lambda^{0,\text{even/odd}} X,$$

and a Clifford multiplication $c: T^*X \to \operatorname{End}_{\mathbb{C}}(\mathbb{S}^{\pm}, \mathbb{S}^{\mp})$, given by

(2.2)
$$c(\gamma)\alpha := \sqrt{2}(\gamma^{0,1} \wedge \alpha - \iota(\gamma^{1,0})\alpha),$$

where $\iota(\gamma^{1,0})$ denotes contraction by $\gamma_{0,1}^{\sharp}$, the vector dual to $\gamma^{1,0}$ with respect to $g_{\mathbb{C}}$. Note that

$$\langle \gamma^{0,1} \wedge \alpha, \beta \rangle = \langle \alpha, \iota(\gamma^{1,0})\beta \rangle$$
 and $\langle c(\gamma)\alpha, \beta \rangle = -\langle \alpha, c(\gamma)\beta \rangle$.

A spin^c connection ∇ on the spinor bundle \mathbb{S} , induced from the Levi-Civita connection on X and a hermitian connection on K_X^{-1} , preserves the chiral grading in (2.1). The induced connection ∇^+ on \mathbb{S}^+ , together with a hermitian connection ∇^E on the vector bundle E and the Clifford multiplication, defines the twisted Dirac operator (1.2) via the composition

$$(2.3) \ D_E: \Gamma(\mathbb{S}^+ \otimes E) \xrightarrow{\nabla^+ \otimes \operatorname{Id}_E + \operatorname{Id}_{\mathbb{S}^+} \otimes \nabla^E} \Gamma(T^*X \otimes \mathbb{S}^+ \otimes E) \xrightarrow{\operatorname{c} \otimes \operatorname{Id}_E} \Gamma(\mathbb{S}^- \otimes E).$$

Consequently, the principal symbols of D_E and its adjoint D_E^* are given by

$$\sigma_{D_E}(\gamma) = c(\gamma) \otimes \operatorname{Id}_E$$
 and $\sigma_{D_E^*}(\gamma) = -\sigma_D(\gamma)^* = c(\gamma) \otimes \operatorname{Id}_E$

for all $\gamma \in T^*X$. (See, e.g., [6, 10] for more on Dirac operators.)

2.2. Conjugate-linear Hodge star operator. The conjugate-linear operator $\bar{*}$, which maps $\Lambda^{p,q}X$ to $\Lambda^{n-p,n-q}X$, is defined by

$$\alpha \wedge \bar{*}(\beta) = \langle \alpha, \beta \rangle dv_q$$

for $\alpha, \beta \in \Omega^{p,q}(X)$, where dv_q denotes the volume form on X. The following lemma is a key observation in our construction.

LEMMA 2.1. For any $\beta \in \Omega^{0,p}(X)$, $\gamma \in \Omega^1(X)$, and $\eta \in \Omega^{n,0}(X)$, we have:

(a)
$$|\eta|^2 \bar{*} (\gamma^{0,1} \wedge \beta) = (-1)^{n(p+1)+p} \eta \wedge \iota(\gamma^{1,0}) \bar{*} (\eta \wedge \beta).$$

(b) $|\eta|^2 \bar{*} (\iota(\gamma^{1,0})\beta) = (-1)^{(n+1)(p-1)} \eta \wedge \gamma^{0,1} \wedge \bar{*} (\eta \wedge \beta).$

(b)
$$|\eta|^2 \bar{*}(\iota(\gamma^{1,0})\beta) = (-1)^{(n+1)(p-1)} \eta \wedge \gamma^{0,1} \wedge \bar{*}(\eta \wedge \beta).$$

PROOF. For any $\alpha \in \Omega^{0,p+1}X$, we have:

$$\begin{split} \alpha \wedge |\eta|^2 \, \bar{*} \big(\gamma^{0,1} \wedge \beta \big) &= |\eta|^2 \big\langle \alpha, \gamma^{0,1} \wedge \beta \big\rangle dv_g = |\eta|^2 \, \big\langle \iota(\gamma^{1,0}) \alpha, \beta \big\rangle dv_g \\ &= \big\langle \eta \wedge \iota(\gamma^{1,0}) \alpha, \eta \wedge \beta \big\rangle dv_g = \eta \wedge \iota(\gamma^{1,0}) \alpha \wedge \bar{*} \big(\eta \wedge \beta \big) \\ &= (-1)^p \, \eta \wedge \alpha \wedge \iota(\gamma^{1,0}) \bar{*} \big(\eta \wedge \beta \big) \\ &= \alpha \wedge \Big((-1)^{n(p+1)+p} \, \eta \wedge \iota(\gamma^{1,0}) \bar{*} \big(\eta \wedge \beta \big) \Big), \end{split}$$

where the third equality follows from the definition of the hermitian metric on $\Lambda_{\mathbb{C}}^*X$, and the sign factors follow since contraction and wedge product are antiderivations. This implies (a). The proof of (b) is similar.

2.2.1. Rescaling. For our purposes, we rescale the operator $\bar{*}$ as follows:

(2.4)
$$\tau := \epsilon_k \bar{*} \quad \text{on} \quad \Lambda_{\mathbb{C}}^k X, \quad \text{where} \quad \epsilon_k = i^{k(k-1)+n}.$$

The unit complex number ϵ_k , which also appears in the context of the signature operator, plays a useful role in our construction. Observe that

(2.5)
$$\bar{*}^2 = (-1)^k \text{Id}$$
 on $\Lambda_{\mathbb{C}}^k X$ and $\tau^2 = (-1)^n \text{Id}$.

The following identity is central to our construction.

Proposition 2.2. For any $\beta \in \Omega^{0,p}(X), \ \gamma \in \Omega^1(X), \ and \ \eta \in \Omega^{n,0}(X),$ we have

$$|\eta|^2 \tau \circ c(\gamma)(\beta) = (-1)^{\frac{n(n+1)}{2} + 1} \eta \wedge c(\gamma) \circ \tau(\eta \wedge \beta).$$

PROOF. The proof follows from Lemma 2.1 and the identity:

$$\epsilon_{p+1}\epsilon_{n+p}^{-1}(-1)^{n(p+1)+p} = (-1)^{\frac{n(n+1)}{2}} = \epsilon_{p-1}\epsilon_{n+p}^{-1}(-1)^{(n+1)(p-1)}.$$

2.2.2. Adjoint. Since τ is conjugate-linear, its adjoint τ^* is defined with respect to the real part of the hermitian metric. By (2.5), we obtain:

LEMMA 2.3.
$$\tau^* = (-1)^n \tau$$
.

PROOF. For any $\alpha \in \Omega^k_{\mathbb{C}}(X)$ and $\beta \in \Omega^{2n-k}_{\mathbb{C}}(X)$, we have

$$\langle \beta, \tau \alpha \rangle dv_g = \overline{\epsilon}_k (-1)^k \beta \wedge \alpha = \overline{\epsilon}_k \alpha \wedge \beta = \overline{\epsilon}_k \epsilon_{2n-k} (-1)^{2n-k} \alpha \wedge \overline{*}(\tau \beta)$$
$$= (-1)^n \langle \alpha, \tau \beta \rangle dv_g.$$

This shows that $\operatorname{Re}\langle \tau \alpha, \beta \rangle = \operatorname{Re}\langle \alpha, (-1)^n \tau \beta \rangle$, and hence proves the lemma.

2.2.3. Operator with values in E. The hermitian metric on E, still denoted by \langle , \rangle , defines a conjugate-linear isomorphism $E \to E^*$ by $\xi \mapsto \xi^* :=$ $\langle , \xi \rangle$. This induces the map

$$\bar{*}_E: \Lambda^{p,q}X \otimes E^* \to \Lambda^{n-p,n-q}X \otimes E$$

defined by $\bar{*}_E(\alpha \otimes \xi^*) = \bar{*}(\alpha) \otimes \xi$. Now we set

$$\tau_E := \epsilon_k \bar{*}_E \quad \text{on} \quad \Lambda^k_{\mathbb{C}} X \otimes E.$$

Note that $\tau_E(\alpha \otimes \xi^*) = \tau(\alpha) \otimes \xi$ and $\tau_E^*(\alpha \otimes \xi) = (-1)^n \tau(\alpha) \otimes \xi^*$.

3. Conjugate-linear perturbations

3.1. Concentrating condition. This subsection constructs conjugate-linear perturbations of the twisted Dirac operator D in (2.3) that satisfy the concentrating condition (1.1).

Definition 3.1. Given a section $\varphi \in \Gamma(K_X \otimes (E^*)^2)$, viewed as a complex-linear bundle map $\varphi: E \to K_X \otimes E^*$, we define a conjugate-linear bundle map

$$A_{\varphi}: \Lambda^{0,p}X \otimes E \to \Lambda^{0,n-p}X \otimes E$$

by the composition

$$A_{\varphi}: \Lambda^{0,p} \otimes E \xrightarrow{\mathrm{Id} \otimes \varphi} \Lambda^{0,p} \otimes K_X \otimes E^* \cong \Lambda^{n,p} \otimes E^* \xrightarrow{\tau_E} \Lambda^{0,n-p} \otimes E.$$

Noting $A_{\varphi}: \mathbb{S}^{\pm} \otimes E \to \mathbb{S}^{\mp} \otimes E$ when dim $X \equiv 2, 6 \pmod{8}$, and using the decomposition

$$E^* \otimes E^* = \operatorname{Sym}^2 E^* \oplus \Lambda^2 E^*,$$

we obtain concentrating pairs $(\sigma_{D_E}, A_{\varphi})$ in the sense of [4]:

Theorem 3.2. Let D_E be the twisted Dirac operator in (2.3) and A_{φ} as in Definition 3.1. Suppose $\varphi \in \Gamma(K_X \otimes \operatorname{Sym}^2 E^*)$ if dim $X \equiv 2 \pmod{8}$ and $\varphi \in \Gamma(K_X \otimes \Lambda^2 E^*)$ if dim $X \equiv 6 \pmod{8}$. Then A_{φ} satisfies the concentrating condition

(3.1)
$$\sigma_{D_E^*}(\gamma) \circ A_{\varphi} + A_{\varphi}^* \circ \sigma_{D_E}(\gamma) = 0 \quad \forall \gamma \in T^*X.$$

PROOF. In unitary frames $\{\phi_i\}$ for E (with dual coframe $\{\phi^i\}$) and η for K_X (with dual coframe η^*), the complex bundle map $\varphi: E \to K_X \otimes E^*$ is given by

(3.2)
$$\varphi = \varphi_{ij} \eta \otimes \phi^i \otimes \phi^j : \xi = \xi_k \phi_k \mapsto \varphi_{ij} \xi_j \eta \otimes \phi^i.$$

It follows that for any $\beta \otimes \xi \in \Gamma(\mathbb{S}^+ \otimes E)$ and any $\gamma \in \Omega^1(X)$,

(3.3)
$$\sigma_{D^*}(\gamma) \circ A_{\varphi}(\beta \otimes \xi) = (c(\gamma) \otimes \mathrm{Id}_E) \circ \tau_E (\eta \wedge \beta \otimes \varphi_{ij} \xi_j \phi^i)$$
$$= c(\gamma) \tau(\eta \wedge \beta) \otimes \overline{\varphi}_{ij} \overline{\xi}_j \phi_i.$$

On the other hand, since $|\eta|^2 = 1$, by Lemma 2.3 and Proposition 2.2, we have

(3.4)
$$\tau_E^* \circ \sigma_D(\gamma)(\beta \otimes \xi) = (-1)^n \tau(\mathbf{c}(\gamma)\beta) \otimes \overline{\xi}_k \phi^k$$
$$= (-1)^{\frac{n(n+1)}{2} + n + 1} \eta \wedge \mathbf{c}(\gamma) \circ \tau(\eta \wedge \beta) \otimes \overline{\xi}_k \phi^k.$$

Observe that the adjoint $\varphi^*: K_X \otimes E^* \to E$ of the complex bundle map φ is given by

$$\varphi^* = \overline{\varphi}_{ji} \phi_i \otimes \eta^* \otimes \phi_j : \nu = \nu_k \eta \otimes \phi^k \mapsto \overline{\varphi}_{ji} \nu_j \phi_i.$$

With the canonical isomorphism $\Lambda^{n,p}X \cong \Lambda^{0,p} \otimes K_X$, from (3.4) we obtain

$$(3.5) A_{\varphi}^{*} \circ \sigma_{D}(\gamma)(\beta \otimes \xi)$$

$$= (-1)^{\frac{n(n+1)}{2} + n + 1} \operatorname{Id} \otimes \varphi^{*}(\operatorname{c}(\gamma) \circ \tau(\eta \wedge \beta) \otimes \overline{\xi}_{k} \eta \otimes \phi^{k})$$

$$= (-1)^{\frac{n(n+1)}{2} + n + 1} \operatorname{c}(\gamma) \circ \tau(\eta \wedge \beta) \otimes \overline{\varphi}_{ji} \overline{\xi}_{j} \phi_{i}.$$

By the assumption on φ , (3.3), and (3.5), the proof now follows from the identity

$$(-1)^{\frac{n(n+1)}{2}+n+1} = \left\{ \begin{array}{cc} -1 & \quad \text{if } n \equiv 1 \pmod{4} \\ 1 & \quad \text{if } n \equiv 3 \pmod{4} \end{array} \right.$$

The next two remarks are related to the motivation for our approach.

REMARK 3.3. For the twisted Dirac operator $D_E: \Gamma(\mathbb{S}^+ \otimes E) \to \Gamma(\mathbb{S}^- \otimes E)$, there is no complex-linear bundle map $A: \mathbb{S}^+ \otimes E \to \mathbb{S}^- \otimes E$ that satisfies the concentrating condition (3.1). This explains why the Dolbeault and signature operators do not admit such complex perturbations. (See Section 2 of [8].)

Remark 3.4. When $\dim X=2$, the manifold X is a compact complex curve, and the operator $D_E=\sqrt{2}\,\bar{\partial}_E:\Omega^0(E)\to\Omega^{0,1}(E)$ is the usual Cauchy–Riemann operator on E. In [3], when E is a holomorphic line bundle and φ is a holomorphic section of $K_X\otimes (E^*)^2$, a conjugate-linear bundle map $R:E\to\Lambda^{0,1}X\otimes E$ is defined as the composition $R=\bar{*}_E\circ\varphi$. In this case, $A_\varphi=iR$ and $A_\varphi^*=iR^*$, so our construction generalizes the conjugate-linear bundle map R.

Indeed, $A_{\varphi}=iR$ satisfies the following equation, which is stronger than the concentrating condition:

$$D_E^* \circ A_\varphi + A_\varphi^* \circ D_E = 0.$$

(See Lemma 2.1 of [3].) When E is a theta characteristic (i.e., $E^2 \cong K_X$), this implies that A_{φ} restricts to a conjugate-linear isomorphism $\ker D_E \to \ker D_E^*$, which leads to a proof of the Atiyah–Mumford theorem: $h^0(E)$ (= dim $\ker D_E$) mod 2 is deformation invariant (see Section 3 of [3]).

3.2. Concentration principle. Let $D_E, A_{\varphi} : \Gamma(\mathbb{S}^+ \otimes E) \to \Gamma(\mathbb{S}^- \otimes E)$ be as in Theorem 3.2 and consider the deformation of the twisted Dirac operator D_E given by

$$D_s = D_E + sA_{\varphi}$$
.

The following concentration principle shows that as $s \to \infty$, the kernel of D_s (as well as low eigenspaces of $D_s^*D_s$) becomes concentrated near the singular set

$$Z_{\varphi} := Z_{A_{\varphi}} = \{ x \in X : \det(\varphi_x) = 0 \}.$$

THEOREM 3.5. Let $D_s = D_E + A_{\varphi}$ be as above. For each $\delta > 0$ and $C \geq 0$, there exits a constant $C' = C'(\delta, A_{\varphi}, C) > 0$ such that if $\zeta \in \Gamma(\mathbb{S}^+ \otimes E)$ satisfies $||\zeta||_2 = 1$ and $||D_s\zeta||_2^2 \leq C|s|$, where $||\cdot||_2$ denotes the L^2 -norm, then we have

$$\int_{X\backslash Z_{\varphi}(\delta)}|\zeta|^2dv_g<\frac{C'}{|s|},$$

where $Z_{\varphi}(\delta)$ is the δ -neighborhood of the singular set Z_{φ} .

PROOF. Since A_{φ} satisfies the concentrating condition (3.1), the theorem follows directly from Proposition 2.4 of [4].

In applying this principle, the singular set plays a crucial role. If $Z_{\varphi} = X$, no concentration occurs. For example, this happens when

$$\dim X \equiv 6 \pmod{8}$$
 and $\operatorname{rank}(E)$ is odd,

since $\varphi_{ij} = -\varphi_{ji}$ in (3.2), and thus $\det(\varphi_{ij}) = 0$. On the other hand, when $Z_{\varphi} = \emptyset$, we have:

COROLLARY 3.6. Let D_E and A_{φ} be as in Theorem 3.2. If $Z_{\varphi} = \emptyset$, then ind $D_E = 0$.

PROOF. By Theorem 3.5, the singular set $Z_{\varphi} = \emptyset$ implies that for sufficiently large s, the operator D_s has trivial kernel. It follows that

$$\operatorname{ind} D_E = \frac{1}{2} \operatorname{ind}_{\mathbb{R}} D_s \le 0,$$

where the second term denotes the index of D_s as a real operator, and the equality follows since D_s is a compact perturbation of D_E . Applying the same argument to the operator $D_E^* + sA_{\varphi}$ yields ind $D_E^* = -\text{ind}\,D_E \leq 0$, so the claim follows.

3.2.1. Compact spin almost hermitan manifolds. Suppose $c_1(X) \equiv 0 \pmod{2}$, so that X admits a spin structure. Fix a spin structure σ on X, which is equivalent to choosing a square root N_{σ} of the canonical bundle K_X , i.e., $N_{\sigma}^2 \cong K_X$. In this case, the complex spinor bundle \mathbb{S}_{σ} of the spin structure σ is given by

$$\mathbb{S}_{\sigma} = \mathbb{S} \otimes N_{\sigma}.$$

Let $E = N_{\sigma} \otimes F$, where F is a hermitian vector bundle F over X. A section $\psi \in \Gamma((F^*)^2)$ induces a section $\varphi \in \Gamma(K_X \otimes (E^*)^2)$ via the isomorphism $(F^*)^2 \cong K_X \otimes (E^*)^2$, which restricts to yield

$$\operatorname{Sym}^2 F^* \cong K_X \otimes \operatorname{Sym}^2 E^*$$
 and $\Lambda^2 F^* \cong K_X \otimes \Lambda^2 E^*$.

When $\dim X \equiv 2, 6 \pmod{8}$, we set

$$A_{\psi} := A_{\varphi} : \mathbb{S}^{\pm} \otimes E = \mathbb{S}_{\sigma}^{\pm} \otimes F \to \mathbb{S}^{\mp} \otimes E = \mathbb{S}_{\sigma}^{\mp} \otimes F,$$

where A_{φ} is the conjugate-linear bundle map as in Theorem 3.2. The singular set of this bundle map is then given by

$$Z_{\psi} := Z_{\varphi} = \{ x \in X : \det(\psi_x) = 0 \}.$$

Below are examples of bundle maps A_{ψ} whose singular set $Z_{\psi} = \emptyset$.

- (a) Let dim $X \equiv 2 \pmod{8}$. The following are typical examples of nondegenerate symmetric complex bilinear forms $\psi \in \Gamma(\operatorname{Sym}^2 F^*)$ on F:
 - $F = TX \otimes \mathbb{C}$ with $\psi = g_{\mathbb{C}}$, the complex bilinear extension of the metric g to $TX \otimes \mathbb{C}$, or
 - $F = \operatorname{End}_{\mathbb{C}}(W)$, where W is a hermitian vector bundle over X, and ψ is the natural trace pairing given by $\psi(A, B) = \operatorname{tr}(A \circ B)$.
- (b) Let dim $X \equiv 6 \pmod{8}$. A complex vector bundle F is called a *complex symplectic vector bundle* if it is equipped with a nondegenerate skew-symmetric complex bilinear form $\psi \in \Gamma(\Lambda^2 F^*)$. Standard examples include:
 - $F = TX \otimes \mathbb{C}$ with $\psi = \omega_{\mathbb{C}}$, where $\omega_{\mathbb{C}}(u, v) = g_{\mathbb{C}}(u, Jv)$, or
 - $F = W \oplus W^*$ with ψ defined by $\psi((w_1, f_1), (w_2, f_2)) = f_2(w_1) f_1(w_2)$.

In all of the above examples (F, ψ) , the bundle map $A_{\psi} (= A_{\varphi})$ satisfies the concentrating condition, and the singular set $Z_{\psi} = \emptyset$. Hence, by Corollary 3.6, the twisted Dirac operator

$$D_{N_{\sigma}\otimes F}:\Gamma(\mathbb{S}_{\sigma}^{+}\otimes F)\to\Gamma(\mathbb{S}_{\sigma}^{-}\otimes F)$$

has index ind $D_{N_{\sigma}\otimes F}=0$.

Remark 3.7. The vanishing of the index also follows easily from the Atiyah-Singer index theorem:

$$\operatorname{ind} D_{N_{\sigma} \otimes F} = \int_{X} \operatorname{ch}(F) \hat{\mathbf{A}}(X),$$

where $\hat{A}(X)$ is a polynomial in the Pontryagin classes $p_k(X) = (-1)^k c_{2k}(X)$ and ch(F) is a polynomial in the even Chern classes $c_{2\ell}(F)$ (since $F \cong F^*$ as a complex vector bundle). As $\frac{1}{2} \dim X$ is odd, there is no top-degree term in the integrand, and therefore the integral vanishes.

References

- C. Gerig and C. Wendl, Generic transversality for unbranched covers of closed pseudoholomorphic curves, Comm. Pure Appl. Math. 70 (2017), no. 3, 409–443.
- [2] K. Choi and J. Lee, Witten deformation and divergence-free symmetric Killing 2tensors, arXiv:2405.10520.
- [3] J. Lee and T. Parker, Spin Hurwitz numbers and the Gromov-Witten invariants of Kähler surfaces, Comm. Anal. Geom. 21 (2013), no. 5, 1015–1060.
- [4] M. Maridakis, Spinor pairs and the concentrating principle for Dirac operators, Trans. Amer. Math. Soc. 369 (2017), no. 3, 2231–2254.
- [5] A. Nagy, Conjugate linear perturbations of Dirac operators and Majorana fermions,
 J. Geom. Anal. 35 (2025), no. 6, Paper No. 169.
- [6] L. Nicolaescu, Notes on Seiberg-Witten theory, Grad. Stud. Math., 28 American Mathematical Society, Providence, RI, 2000.
- [7] G. Parker, Concentrating Dirac operators and generalized Seiberg-Witten equations, arXive:2307 00694
- [8] I. Prokhorenkov and K. Richardson, Perturbations of Dirac operators, J. Geom. Phys. 57 (2006), no. 1, 297–321.
- [9] D. Rauch, Perturbations of the d-bar operator, Doctoral dissertation, Harvard University, 2004.
- [10] D. Salamon, Spin Geometry and Seiberg-Witten Invariants, unpublished manuscript, 1999
- [11] C. Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, J. Diff. Geom., 44 (1996), no. 4, 818–893.
- [12] Edward Witten, Supersymmetry and Morse theory, J. Diff. Deom., 17 (1982), no. 4, 661–692.

J. Lee

School of Data, Mathematical, and Statistical Sciences University of Central Florida Orlando Florida 32816 USA

 $E ext{-}mail: junho.lee@ucf.edu}$