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NOTE ON CONCENTRATION VIA THE
CONJUGATE-LINEAR HODGE STAR OPERATOR

Junho Lee

University of Central Florida, USA

Abstract. We construct conjugate-linear perturbations of twisted

spinc Dirac operators on compact almost hermitian manifolds of dimension
congruent to 2 or 6 modulo 8, employing the conjugate-linear Hodge star

operator rescaled by unit complex numbers depending on degree. These

perturbations satisfy the concentration principle.

1. Introduction

One of the most fruitful ideas in geometry is localization, which underlies
the celebrated Witten deformation. Based on this idea, consider a first-order
elliptic operator

D : Γ(E) → Γ(F )

on a compact Riemannian manifold X, and a deformation of the form

Ds = D + sA,

where s ∈ R and A : E → F is a bundle map.
As shown in [4], if the perturbation A satisfies the following algebraic

condition:

(1.1) σD∗(γ) ◦A+A∗ ◦ σD(γ) = 0 ∀γ ∈ T ∗X,

where σD denotes the principal symbol of D, then as s→ ∞, the kernel of Ds

(as well as low eigenspaces of D∗
sDs) becomes concentrated near the singular

set ZA of A, defined by

ZA := {x ∈ X : ker(Ax) ̸= 0}.
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The most well-known example of this concentration principle is the Wit-
ten deformation [12], where D is the Hodge–de Rham operator. Taubes’
localization proof of the Riemann–Roch theorem is another well-known and
ingenious example [11].

WhenD is a Dirac operator, Prokhorenkov and Richardson [8] formulated
the concentration principle for complex-linear perturbations A and classified
such perturbations. Maridakis [4] later extended the principle to include real
elliptic operators as described above, yielding many interesting examples.

The concentration principle has appeared in various contexts; see, for
example, [9, 3, 1, 7, 5, 2]. In particular, Nagy [5] constructed conjugate-linear
perturbations A satisfying the concentration principle in a general setting,
using nondegenerate invariant bilinear forms on spinor modules.

The present work aims to generalize the conjugate-linear perturbations
introduced in [3] (see Remark 3.4) by constructing conjugate-linear perturba-
tions Aφ of the twisted spinc Dirac operator

(1.2) DE : Γ(S+ ⊗ E) → Γ(S− ⊗ E)

on a compact almost hermitian manifold X with dimX ≡ 2, 6 (mod 8).
These perturbations are defined via the conjugate-linear Hodge star opera-
tor rescaled by unit complex numbers depending on degree, together with a
section φ of KX ⊗ (E∗)2, and satisfy the condition (1.1) (see Theorem 3.2).
The dimension restriction is due to X being an almost complex manifold and
the fact that the perturbations Aφ interchange S+ ⊗ E and S− ⊗ E when
dimX ≡ 2, 6 (mod 8).

The rest of the paper is organized as follows. In Section 2, we briefly
review basic well-known facts about twisted spinc Dirac operators DE , and
present observations central to our construction. In Section 3, we construct
conjugate-linear perturbations Aφ of the operator DE satisfying (1.1), and
provide examples where the singular set ZAφ

is empty; in such cases, the index
of the operator DE is zero by the concentration principle (see Corollary 3.6).

2. Preliminaries

Throughout this paper, X denotes a compact almost hermitian manifold
of dimension 2n, equipped with an almost complex structure J and a Rie-
mannian metric g compatible with the almost complex structure J , while E
denotes a hermitian vector bundle over X.

This section briefly reviews basis well-known facts relevant to our discus-
sion, fixes notation, and presents key observations to our construction.

2.1. Twisted Dirac operator. The almost complex structure J , extended by
complex linearity to TX ⊗ C and T ∗X ⊗ C, induces the decompositions:

TX ⊗ C = (TX)1,0 ⊕ (TX)0,1 and T ∗X ⊗ C = (T ∗X)1,0 ⊕ (T ∗X)0,1,
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where (TX)1,0 and (TX)0,1 are the ±i-eigenbundles of J , and similarly for
T ∗X ⊗ C.

Let gC denote the complex bilinear extension of the metric g to Λ∗
CX =

Λ∗X ⊗ C. The associated hermitian metric on Λ∗
CX is defined by

⟨α, β⟩ := gC(α, β̄).

The almost hermitian manifold X carries a canonical spinc structure,
which comes with a spinor bundle

(2.1) S = S+ ⊕ S− where S± = Λ0,even/oddX,

and a Clifford multiplication c : T ∗X → EndC(S±,S∓), given by

(2.2) c(γ)α :=
√
2
(
γ0,1 ∧ α − ι(γ1,0)α

)
,

where ι(γ1,0) denotes contraction by γ♯0,1, the vector dual to γ
1,0 with respect

to gC. Note that

⟨γ0,1 ∧ α, β⟩ = ⟨α, ι(γ1,0)β⟩ and ⟨c(γ)α, β⟩ = −⟨α, c(γ)β⟩.

A spinc connection∇ on the spinor bundle S, induced from the Levi-Civita
connection on X and a hermitian connection on K−1

X , preserves the chiral
grading in (2.1). The induced connection∇+ on S+, together with a hermitian
connection ∇E on the vector bundle E and the Clifford multiplication, defines
the twisted Dirac operator (1.2) via the composition

(2.3) DE : Γ(S+⊗E)
∇+⊗IdE+IdS+⊗∇E

−−−−−−−−−−−−−→ Γ(T ∗X⊗S+⊗E)
c⊗IdE−−−−→ Γ(S−⊗E).

Consequently, the principal symbols of DE and its adjoint D∗
E are given by

σDE
(γ) = c(γ)⊗ IdE and σD∗

E
(γ) = −σD(γ)∗ = c(γ)⊗ IdE

for all γ ∈ T ∗X. (See, e.g., [6, 10] for more on Dirac operators.)

2.2. Conjugate-linear Hodge star operator. The conjugate-linear operator ∗̄,
which maps Λp,qX to Λn−p,n−qX, is defined by

α ∧ ∗̄(β) = ⟨α, β⟩dvg
for α, β ∈ Ωp,q(X), where dvg denotes the volume form on X. The following
lemma is a key observation in our construction.

Lemma 2.1. For any β ∈ Ω0,p(X), γ ∈ Ω1(X), and η ∈ Ωn,0(X), we
have:

(a) |η|2 ∗̄
(
γ0,1 ∧ β

)
= (−1)n(p+1)+p η ∧ ι(γ1,0)∗̄

(
η ∧ β

)
.

(b) |η|2 ∗̄
(
ι(γ1,0)β

)
= (−1)(n+1)(p−1) η ∧ γ0,1 ∧ ∗̄

(
η ∧ β

)
.



4 J. LEE

Proof. For any α ∈ Ω0,p+1X, we have:

α ∧ |η|2 ∗̄
(
γ0,1 ∧ β

)
= |η|2

〈
α, γ0,1 ∧ β

〉
dvg = |η|2

〈
ι(γ1,0)α, β

〉
dvg

=
〈
η ∧ ι(γ1,0)α, η ∧ β

〉
dvg = η ∧ ι(γ1,0)α ∧ ∗̄

(
η ∧ β

)

= (−1)p η ∧ α ∧ ι(γ1,0)∗̄
(
η ∧ β

)

= α ∧
(
(−1)n(p+1)+p η ∧ ι(γ1,0)∗̄

(
η ∧ β

))
,

where the third equality follows from the definition of the hermitian metric
on Λ∗

CX, and the sign factors follow since contraction and wedge product are
antiderivations. This implies (a). The proof of (b) is similar.

2.2.1. Rescaling. For our purposes, we rescale the operator ∗̄ as follows:

(2.4) τ := ϵk∗̄ on ΛkCX, where ϵk = ik(k−1)+n.

The unit complex number ϵk, which also appears in the context of the signa-
ture operator, plays a useful role in our construction. Observe that

(2.5) ∗̄2 = (−1)kId on ΛkCX and τ2 = (−1)nId.

The following identity is central to our construction.

Proposition 2.2. For any β ∈ Ω0,p(X), γ ∈ Ω1(X), and η ∈ Ωn,0(X),
we have

|η|2 τ ◦ c(γ)(β) = (−1)
n(n+1)

2 +1 η ∧ c(γ) ◦ τ(η ∧ β).

Proof. The proof follows from Lemma 2.1 and the identity:

ϵp+1ϵ
−1
n+p(−1)n(p+1)+p = (−1)

n(n+1)
2 = ϵp−1ϵ

−1
n+p(−1)(n+1)(p−1).

2.2.2. Adjoint. Since τ is conjugate-linear, its adjoint τ∗ is defined with
respect to the real part of the hermitian metric. By (2.5), we obtain:

Lemma 2.3. τ∗ = (−1)nτ .

Proof. For any α ∈ ΩkC(X) and β ∈ Ω2n−k
C (X), we have

⟨β, τα⟩dvg = ϵk(−1)k β ∧ α = ϵk α ∧ β = ϵk ϵ2n−k(−1)2n−k α ∧ ∗̄(τβ)
= (−1)n⟨α, τβ⟩dvg.

This shows that Re⟨τα, β⟩ = Re⟨α, (−1)nτβ⟩, and hence proves the lemma.
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2.2.3. Operator with values in E. The hermitian metric on E, still de-
noted by ⟨ , ⟩, defines a conjugate-linear isomorphism E → E∗ by ξ 7→ ξ∗ :=
⟨ , ξ⟩. This induces the map

∗̄E : Λp,qX ⊗ E∗ → Λn−p,n−qX ⊗ E

defined by ∗̄E(α⊗ ξ∗) = ∗̄(α)⊗ ξ. Now we set

τE := ϵk∗̄E on ΛkCX ⊗ E.

Note that τE(α⊗ ξ∗) = τ(α)⊗ ξ and τ∗E(α⊗ ξ) = (−1)nτ(α)⊗ ξ∗.

3. Conjugate-linear perturbations

3.1. Concentrating condition. This subsection constructs conjugate-linear per-
turbations of the twisted Dirac operator D in (2.3) that satisfy the concen-
trating condition (1.1).

Definition 3.1. Given a section φ ∈ Γ
(
KX ⊗ (E∗)2

)
, viewed as a

complex-linear bundle map φ : E → KX ⊗ E∗, we define a conjugate-linear
bundle map

Aφ : Λ0,pX ⊗ E → Λ0,n−pX ⊗ E

by the composition

Aφ : Λ0,p ⊗ E
Id⊗φ−−−→ Λ0,p ⊗KX ⊗ E∗ ∼= Λn,p ⊗ E∗ τE−−−→ Λ0,n−p ⊗ E.

Noting Aφ : S± ⊗ E → S∓ ⊗ E when dimX ≡ 2, 6 (mod 8), and using
the decomposition

E∗ ⊗ E∗ = Sym2E∗ ⊕ Λ2E∗,

we obtain concentrating pairs (σDE
, Aφ) in the sense of [4]:

Theorem 3.2. Let DE be the twisted Dirac operator in (2.3) and Aφ as

in Definition 3.1. Suppose φ ∈ Γ(KX ⊗ Sym2E∗) if dimX ≡ 2 (mod 8) and
φ ∈ Γ(KX⊗Λ2E∗) if dimX ≡ 6 (mod 8). Then Aφ satisfies the concentrating
condition

(3.1) σD∗
E
(γ) ◦Aφ +A∗

φ ◦ σDE
(γ) = 0 ∀γ ∈ T ∗X.

Proof. In unitary frames {ϕi} for E (with dual coframe {ϕi}) and η for
KX (with dual coframe η∗), the complex bundle map φ : E → KX ⊗ E∗ is
given by

(3.2) φ = φijη ⊗ ϕi ⊗ ϕj : ξ = ξkϕk 7→ φijξjη ⊗ ϕi.

It follows that for any β ⊗ ξ ∈ Γ(S+ ⊗ E) and any γ ∈ Ω1(X),

σD∗(γ) ◦Aφ(β ⊗ ξ) = (c(γ)⊗ IdE) ◦ τE
(
η ∧ β ⊗ φijξjϕ

i
)

(3.3)

= c(γ)τ(η ∧ β)⊗ φijξjϕi.
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On the other hand, since |η|2 = 1, by Lemma 2.3 and Proposition 2.2, we
have

τ∗E ◦ σD(γ)(β ⊗ ξ) = (−1)nτ(c(γ)β)⊗ ξkϕ
k(3.4)

= (−1)
n(n+1)

2 +n+1 η ∧ c(γ) ◦ τ(η ∧ β)⊗ ξkϕ
k.

Observe that the adjoint φ∗ : KX ⊗E∗ → E of the complex bundle map φ is
given by

φ∗ = φjiϕi ⊗ η∗ ⊗ ϕj : ν = νkη ⊗ ϕk 7→ φjiνjϕi.

With the canonical isomorphism Λn,pX ∼= Λ0,p ⊗KX , from (3.4) we obtain

A∗
φ ◦ σD(γ)(β ⊗ ξ)(3.5)

= (−1)
n(n+1)

2 +n+1 Id⊗ φ∗(c(γ) ◦ τ(η ∧ β)⊗ ξkη ⊗ ϕk
)

= (−1)
n(n+1)

2 +n+1 c(γ) ◦ τ(η ∧ β)⊗ φjiξjϕi.

By the assumption on φ, (3.3), and (3.5), the proof now follows from the
identity

(−1)
n(n+1)

2 +n+1 =

{
−1 if n ≡ 1 (mod 4)
1 if n ≡ 3 (mod 4)

The next two remarks are related to the motivation for our approach.

Remark 3.3. For the twisted Dirac operator DE : Γ(S+ ⊗E) → Γ(S− ⊗
E), there is no complex-linear bundle map A : S+ ⊗ E → S− ⊗ E that satis-
fies the concentrating condition (3.1). This explains why the Dolbeault and
signature operators do not admit such complex perturbations. (See Section 2
of [8].)

Remark 3.4. When dimX = 2, the manifold X is a compact complex
curve, and the operator DE =

√
2 ∂̄E : Ω0(E) → Ω0,1(E) is the usual Cauchy–

Riemann operator on E. In [3], when E is a holomorphic line bundle and
φ is a holomorphic section of KX ⊗ (E∗)2, a conjugate-linear bundle map
R : E → Λ0,1X ⊗ E is defined as the composition R = ∗̄E ◦ φ. In this case,
Aφ = iR and A∗

φ = iR∗, so our construction generalizes the conjugate-linear
bundle map R.

Indeed, Aφ = iR satisfies the following equation, which is stronger than
the concentrating condition:

D∗
E ◦Aφ +A∗

φ ◦DE = 0.

(See Lemma 2.1 of [3].) When E is a theta characteristic (i.e., E2 ∼= KX), this
implies that Aφ restricts to a conjugate-linear isomorphism kerDE → kerD∗

E ,
which leads to a proof of the Atiyah–Mumford theorem: h0(E) (= dimkerDE)
mod 2 is deformation invariant (see Section 3 of [3]).
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3.2. Concentration principle. Let DE , Aφ : Γ(S+ ⊗E) → Γ(S− ⊗E) be as in
Theorem 3.2 and consider the deformation of the twisted Dirac operator DE

given by

Ds = DE + sAφ.

The following concentration principle shows that as s→ ∞, the kernel of Ds

(as well as low eigenspaces of D∗
sDs) becomes concentrated near the singular

set

Zφ := ZAφ
= {x ∈ X : det(φx) = 0}.

Theorem 3.5. Let Ds = DE + Aφ be as above. For each δ > 0 and
C ≥ 0, there exits a constant C ′ = C ′(δ, Aφ, C) > 0 such that if ζ ∈ Γ(S+⊗E)
satisfies ||ζ||2 = 1 and ||Dsζ||22 ≤ C|s|, where || · ||2 denotes the L2-norm, then
we have ∫

X\Zφ(δ)

|ζ|2dvg < C′

|s| ,

where Zφ(δ) is the δ-neighborhood of the singular set Zφ.

Proof. Since Aφ satisfies the concentrating condition (3.1), the theorem
follows directly from Proposition 2.4 of [4].

In applying this principle, the singular set plays a crucial role. If Zφ = X,
no concentration occurs. For example, this happens when

dimX ≡ 6 (mod 8) and rank(E) is odd,

since φij = −φji in (3.2), and thus det(φij) = 0. On the other hand, when
Zφ = ∅, we have:

Corollary 3.6. Let DE and Aφ be as in Theorem 3.2. If Zφ = ∅, then
indDE = 0.

Proof. By Theorem 3.5, the singular set Zφ = ∅ implies that for suffi-
ciently large s, the operator Ds has trivial kernel. It follows that

indDE = 1
2 indRDs ≤ 0,

where the second term denotes the index of Ds as a real operator, and the
equality follows since Ds is a compact perturbation of DE . Applying the same
argument to the operator D∗

E + sAφ yields indD∗
E = −indDE ≤ 0, so the

claim follows.

3.2.1. Compact spin almost hermitan manifolds. Suppose c1(X) ≡ 0
(mod 2), so that X admits a spin structure. Fix a spin structure σ on X,
which is equivalent to choosing a square root Nσ of the canonical bundle
KX , i.e., N2

σ
∼= KX . In this case, the complex spinor bundle Sσ of the spin

structure σ is given by

Sσ = S⊗Nσ.
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Let E = Nσ⊗F , where F is a hermitian vector bundle F overX. A section
ψ ∈ Γ

(
(F ∗)2

)
induces a section φ ∈ Γ

(
KX ⊗ (E∗)2

)
via the isomorphism

(F ∗)2 ∼= KX ⊗ (E∗)2, which restricts to yield

Sym2F ∗ ∼= KX ⊗ Sym2E∗ and Λ2F ∗ ∼= KX ⊗ Λ2E∗.

When dimX ≡ 2, 6 (mod 8), we set

Aψ := Aφ : S± ⊗ E = S±σ ⊗ F → S∓ ⊗ E = S∓σ ⊗ F,

where Aφ is the conjugate-linear bundle map as in Theorem 3.2. The singular
set of this bundle map is then given by

Zψ := Zφ = {x ∈ X : det(ψx) = 0}.
Below are examples of bundle maps Aψ whose singular set Zψ = ∅.
(a) Let dimX ≡ 2 (mod 8). The following are typical examples of nonde-

generate symmetric complex bilinear forms ψ ∈ Γ(Sym2F ∗) on F :
• F = TX⊗C with ψ = gC, the complex bilinear extension of the

metric g to TX ⊗ C, or
• F = EndC(W ), where W is a hermitian vector bundle over X,

and ψ is the natural trace pairing given by ψ(A,B) = tr(A◦B).
(b) Let dimX ≡ 6 (mod 8). A complex vector bundle F is called a com-

plex symplectic vector bundle if it is equipped with a nondegenerate
skew-symmetric complex bilinear form ψ ∈ Γ(Λ2F ∗). Standard exam-
ples include:

• F = TX ⊗ C with ψ = ωC, where ωC(u, v) = gC(u, Jv), or
• F =W ⊕W ∗ with ψ defined by ψ

(
(w1, f1), (w2, f2)

)
= f2(w1)−

f1(w2).

In all of the above examples (F,ψ), the bundle map Aψ (= Aφ) satisfies the
concentrating condition, and the singular set Zψ = ∅. Hence, by Corollary 3.6,
the twisted Dirac operator

DNσ⊗F : Γ(S+σ ⊗ F ) → Γ(S−σ ⊗ F )

has index indDNσ⊗F = 0.

Remark 3.7. The vanishing of the index also follows easily from the
Atiyah-Singer index theorem:

indDNσ⊗F =

∫

X

ch(F )Â(X),

where Â(X) is a polynomial in the Pontryagin classes pk(X) = (−1)kc2k(X)
and ch(F ) is a polynomial in the even Chern classes c2ℓ(F ) (since F ∼= F ∗ as
a complex vector bundle). As 1

2 dimX is odd, there is no top-degree term in
the integrand, and therefore the integral vanishes.
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