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INDUCTION FROM TWO LINKED SEGMENTS WITH ONE
HALF BORDER AND CUSPIDAL REDUCIBILITY

Igor Ciganović

University of Zagreb, Croatia

Abstract. In this paper, we determine the composition series of the

induced representation δ([ν
1
2 ρ, νcρ]) × δ([ν−aρ, νbρ]) ⋊ σ where a, b, c ∈

Z + 1
2

such that 1
2

≤ a < b < c, ρ is an irreducible cuspidal unitary
representation of a general linear group and σ is an irreducible cuspidal

representation of a classical group such that ν
1
2 ρ ⋊ σ reduces.

1. Introduction

Parabolic induction is an important tool for constructing representations
of groups. However, problem of composition series of induced representations
is solved only in some special cases, such as [2], [7], [9], [14] and [21], and
for some low-rank groups. Motivated by simple results obtained in [3] and its
extensions in [4] and [5], here we continue this effort and calculate composition
series of certain induced representations with increased complexity, in the
sense that we have more reducibilities occuring when inducing from subsets
of starting representations.

To explain this we introduce some notation. Let F be a local non-
archimedean field of characteristic different than two, | |F its normalized
absolute value and ν = |det |F . Let ρ be an irreducible cuspidal unitary
representation of some GL(m,F ), and x, y ∈ R, such that y − x + 1 ∈ Z>0.
The set ∆ = [νxρ, νyρ] = {νxρ, ..., νyρ} is called a segment. We have a unique

2020 Mathematics Subject Classification. Primary 22D30, Secondary 22E50, 22D12,
11F85.

Key words and phrases. Classical group, composition series, induced representations,

p-adic field, Jacquet module.
This work is supported by Croatian Science Foundation under the project number

HRZZ-IP-2022-10-4615.

1



2 I. CIGANOVIĆ

irreducible subrepresentation

δ = δ(∆) = δ([νxρ, νyρ]) ↪→ νyρ× · · · × νxρ,
of the parabolically induced representation. Set e(δ) = (x + y)/2. For a
sequence of segments, such that e(δ1) ≥ · · · ≥ e(δk) > 0 and an irreducible
tempered representation τ , of a symplectic or (full) orthogonal group, denote
by

L(δ1 × · · · × δk ⋊ τ),

the Langlands quotient of the parabolically induced representation.
Now we fix ρ as above, and so we shorten the notation δ(x, y) = δ([νxρ, νyρ]).

Further, let σ be an irreducible cuspidal representation of a symplectic or (full)

orthogonal group. We assume that ν
1
2 ρ⋊ σ reduces. Let a, b, c ∈ Z+ 1

2 such

that 1
2 ≤ a < b < c. In [3], we determined composition series of induced

representation

δ(−b, c)× δ( 12 , a)⋊ σ.

We extended this results in [4] to certain induced representations of form

δ1 × · · · × δk ⋊ σ

where δi× δj and δi× δ̃j , i ̸= j, are irreducible and ˜ stands for the contragre-
dient. Loosing this condition on segments, in [5], we determined composition
series of

δ(−a, c)× δ( 12 , b)⋊ σ.

In this paper, we determine composition series of

δ( 12 , c)× δ(−a, b)⋊ σ.

Here, inducing from segments only, both representations δ( 12 , c)×δ(−a, b) and
δ( 12 , c)× δ(−a, b)̃ ∼= δ( 12 , c)× δ(−b, a) reduce.

Our main methods are Jacquet modules, Mœglin-Tadić classification of
discrete series and intertwining operators.

To describe the main result of the paper, we introduce some discrete se-
ries, appearing as only irreducible subrepresentations in the following induced
representations ( see Theorem 3.1, Proposition 3.2, Lemmas 3.4 and 3.5 and
Theorem 3.7):

σa ↪→ δ( 12 , a)⋊ σ, and similarly for σb and σc,

σ+
b,c ↪→ δ( 12 , b)⋊ σc, σ+

b,c + σ−
b,c ↪→ δ(−b, c)⋊ σ, and similarly for σ±

a,c,

σ±
b,c,a ↪→ δ( 12 , a)⋊ σ±

b,c, σ+
a,b,c + σ−

a,b,c ↪→ δ(−a, b)⋊ σc,

where σ+
a,b,c = σ+

b,c,a denotes the same representation. In terms of Mœglin-

Tadić classification ([12],[13]), where a discrete series π is described by an
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admissible triple (Jord(π), πcusp, ϵπ), we have the second parameter σ in all
our cases, and the remaining are

Jord(σa) = {(2a+ 1, ρ)} ∪ Jord(σ),
Jord(σ+

b,c) = Jord(σ−
b,c) = {(2b+ 1, ρ), (2c+ 1, ρ)} ∪ Jord(σ),

ϵσa
, ϵσ+

b,c
, and ϵσ−

b,c
extend ϵσ, such that ϵσa

(2a+ 1, ρ) = 1,

ϵσ+
b,c
(2b+ 1, ρ) = ϵσ+

b,c
(2c+ 1, ρ) = 1, ϵσ−

b,c
(2b+ 1, ρ) = ϵσ−

b,c
(2c+ 1, ρ) = −1,

Jord(σ+
b,c,a) =Jord(σ−

b,c,a) = Jord(σ−
a,b,c) =

{(2a+ 1, ρ), (2b+ 1, ρ), (2c+ 1, ρ)} ∪ Jord(σ),

ϵσ+
b,c,a

, ϵσ−
b,c,a

and ϵσ−
a,b,c

extend ϵσ such that

ϵσ+
b,c,a

(2a+ 1, ρ) = 1, ϵσ+
b,c,a

(2b+ 1, ρ) = 1, ϵσ+
b,c,a

(2c+ 1, ρ) = 1,

ϵσ−
b,c,a

(2a+ 1, ρ) = 1, ϵσ−
b,c,a

(2b+ 1, ρ) = −1, ϵσ−
b,c,a

(2c+ 1, ρ) = −1,
ϵσ−

a,b,c
(2a+ 1, ρ) = −1, ϵσ−

a,b,c
(2b+ 1, ρ) = −1, ϵσ−

a,b,c
(2c+ 1, ρ) = 1.

Now we have

Theorem. Let ψ = δ( 12 , c)× δ(−a, b)⋊ σ and define representations

W1 =σ+
b,c,a + L(δ( 12 , a)⋊ σ−

b,c),

W2 =L(δ( 12 , a)⋊ σ+
b,c) + L(δ( 12 , b)⋊ σ−

a,c) + L(δ(−b, c)⋊ σa) + L(δ(−a, b)⋊ σc),

W3 =σ−
b,c,a + σ−

a,b,c + L(δ( 12 , b)⋊ σ+
a,c) + L(δ(−a, c)⋊ σb) + L(δ(−b, c)× δ( 12 , a)⋊ σ),

W4 =L(δ( 12 , b)× δ(−a, c)⋊ σ) + L(δ( 12 , c)⋊ σ+
a,b) + L(δ( 12 , c)⋊ σ−

a,b),

W5 =L(ψ).

Then there exists a sequence {0} = V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ V4 ⊆ V5 = ψ, such
that

Vi/Vi−1
∼=Wi, i = 1, . . . , 5.

The content of the paper is as follows. After Preliminaries, we introduce
the notation in Section 3 and list some reducibility results. In Section 4
we explain an approach to decompose the induced representation were an
important part plays a kernel of certain intertwining operator. In Section 5
we provide some results on tempered representations, that are used in Section
6, when determining discrete series of the induced representations. The search
for non-tempered candidates is done by Section 7, and their multiplicities are
determined in Sections 8 and 10, while Sections 9 and 11 list composition
factors of representations that are considered. Finally, composition series of
needed kernel are provided in Section 12, while the main result is proved in
Section 13.
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2. Preliminaries

Our setting is as in [5], so we briefly recall. We fix a local non-archimedean
field F of characteristic different than two. As in [13], we fix a tower of
symplectic or orthogonal non-degenerate F vector spaces Vn, n ≥ 0 where n
is the Witt index. Denote by Gn the group of isometries of Vn. It has split
rank n. We fix the set of standard parabolic subgroups {Ps} in the usual
way and have Levi factorization Ps = MsNs. By Alg Gn we denote smooth
representations of Gn, and by Irr Gn irreducible ones. Also, for Alg we use
following subscripts to denote smooth representations with certain property:
f.l. means finite length, u unitary, and cusp cuspidal. Similarly, we also use
subscripts u and cusp for Irr.

For δi ∈ Alg GL(ni, F ), i = 1, ..., k and τ ∈ Alg Gn−m we write

δ1 × · · · × δk ⋊ τ = IndGn

Ms
(δ1 ⊗ · · · ⊗ δk ⊗ τ)

to denote the normalized parabolic induction. If σ ∈ Alg Gn we denote by
rs(σ) = rMs(σ) = JacqGn

Ms
(σ) the normalized Jacquet module of σ.

Let | |F be normalized absolute value of F and ν = |det |F . For an
irreducible cuspidal unitary representation ρ of some GL(m,F ), and x, y ∈ R,
such that y − x+ 1 ∈ Z>0, the set ∆ = [νxρ, νyρ] = {νxρ, ..., νyρ} is called a
segment. We have a unique irreducible subrepresentation

δ = δ(∆) = δ([νxρ, νyρ]) ↪→ νyρ× · · · × νxρ,

of the parabolically induced representation. For y − x + 1 ∈ Z>0 define
[νxρ, νyρ] = ∅ and δ(∅) is the irreducible representation of the trivial group.
Set e(δ) = (x + y)/2. For a sequence of non-empty segments, such that
e(δ1) ≥ · · · ≥ e(δk) > 0 and an irreducible tempered representation τ , of a
symplectic or (full) orthogonal group, denote by

L(δ1 × · · · × δk ⋊ τ),

the Langlands quotient of the parabolically induced representation.
If σ is a discrete series representation of Gn then by the Mœglin-Tadić,

now unconditional classification ([12],[13]), it is described by an admissible
triple (Jord, σcusp, ϵ).

Let R(Gn) be the free Abelian group generated by classes of irreducible
representations of Gn. Put R(G) = ⊕n≥0R(Gn). Let R+

0 (G) be a Z≥0 sub-
span of classes of irreducible representations. For π1, π2 ∈ R(G) we define
π1 ≤ π2 if π2 − π1 ∈ R+

0 (G). Similarly define R(GL) = ⊕n≥0R(GL(n, F )).
We have the map µ∗ : R(G)→ R(GL)⊗R(G) defined by

µ∗(σ) = 1⊗ σ +
n∑

k=1

s.s.(r(k)(σ)), σ ∈ R(Gn).
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where s.s. denotes the semisimplification. The following result derives from
Theorems 5.4 and 6.5 of [17], see also section 1. in [13]. They are based on
Geometrical Lemma (2.11 of [1]). We use ˜ to denote the contragredient.

Theorem 2.1. Let σ be a smooth representation of finite length a classical
group and [νxρ, νyρ] ̸= ∅ a segment. Then

µ∗(δ([νxρ, νyρ])⋊ σ) =
∑

δ′⊗σ′≤µ∗(σ)

y−x+1∑

i=0

i∑

j=0

δ([νi−yρ̃, ν−xρ̃])× δ([νy+1−jρ, νyρ])× δ′ ⊗ δ([νy+1−iρ, νy−jρ])⋊ σ′

(2.1)

Now we write some formulae for Jacquet modules. Details can be found
in [10] and corrections of typographical errors, that we state below, in the
Introduction in [11]. Let ρ be an irreducible cuspidal representations of a
general linear group, σ an irreducible cuspidal representations of a classical
group and c, d ∈ R, c+ d ∈ Z≥0. Assume that α ∈ 1

2Z≥0 is such that ναρ⋊ σ
reduces. Such α is unique and ρ is selfdual. Consider induced representation

π = δ([ν−cρ, νdρ])⋊ σ
R(G)
= δ([ν−dρ, νcρ])⋊ σ.

Three terms are defined: δ([ν−cρ, νdρ]+;σ), δ([ν
−cρ, νdρ]−;σ) and Lα(δ([ν

−cρ, νdρ]);σ).
Each of them is either an irreducible representation or zero. We have in R(G):

δ([ν−cρ, νdρ])⋊ σ =δ([ν−cρ, νdρ]+;σ) + δ([ν−cρ, νdρ]−;σ)+

Lα(δ([ν
−cρ, νdρ]);σ).

(2.2)

We have

µ∗(δ([ν−cρ, νdρ]±;σ)) =

d−1∑

i=−c−1

d∑

j=i+1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]±;σ)+

∑

−c−1≤i≤c−1

∑

i+1≤j≤c
i+j<−1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ Lα(δ([ν
i+1ρ, νjρ]);σ)

+
±α−1∑

i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

(2.3)

The above formula has corrected two typographical errors which exist in
[10]. First, the upper limit in the first sum of the second row needs to be
d− 1 (instead of c, as it is in the published version). Then, the limits of the
first sum in the third row are −c− 1 ≤ i ≤ c− 1 (instead of −c− 1 ≤ i ≤ c ;
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the index c does not give any contribution). The same corrections applies to
corresponding formulas in Corollaries 4.3, 5.4 and 6.4 of [10].

And for c < α or α ≤ c < d we have

µ∗(Lα(δ([ν
−cρ, νdρ]);σ)) =

∑

−c−1≤i≤d−1

∑

i+1≤j≤d

0≤i+j

L(δ([ν−iρ, νcρ]), δ([νj+1ρ, νdρ]))⊗ Lα(δ([ν
i+1ρ, νjρ]);σ)

+

d∑

i=α

L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ

(2.4)

Also, the above formula has corrected a typographical error existing [10]: the
limits in the first sum in the second row are −c − 1 ≤ i ≤ d − 1 (instead of
−c − 1 ≤ i ≤ d; the index d does not contribute in the formula). The same
correction applies to corresponding formulas in Corollaries 4.3, 5.4 and 6.4.
in [10].

In this paper we consider the case α = 1
2 . Subquotients of π are as follows.

If 1
2 < −c, then π is irreducible and L(δ([ν−cρ, νdρ]);σ) = π.

If −c ≤ 1
2 , then π reduces. By Lemma 3.3 of [10], π has a unique irre-

ducible subquotient that has in its minimal standard Jacquet module at least
one irreducible subquotient whose all exponents are non-negative. We denote
it by δ([ν−cρ, νdρ]+;σ).

If −c = 1
2 , then π is of length two, δ([ν−cρ, νdρ]+;σ) is a discrete series

subrepresentation and L(δ([ν−cρ, νdρ]);σ) is the Langlands quotient of π.
If −c ≤ − 1

2 , and c = d, then π is a direct sum of two tempered represen-

tations, δ([ν−cρ, νdρ]+;σ) and δ([ν
−cρ, νdρ]−;σ).

If −c ≤ − 1
2 , and c ̸= d, then π is of length three. It has two discrete series

representations, δ([ν−cρ, νdρ]+;σ) and δ([ν
−cρ, νdρ]−;σ), and L(δ([ν−cρ, νdρ]);σ)

is the Langlands quotient.

3. Notation and basic reducibilities

Now we fix the notation and write some reducibility results. Let ρ be an
irreducible unitary cuspidal representation of GL(mρ, F ) and σ an irreducible

cuspidal representation of Gn such that ν
1
2 ρ⋊ σ reduces. By Proposition 2.4

of [18] ρ is self-dual. We consider

1

2
≤ a, b, c ∈ Z+

1

2
,

that need not be fixed. If all three a, b and c appear in a formula, we have
a < b < c. If only two appear, depending on which do appear, we have a < b,
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b < c or a < c. We want to decompose the representation

ψ = δ( 12 , c)× δ(−a, b)⋊ σ.

First, using (2.2) we define:

σa = δ([ν
1
2 ρ, νaρ]+;σ), σ−

b,c = δ([ν−bρ, νcρ]−;σ), σ+
b,c = δ([ν−bρ, νcρ]+;σ),

τ+a,a = δ([ν−aρ, νaρ]+;σ), τ−a,a = δ([ν−aρ, νaρ]−;σ).

Here σa, σ
+
b,c and σ−

b,c are discrete series whose classification, in terms of

Mœglin-Tadić classification, is given by the following theorem. Further τ+a,a
and τ−a,a are irreducible tempered representations such that we have a direct
sum

δ(−a, a)⋊ σ = τ+a,a + τ−a,a
where τ+a,a is the only one that has in its minimal standard Jacquet module
at least one irreducible subquotient whose all exponents are non-negative.

Observe that by (2.3) there does exist an irreducible representation π
of Gn for some n, such that µ∗(σ+

b,c) ≥ δ( 12 , b) ⊗ π, but such representation

does not exist for σ−
b,c. Now, using (2) of Theorem 1.3 of [20], we derive the

following result from Theorem 2.3 of [14].

Theorem 3.1. With discrete series being subrepresentations, we have in
R(G)

δ([ν
1
2 ρ, νaρ])⋊ σ = σa + L(δ([ν

1
2 ρ, νaρ])⋊ σ),

δ([ν−bρ, νcρ])⋊ σ = σ+
b,c + σ−

b,c + L(δ([ν−bρ, νcρ])⋊ σ).

Here

Jord(σa) = {(2a+ 1, ρ)} ∪ Jord(σ),
Jord(σ+

b,c) = Jord(σ−
b,c) = {(2b+ 1, ρ), (2c+ 1, ρ)} ∪ Jord(σ).

Further, ϵσa , ϵσ+
b,c
, and ϵσ−

b,c
extend ϵσ, such that ϵσa

(2a+ 1, ρ) = 1, and

ϵσ+
b,c
(2b+ 1, ρ) = ϵσ+

b,c
(2c+ 1, ρ) = 1, ϵσ−

b,c
(2b+ 1, ρ) = ϵσ−

b,c
(2c+ 1, ρ) = −1.

The next proposition finishes our notation. As in Theorem 3.1, the sign
above σ should denote value ±1 of the epsilon function on Jordan blocks
corresponding to the first two indices. We add the third index, and the epsilon
function has value 1 on the block corresponding to it. The result follows from
Theorem 2.1 of [14].

Proposition 3.2. We use σ+
b,c,a = σ+

a,b,c, σ
−
b,c,a and σ−

a,b,c to denote non-

isomorphic discrete series subrepresentations, such that in R(G) we have

δ([ν−bρ, νcρ])⋊ σa = σ+
b,c,a + σ−

b,c,a + L(δ([ν−bρ, νcρ])⋊ σa),

δ(−a, b)⋊ σc = σ+
b,c,a + σ−

a,b,c + L(δ(−a, b)⋊ σc).
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These discrete series appear as subrepresentations in induced representations.
Also

Jord(σ+
b,c,a) =Jord(σ−

b,c,a) = Jord(σ−
a,b,c) =

{(2a+ 1, ρ), (2b+ 1, ρ), (2c+ 1, ρ)} ∪ Jord(σ)

and ϵσ+
b,c,a

, ϵσ−
b,c,a

and ϵσ−
a,b,c

extend ϵσ such that

ϵσ+
b,c,a

(2a+ 1, ρ) = 1, ϵσ+
b,c,a

(2b+ 1, ρ) = 1, ϵσ+
b,c,a

(2c+ 1, ρ) = 1,

ϵσ−
b,c,a

(2a+ 1, ρ) = 1, ϵσ−
b,c,a

(2b+ 1, ρ) = −1, ϵσ−
b,c,a

(2c+ 1, ρ) = −1,
ϵσ−

a,b,c
(2a+ 1, ρ) = −1, ϵσ−

a,b,c
(2b+ 1, ρ) = −1, ϵσ−

a,b,c
(2c+ 1, ρ) = 1.

Next is a consequence of Theorem 6.3 of [19], see also section 3 there.

Proposition 3.3. We have in R(G), with multiplicity one:

νaρ× · · · × ν 1
2 ⋊ σ ≥ σa.

The next lemma follows from Theorem 5.1 of [14], ii) and Lemma 5.2 of
[5].

Lemma 3.4. We have in R(G), with discrete series being a subrepresen-
tation

δ( 12 , a)⋊ σb =σ
+
a,b + L(δ( 12 , a)⋊ σb),(3.1)

δ( 12 , b)⋊ σa =σ+
a,b + L(δ(−a, b)⋊ σ) + L(δ( 12 , a)⋊ σb)

+ L(δ( 12 , b)⋊ σa).
(3.2)

By Proposition 2.4 of [3] we have

Lemma 3.5. We have in R(G)

δ( 12 , a)⋊ σ±
b,c = σ±

b,c,a + L(δ( 12 , a)⋊ σ±
b,c), so(3.3)

µ∗(σ±
b,c,a) ≥ δ( 12 , a)⊗ σ±

b,c.(3.4)

By Propositions 11.6 and 11.8 of [5] we have composition series of δ( 12 , b)×
σ±
a,c.

Lemma 3.6. Representations δ( 12 , b)× σ+
a,c and δ( 12 , b)× σ−

a,c have filtra-
tions

L(δ( 12 , a)⋊ σ+
b,c) + L(δ(−a, b)⋊ σc) ↪→δ( 12 , b)⋊ σ+

a,c/σ
+
a,b,c ↠ L(δ( 12 , b)⋊ σ+

a,c),

L(δ( 12 , a)⋊ σ−
b,c) ↪→δ( 12 , b)⋊ σ−

a,c ↠ L(δ( 12 , b)⋊ σ−
a,c).

By Propositions 3.2 of [8] and 13.7 of [5] we have

Theorem 3.7. Representation δ(−a, c)⋊ σb has a filtration

L(δ(−b, c)⋊ σa) + L(δ(−a, b)⋊ σc) ↪→ δ(−a, c)⋊ σb/σ
+
a,b,c ↠ L(δ(−a, c)⋊ σb).



TWO LINKED SEGMENTS WITH ONE HALF 9

Proof. Composition factors and discrete series being a subrepresenta-
tion follow from Propositions 3.2 of [8] and its proof. Proposition 13.7 of [5]
relies on Proposition 13.1 there, and for the sake of completness we write full
proof of the latter, obtaining both results.

We have embeddings into a multiplicity one representation (Theorem 10.3
of [5])

δ(−a, c)⋊ σb ↪→ δ( 12 , b)× δ(−a, c)⋊ σ ←↩ δ( 12 , b)× σ+
a,c

Now filtration of δ( 12 , b)×σ+
a,c (Propositions 11.6 of [5]) show that L(δ(−a, b)⋊

σc) needs quotient δ(−a, c)⋊ σb/σ
+
b,c,a to embed.

Next, consider following two compositions of an embedding and an epi-
morphism

δ(−a, c)⋊ σb ↪→ δ( 12 , c)× δ(−a,− 1
2 )⋊ σb ↠ δ( 12 , c)× σ+

a,b,

δ(−b, c)× σa/σ−
b,c,a ↪→ δ( 12 , c)× δ(−b,− 1

2 )× σa/σ−
b,c,a ↠ δ( 12 , c)× σ+

a,b.

By Lemma 9.1 of [5] and (3.4) we have δ( 12 , a)⊗L(δ(−b, c)⋊σ) ≤ µ∗(L(δ(−b, c)⋊
σa)) and δ(

1
2 , a)⊗ σ+

b,c ≤ µ∗(σ+
b,c,a) and one can check that they both appear

with multiplicity one in all representations in above two compositions. Thus
both compositions are embeddings and they induce an embedding

δ(−b, c)× σa/σ−
b,c,a ↪→ δ(−a, c)⋊ σb.

This shows that L(δ(−b, c)⋊σa) needs quotient δ(−a, c)⋊σb/σ+
b,c,a to embed.

The last two statements are Proposition 12.1 of [5] and the main result
there.

Theorem 3.8. There exists a filtration {Vi} of δ(−c, b)×δ( 12 , a)⋊σ such
that

V1 ∼= L(δ(−b, c)⋊ σa),

V2/V1 ∼= σ+
b,c,a + σ−

b,c,a + L(δ(−b, c)× δ( 12 , a)⋊ σ),

V3/V2 ∼= L(δ( 12 , a)⋊ σ+
b,c) + L(δ( 12 , a)⋊ σ−

b,c).

Theorem 3.9. There exists a filtration {Vi} of δ(−a, c)×δ( 12 , b)⋊σ such
that

V1 ∼=σ+
b,c,a + L(δ( 12 , a)⋊ σ−

b,c),

V2/V1 ∼=L(δ( 12 , a)⋊ σ+
b,c) + L(δ(−a, b)⋊ σc) + L(δ( 12 , b)⋊ σ−

a,c) + L(δ(−b, c)⋊ σa),

V3/V2 ∼=L(δ( 12 , b)⋊ σ+
a,c) + L(δ(−a, c)⋊ σb) + σ−

b,c,a + L(δ(−b, c)× δ( 12 , a)⋊ σ),

V4/V3 ∼=L(δ(−a, c)× δ( 12 , b)⋊ σ).
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4. An estimate for δ( 12 , c)× δ(−a, b)⋊ σ

We start our decomposition by considering some standard intertwining
operators.

δ( 12 , c)× δ(−a, b)⋊ σ
f1−→ δ(−a, b)× δ( 12 , c)⋊ σ

f2−→ δ(−a, b)× δ(−c,− 1
2 )⋊ σ

f3−→ δ(−c,− 1
2 )× δ(−a, b)⋊ σ

f4−→ δ(−c,− 1
2 )× δ(−b, a)⋊ σ.

For all i ≥ 1 denote Ki = Ker fi. By Theorem 3.1 and the composition series
of δ1 × δ2 we have

K1
∼= δ( 12 , b)× δ(−a, c)⋊ σ, K2

∼= δ(−a, b)⋊ σc,

K3
∼= δ(−c, b)× δ( 12 , a)⋊ σ, K4

∼= δ(−c,− 1
2 )⋊ σ+

a,b + δ(−c,− 1
2 )⋊ σ−

a,b.

We have in R(G):

δ( 12 , c)× δ(−a, b)⋊ σ = Dom(f1) = Ker(f1) + Im(f1)

= K1 +Dom(f2|Imf1) = K1 +Ker(f2|Imf1) + Im(f2|Imf1)

≤ K1 +K2 + Im(f2 ◦ f1) = K1 +K2 +Dom(f3|Im(f2◦f1))

= K1 +K2 +Ker(f3|Im(f2◦f1)) + Im(f3|Im(f2◦f1))

≤ K1 +K2 +K3 + Im(f3 ◦ f2 ◦ f1)
≤ . . . ≤ K1 +K2 +K3 +K4 + Im(f4 ◦ f3 ◦ f2 ◦ f1).

(4.1)

The Langlands quotient L(δ( 12 , c) × δ(−a, b) ⋊ σ) is the unique irreducible

quotient of δ( 12 , c)×δ(−a, b)⋊σ, and the unique irreducible subrepresentation

of δ(−c,− 1
2 )×δ(−b, a)⋊σ appearing in both representations with multiplicity

one. So in R(G): Im(f4 ◦ f3 ◦ f2 ◦ f1) ≤ L(δ( 12 , c)× δ(−a, b)⋊ σ).

We denoted ψ = δ( 12 , c)× δ(−a, b)⋊ σ and obtain the estimate, in R(G):

(4.2) ∀i Ki ≤ ψ ≤ K1 +K2 +K3 +K4 + L(ψ).

By Section 3, it remains to decompose K4 to obtain all composition factors
of ψ.

5. On some irreducible tempered repesentations

Here we provide some results that we use for multiplicities of discrete
series and their Jacquet modules in Section 6. By [6], we have decomposition
of the induced representation

δ(−a, a)⋊ σc = T+ + T−(5.1)

into a direct sum of non-equivalent tempered representations. They are im-
portant for discrete series σ±

a,b,c since by [13], see also Theorem 1.1 of [14],

there exist unique ϵ, η ∈ {±}, ϵ ̸= η, such that we have embeddings

σ+
a,b,c → δ(a+ 1, b)⋊ T ϵ, σ−

a,b,c → δ(a+ 1, b)⋊ T η.(5.2)
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Similar to Definition 4.6 of [20], we use T+ to denote the unique irreducible
subquotient such that

µ∗(T+) ≥ δ( 12 , a)× δ( 12 , a)⊗ π,

for some irreducible representation π. Use (2.1) and (2.3) to calculate

µ∗(T+) ≥ δ( 12 , a)× δ( 12 , a)⊗ σc.(5.3)

Thus

µ∗(δ(a+ 1, b)⋊ T+) ≥ δ( 12 , a)× δ( 12 , b)⊗ σc
The following lemma gives some more information.

Lemma 5.1. Writting out all irreducible subquotients of form δ( 12 , a)⊗π,
for some irreducible representation π, with maximum multiplicities, we have

µ∗(T+) ≥ δ( 12 , a)⊗ L(δ( 12 , a)⋊ σc) + 2 · δ( 12 , a)⊗ σ+
a,c,

µ∗(T−) ≥ δ( 12 , a)⊗ L(δ( 12 , a)⋊ σc).

Proof. Looking for δ( 12 , a)⊗ π in (5.1) we obtain

µ∗(δ(−a, a)⋊ σc) ≥ 2 · δ( 12 , a)⊗ δ( 12 , a)⋊ σc,

where by (3.1), in R(G): δ( 12 , a)⋊σc = σ+
a,c+L(δ(

1
2 , a)⋊σc). Since µ

∗(σ+
a,c) ≥

δ( 12 , a) ⊗ σc, transitivity of Jacquet module and (5.3) imply µ∗(T+) ≥ 2 ·
δ( 12 , a)⊗ σ+

a,c. The rest of the claim follows as

T+ + T− = δ(−a, a)⋊ σc ↪→ δ( 12 , a)× δ(−a,− 1
2 )× σc

implies µ∗(T±) ≥ δ( 12 , a) ⊗ δ(−a,− 1
2 ) ⊗ σc and µ∗(σ+

a,c) ≱ δ(−a,− 1
2 ) ⊗ σc.

Proposition 5.2. Writting with maximum multiplicities we have in R(G):

δ( 12 , c)× δ(−a, a)⋊ σ ≥ 1 · T+ + 1 · T−,(5.4)

where δ(−a, a)⋊ σc = T+ + T− and µ∗(T+) ≥ δ( 12 , a)× δ( 12 , a)⊗ σc.

Proof. Since δ(−a, a)⋊σc ≤ δ( 12 , c)×δ(−a, a)⋊σ, we look for δ( 12 , a)⊗π,
for some irreducible representation π, in µ∗(δ( 12 , c)× δ(−a, a)⋊σ) and obtain

2 · δ( 12 , a)⊗ δ( 12 , a)× δ( 12 , c)⋊ σ.

By Lemma 8.3 of [5], L(δ( 12 , a)⋊ σc) appears once in δ( 12 , a)× δ( 12 , c)⋊ σ, so
Lemma 5.1 gives (5.4).
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6. Discrete series subquotients

Here we determine discrete series subquotients in the following induced
representations

δ( 12 , c)× δ(−a, b)⋊ σ ≥ δ( 12 , c)⋊ σ+
a,b + δ( 12 , c)⋊ σ−

a,b.(6.1)

Note that by Lemma 13.4 of [5] we know σ+
b,c,a ↪→ δ( 12 , c)⋊ σ+

a,b.

Proposition 6.1. Writting all discrete series with maximum multiplici-
ties we have

δ( 12 , c)× δ(−a, b)⋊ σ ≥ 1 · σ+
b,c,a + 1 · σ−

b,c,a + 1 · σ−
a,b,c,(6.2)

δ( 12 , c)⋊ σ+
a,b ≥ 1 · σ+

b,c,a + 1 · σ−
b,c,a,(6.3)

δ( 12 , c)⋊ σ−
a,b ≥ 1 · σ−

a,b,c.(6.4)

Proof. As in Lemma 5.1 of [5], we obtain that σ+
b,c,a = σ+

a,b,c,, σ
−
b,c,a and

σ−
a,b,c are only possible discrete subquotients in all equations. Proposition 3.2

and Section 4 imply that they do appear in (6.2).
To check multiplicity one of σ±

b,c,a in (6.2), use Lemma 5.2 of [5] and (3.4)

to see multiplicity one of δ( 12 , a) ⊗ σ±
b,c in the appropriate Jacquet module.

Now, multiplicity of σ±
b,c,a is one in (6.3), by Lemma 3.4, since µ∗(σ+

a,b) ≥
δ( 12 , a)⊗ σb. Thus multiplicity of σ±

b,c,a is zero in (6.4).

To check multiplicity of σ±
a,b,c, we search for δ(a+ 1, b) ⊗ π, for some

irreducible representation π, in µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) and obtain

δ(a+ 1, b)⊗ δ( 12 , c)× δ(−a, a)⋊ σ.

Proposition 5.2 implies multiplicity one of σ±
a,b,c in (6.2). Here we had contri-

bution

µ∗(δ(−a, b)⋊ σ) ≥ δ(a+ 1, b)⊗ δ(−a, a)⋊ σ

= δ(a+ 1, b)⊗ τ+a,a + δ(a+ 1, b)⊗ τ−a,a.

Since µ∗(σ±
a,b) ≥ δ(a+ 1, b) ⊗ τ±a,a, the contribution comes from σ+

a,b + σ−
a,b.

Using δ( 12 , c)⋊ σ+
a,b ≥ σ+

b,c,a, we have δ( 12 , c)⋊ σ±
a,b ≥ σ±

a,b,c, proving (6.3) and

(6.4).

7. Non-tempered candidates

As noted in Section 4, we search for non-tempered subquotients in

δ( 12 , c)⋊ σ+
a,b and δ( 12 , c)⋊ σ−

a,b.
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Lemma 7.1. With maximum multiplicity of σ±
b,c being one, and ϵ, η ∈ {±}

we have

σϵ
b,c ≤ δ(a+ 1, c)⋊ ση

a,b ⇐⇒ ϵ = η,

σ+
b,c + σ−

b,c ≤ δ(a+ 1, c)× δ(−b, a)⋊ σ.

Proof. Denote the last representation by π. We have embeddings

σϵ
b,c → δ(−b, c)⋊ σ → π

By (2.3), δ(a+ 1, c) × δ(a+ 1, b) ⊗ τ ϵa,a appears once in µ∗(σϵ
b,c). Check the

same for µ∗(π). The first claim follows as µ∗(σϵ
a,b) ≥ δ(a+ 1, b)⊗ τ ϵa,a.

Now we determine non-tempered candidates.

Proposition 7.2. Fix ϵ = + or −. If π is a non-tempered subquotient
of δ( 12 , c)⋊ σϵ

a,b, different from its Langlands quotient, then π can be

L(δ( 12 , a)⋊ σϵ
b,c) or L(δ( 12 , b)⋊ σϵ

a,c),

and moreover if ϵ = +, then π can also be

L(δ(−a, c)⋊ σb), L(δ(−a, b)⋊ σc) or L(δ(−b, c)⋊ σa).

Proof. We use Lemma 2.2 of [14] (in terms of that lemma π ≤ δ(−l1, l2)⋊
σ, −l1 = 1

2 , l2 = c and σ = σϵ
a,b). Write π as a Langlands subrepresentation

π → δ(−α1, β1)× δ(−α2, β2)× · · · × δ(−αk, βk)⋊ πt,(7.1)

where αi, βi ∈ 1
2 + Z, i = 1, . . . , k,

−α1 + β1 ≤ −α2 + β2 ≤ · · · ≤ −αk + βk < 0,(7.2)

and πt is tempered. If k = 1 define π′ = πt. Else, if k ≥ 2, let π′ be a unique
Langlands subrepresentation

π′ ↪→ δ(−α2, β2)× · · · × δ(−αk, βk)⋊ πt.

Similarly, if π′ is not tempered, π′′ is defined. We have an embedding

(7.3) π ↪→ δ(−α1, β1)⋊ π′.

Again, if π′ is not tempered,

π′ ↪→ δ(−α2, β2)⋊ π′′.(7.4)

By the lemma, there exists an irreducible representation σ1 such that

(7.5)

{
µ∗(σϵ

a,b) ≥ δ( 12 , β1)⊗ σ1,
π′ ≤ δ(α1 + 1, c)⋊ σ1,

and we must have

(7.6) c ≥ α1 > β1 ≥ − 1
2 .

We have two possible cases:
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a) β1 = − 1
2 . Now σ1 = σϵ

a,b and

π′ ≤ δ(α1 + 1, c)⋊ σϵ
a,b.(7.7)

• Assume that π′ is tempered. By ii) of Lemma 2.2 of [14], we
have 2α1 + 1 ∈ Jordρ(σ

ϵ
a,b). So

1) α1 = a. Then

π′ ≤ δ(a+ 1, c)⋊ σϵ
a,b.

Lemma 8.1 of [13] implies π′ = σ+
b,c or σ

−
b,c. By Lemma 7.1

we have π′ ∼= σϵ
b,c. Thus π

∼= L(δ( 12 , a)⋊ σϵ
b,c).

2) α1 = b. Then π′ ≤ δ(b+ 1, c) ⋊ σϵ
a,b. Lemma 8.1 of [13]

implies π′ = σ+
a,c or σ−

a,c. By Section 8. of [20], we have

π′ = σϵ
a,c. So π

∼= L(δ( 12 , b)⋊ σϵ
a,c).

• If π′ is not tempered (k ≥ 2), by Lemma 2.2 of [14], 2β2 + 1 ∈
Jordρ(σ

ϵ
a,b) and (2β2 + 1)− = 2(β2)− + 1 ∈ Jordρ(σ

ϵ
a,b) = {2a+

1, 2b+ 1} is defined. So (β2)− = a and β2 = b. Thus, (7.4) is

π′ ↪→ δ(−α2, b)⋊ π′′.(7.8)

Further, the lemma (in terms of the lemma α1 ≤ (β2)− < β2 <
α2 ≤ l2) and (7.6) give

1
2 ≤ α1 ≤ a < b < α2 ≤ c.(7.9)

We want to determine π′′. The embedding (7.8) and (7.7) imply
δ(−α2, b)⊗ π′′ ≤ µ∗(δ(α1 + 1, c)⋊ σϵ

a,b). So there exist 0 ≤ i ≤
j ≤ c− α1 and δ′′ ⊗ σ2 ≤ µ∗(σϵ

a,b) such that
{
δ(−α2, b) ≤ δ(i− c,−α1 − 1)× δ(c+ 1− j, c)× δ′′
π′′ ≤ δ(c+ 1− i, c− j)⋊ σ2.

(7.10)

We have j = 0, i = c− α2 and thus δ′′ ∼= δ(−α1, b). Now

δ′′ ⊗ σ2 ∼= δ(−α1, b)⊗ σ2 ≤ µ∗(σϵ
a,b) ≤ µ∗(δ(−a, b)⋊ σ),(7.11)

π′′ ≤ δ(α2 + 1, c)⋊ σ2.(7.12)

Use (2.1) or (2.3) to search for σ2 in (7.11). There are two
posibilities

i) α1 = a, σ2 ∼= σ,
ii) α1 < a, σ2 ∼= δ(−a,−α1 − 1)⋊ σ.

Assume ii), the proof is similar for i). By (7.12), we have

π′′ ≤ δ(−c,−α2 − 1)× δ(−a,−α1 − 1)⋊ σ

By (7.9) and [16], [15] and [21], the induced representation is
irreducible. So α3, α4, β3 and β4 are defined (k = 4) and

−α2 + β2 = −α2 + b ≰ −c− α2 − 1 = −α3 + β3,
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contradicting (7.2).
b) β1 > − 1

2 . Then, by the lemma, 2β1+1 ∈ Jordρ(σ
ϵ
a,b) = {2a+1, 2b+1}.

Here we have two options:
• β1 = a. Then µ∗(σϵ

a,b) ≥ δ( 12 , a)⊗ σ1. Now (2.3) implies ϵ = +,

σ1 = σb and π′ ≤ δ(α1 + 1, c) ⋊ σb for some a < α1 ≤ c; α1 ∈
Z+ 1

2 . By Proposition 3.1 of [14], depending on α1, π
′ can be:

π′ ∼=





L(δ(α1 + 1, b)⋊ σc) or L(δ(α1 + 1, c)⋊ σb), a < α1 < b,

σc or L(δ(b+ 1, c)⋊ σb), α1 = b,

L(δ(α1 + 1, c)⋊ σb), b < α1 < c,

σb, α1 = b.

Assume any of the cases for which π′ ∼= L(δ(α1 + 1, c) ⋊ σb),
where a < α1 < c. Introducing Φ, we have embeddings

π ↪→ δ(−α1, a)× δ(−c,−α1 − 1)⋊ σb =: Φ,

L(δ(−a, c)⋊ σb) ↪→ δ(−c, a)⋊ σb ↪→ Φ.

By 9.1 of [21], and transitivity of Jacquet modules, for every

δ(−α1, a)⊗ δ(−c,−α1 − 1)⊗ σb ≤ µ∗(Φ)

there also exists one

δ(−c, a)⊗ σb ≤ µ∗(Φ).

It is not hard to check that the last multiplicity is one.
Thus π ∼= L(δ(−a, c) ⋊ σb), as in the case π′ ∼= σb. Other cases
similarly give π ∼= L(δ(−a, b)⋊ σc).

• β1 = b. Then µ∗(σϵ
a,b) ≥ δ( 12 , b)⊗ σ1. Now (2.3) implies ϵ = +,

σ1 = σa and π′ ≤ δ(α1 + 1, c) ⋊ σa for some b < α1 ≤ c, α1 ∈
Z+ 1

2 , which is irreducible by Proposition 3.1 of [14]. Thus

π ↪→ δ(−α1, b)× δ(−c,−α1 − 1)⋊ σa.

Similarly as above, we obtain π ∼= L(δ(−b, c)⋊ σa).

8. Non-tempered subquotients and their multiplicities

Now we show multiplicity one for non-tempered candidates from Propo-
sition 7.2.
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8.1. Multiplicity of L(δ( 12 , a)⋊ σ±
b,c).

Lemma 8.1.1. Writting with maximum multiplicity, we have in R(G):

µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) ≥ 1 · δ(−a,− 1
2 )⊗ σ±

b,c,

µ∗(δ( 12 , c)⋊ σ±
a,b) ≥ 1 · δ(−a,− 1

2 )⊗ σ±
b,c.

Proof. Looking for δ(−a,− 1
2 ) ⊗ π, for some irreducible representation

π, in µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) we obtain

δ(−a,− 1
2 )⊗ δ(a+ 1, c)× δ(−a, b)⋊ σ,

with contribution µ∗(δ(−a, b)⋊ σ) ≥ 1⊗ δ(−a, b)⋊ σ. We prove both claims
using Lemma 7.1.

Proposition 8.1.2. Writting with maximum multiplicity, we have in
R(G):

δ( 12 , c)× δ(−a, b)⋊ σ ≥ 1 · L(δ( 12 , a)⋊ σ±
b,c),

δ( 12 , c)⋊ σ±
a,b ≥ 1 · L(δ( 12 , a)⋊ σ±

b,c).

8.2. Multiplicity of L(δ( 12 , b)⋊ σ±
a,c).

Lemma 8.2.1. Writting with maximum multiplicity, we have in R(G):

1 · σ±
b,c ≤ δ(b+ 1, c)⋊ σ±

a,b,

1 · σ+
b,c + 1 · σ−

b,c ≤ δ(b+ 1, c)× δ(−a, b)⋊ σ.

Proof. This follows from Section 8. of [20] and (2.1).

Lemma 8.2.2. Writting with maximum multiplicity, we have in R(G):

µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) ≥ 1 · δ(−b,− 1
2 )⊗ σ±

a,c,

µ∗(δ( 12 , c)⋊ σ±
a,b) ≥ 1 · δ(−b,− 1

2 )⊗ σ±
a,c.

Proof. Looking for δ(−b,− 1
2 ) ⊗ π, for some irreducible representation

π, in µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) we obtain

δ(−b,− 1
2 )⊗ δ(b+ 1, c)× δ(−a, b)⋊ σ,

with contribution µ∗(δ(−a, b)⋊ σ) ≥ 1⊗ δ(−a, b)⋊ σ. We prove both claims
using Lemma 8.2.1.

Proposition 8.2.3. Writting with maximum multiplicity, we have in
R(G):

δ( 12 , c)× δ(−a, b)⋊ σ ≥ 1 · L(δ( 12 , b)⋊ σ±
a,c),

δ( 12 , c)⋊ σ±
a,b ≥ 1 · L(δ( 12 , b)⋊ σ±

a,c).
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8.3. Multiplicity of L(δ(−a, c)⋊ σb).

Lemma 8.3.1. Writting with maximum multiplicity, we have in R(G):

µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) ≥ 1 · δ(−c, a)⊗ σb,
µ∗(δ( 12 , c)⋊ σ+

a,b) ≥ 1 · δ(−c, a)⊗ σb.

Proof. Looking for δ(−c, a) ⊗ π, for some irreducible representation π,
in µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) we obtain

δ(−c,− 1
2 )× δ( 12 , a)⊗ δ( 12 , b)⋊ σ,

with contribution µ∗(δ(−a, b) ⋊ σ) ≥ δ( 12 , a) ⊗ δ( 12 , b) ⋊ σ. The first claims

followby Theorem 3.1 and the second by µ∗(σ+
a,b) ≥ δ( 12 , a)⊗ σb.

Proposition 8.3.2. Writting with maximum multiplicity, we have in
R(G):

δ( 12 , c)× δ(−a, b)⋊ σ ≥ 1 · L(δ(−a, c)⋊ σb),

δ( 12 , c)⋊ σ+
a,b ≥ 1 · L(δ(−a, c)⋊ σb).

8.4. Multiplicities of L(δ(−a, b)⋊ σc) and L(δ(−b, c)⋊ σa).

Lemma 8.4.1. Writting with maximum multiplicity, we have in R(G):

µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) ≥ 1 · δ( 12 , a)⊗ L(δ( 12 , b)⋊ σc) + 1 · δ( 12 , a)⊗ L(δ(−b, c)⋊ σ).

µ∗(δ( 12 , c)⋊ σ+
a,b) ≥ 1 · δ( 12 , a)⊗ L(δ( 12 , b)⋊ σc) + 1 · δ( 12 , a)⊗ L(δ(−b, c)⋊ σ).

Proof. Looking for δ( 12 , a)⊗π, for some irreducible representation π, in

µ∗(δ( 12 , c)× δ(−a, b)⋊ σ) we obtain

δ( 12 , a)⊗ δ( 12 , c)× δ( 12 , b)⋊ σ,

with contribution µ∗(δ(−a, b) ⋊ σ) ≥ δ( 12 , a) ⊗ δ( 12 , b) ⋊ σ. The first claims

follows by Lemmas 5.2 and 8.3 of [5] and the second by µ∗(σ+
a,b) ≥ δ( 12 , a)⊗σb.

Proposition 8.4.2. Writting with maximum multiplicity, we have in
R(G):

δ( 12 , c)× δ(−a, b)⋊ σ ≥ 1 · L(δ(−a, b)⋊ σc) + 1 · L(δ(−b, c)⋊ σa)

δ( 12 , c)⋊ σ+
a,b ≥ 1 · L(δ(−a, b)⋊ σc) + 1 · L(δ(−b, c)⋊ σa).

Proof. Both claims follow by Lemmas 8.4 and 9.1 of [5].
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9. Composition factors of δ( 12 , c)⋊ σ+
a,b and δ( 12 , c)⋊ σ−

a,b.

Here we take in consideration Propositions 6.1 and 7.2 as well as all
corollaries of Section 8 to immediately obtain composition factors of above
representations.

Theorem 9.1. We have in R(G)

δ( 12 , c)⋊ σ+
a,b =L(δ(−a, c)⋊ σb) + L(δ(−a, b)⋊ σc) + L(δ(−b, c)⋊ σa)+

L(δ( 12 , c)⋊ σ+
a,b) + L(δ( 12 , a)⋊ σ+

b,c) + L(δ( 12 , b)⋊ σ+
a,c)+

σ+
b,c,a + σ−

b,c,a,

δ( 12 , c)⋊ σ−
a,b =L(δ(

1
2 , c)⋊ σ−

a,b) + L(δ( 12 , a)⋊ σ−
b,c) + L(δ( 12 , b)⋊ σ−

a,c)+

σ−
a,b,c.

10. Multiplicity of L(δ(−b, c)× δ( 12 , a)⋊ σ)

Here we consider multiplicity of the above subquotient in δ( 12 , c)×δ(−a, b)⋊
σ, since it appears in two kernels in the decomposition in Section 4.

Lemma 10.1. We have with maximum multiplicity:

µ∗(L(δ(−b, c)× δ( 12 , a)⋊ σ)) ≥ 1 · δ(−a, b)⊗ σc
Proof. We can check multiplicity one of δ(−a, b) ⊗ σc in µ∗(δ( 12 , a) ⋊

L(δ(−b, c)⋊ σ)), using (2.4). By Corollary 4.1, we have in R(G):

δ( 12 , a)⋊ L(δ(−b, c)⋊ σ) = L(δ(−b, c)⋊ σa) + L(δ(−b, c)× δ( 12 , a)⋊ σ).

To see that δ(−a, b) ⊗ σc ≰ µ∗(L(δ(−b, c) ⋊ σa)), check multiplicity one

of δ(−a, b)⊗ σc in δ(−b, c)⋊ σa and observe that it comes from σ+
a,b,c.

Using (2.1) and (2.3), it is not hard to check the following

Lemma 10.2. We have with maximum multiplicity:

µ∗(δ(−b, c)× δ( 12 , a)⋊ σ)) ≥ 2 · δ(−a, b)⊗ σc,(10.1)

µ∗(δ(−a, c)× δ( 12 , b)⋊ σ)) ≥ 2 · δ(−a, b)⊗ σc,(10.2)

µ∗(δ(−a, b)× δ( 12 , c)⋊ σ)) ≥ 4 · δ(−a, b)⊗ σc,(10.3)

µ∗(δ( 12 , c)⋊ σ+
a,b) ≥ 2 · δ(−a, b)⊗ σc,(10.4)

Lemma 10.3. We have with maximum multiplicity:

µ∗(L(δ( 12 , c)⋊ σ+
a,b)) ≥ 1 · δ(−a, b)⊗ σc

Proof. By Proposition 9.1 and Theorem 3.9 all irreducible subquotients
of δ( 12 , c)⋊σ

+
a,b, except L(δ(

1
2 , c)⋊σ

+
a,b) and σ

−
a,b,c, are contained in δ(−a, c)×

δ( 12 , b) ⋊ σ. Now (10.2) and (10.4) imply the claim, since exactly σ+
a,b,c and,
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by Lemma 10.1, L(δ(−b, c) × δ( 12 , a) ⋊ σ) ≰ δ( 12 , c) ⋊ σ+
a,b contribute with

δ(−a, b)⊗ σc in µ∗(δ(−a, c)× δ( 12 , b)⋊ σ).

Using (10.4) and Lemmas 10.1 and 10.3 have

Lemma 10.4. Let π be an irreducible subquotient of δ( 12 , c)× δ(−a, b)⋊σ.
Then µ∗(π) ≥ δ(−a, b)⊗ σc if and only if π is one of the following

σ+
a,b,c, σ−

a,b,c, L(δ(−b, c)× δ( 12 , a)⋊ σ), L(δ( 12 , c)⋊ σ+
a,b).

Proposition 10.5. We have in R(G) with maximum multiplicity

δ( 12 , c)× δ(−a, b)⋊ σ ≥ 1 · L(δ(−b, c)× δ( 12 , a)⋊ σ)

Proof. Follows directly from (10.3) and Lemma 10.4

11. Composition factors of δ( 12 , c)× δ(−a, b)⋊ σ and the first
filtration

Finally we determine composition factors of the induced representation.

Theorem 11.1. We have in R(G)

δ( 12 , c)× δ(−a, b)⋊ σ =L(δ( 12 , a)× δ(−b, c)⋊ σ)+

L(δ( 12 , b)× δ(−a, c)⋊ σ)+

L(δ( 12 , c)× δ(−a, b)⋊ σ)

+

L(δ(−a, c)⋊ σb) + L(δ(−a, b)⋊ σc) + L(δ(−b, c)⋊ σa)

+

L(δ( 12 , a)⋊ σ+
b,c) + L(δ( 12 , b)⋊ σ+

a,c) + L(δ( 12 , c)⋊ σ+
a,b)+

L(δ( 12 , a)⋊ σ−
b,c) + L(δ( 12 , b)⋊ σ−

a,c) + L(δ( 12 , c)⋊ σ−
a,b)

+

σ+
a,b,c + σ−

a,b,c + σ−
b,c,a.

Proof. Theorems 3.7, 3.8, 3.9 and 9.1 describe kernels Ki in (4.2), and
thus determine all composition factors. Multiplicity one for discrete series is
proved in Propostiton 6.1. For the other subquotients, appearing in two or
more kernels Ki, multiplicity one is proved in Propostions 8.1.2, 8.2.3, 8.3.2,
8.4.2 and 10.5.

For the sake of the completeness, we say here some more information
about kernels from Section 4. Using notation there, let us denote

k1 = K1, ki = Ki ∩ Im(fi−1 ◦ · · · ◦ f1), i = 2, 3, 4.
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Lemma 11.2. We have

k2 ∼= σ−
a,b,c, k3 ∼= {0}, k4 ∼= L(δ( 12 , c)⋊ σ+

a,b) + L(δ( 12 , c)⋊ σ−
a,b).

Proof. Theorem 3.9 gives composition series of K1. Proposition 3.2 and
Theorems 3.8, 9.1 and 11.1 give composition factors of K2, K3, K4 and ψ.
All factors of K2, except σ

−
a,b,c, are in K1 giving the first equation. All factors

in K3 are in either K1 or K2, giving the second equation. Similarly goes for
the last equation.

This gives us a filtration of ψ, but in Section 13 we obtain a more precise
result.

Corollary 11.3. There exists a filtration {Vi} of δ( 12 , c)× δ(−a, b)⋊ σ
such that

V1 ∼=σ+
b,c,a + L(δ( 12 , a)⋊ σ−

b,c),

V2/V1 ∼=L(δ( 12 , a)⋊ σ+
b,c) + L(δ(−a, b)⋊ σc) + L(δ( 12 , b)⋊ σ−

a,c) + L(δ(−b, c)⋊ σa),

V3/V2 ∼=L(δ( 12 , b)⋊ σ+
a,c) + L(δ(−a, c)⋊ σb) + σ−

b,c,a + L(δ(−b, c)× δ( 12 , a)⋊ σ),

V4/V3 ∼=L(δ(−a, c)× δ( 12 , b)⋊ σ),

V5/V4 ∼=σ−
a,b,c,

V6/V5 ∼=L(δ( 12 , c)⋊ σ+
a,b) + L(δ( 12 , c)⋊ σ−

a,b).

12. Composition series of δ( 12 , c)⋊ σ+
a,b and δ( 12 , c)⋊ σ−

a,b.

Here we determine composition series of kernel K4 from Section 4.

Theorem 12.1. There exists a filtration {Vi} of δ( 12 , c)⋊ σ+
a,b where

V1 =σ+
b,c,a,

V2/V1 ∼=L(δ( 12 , a)⋊ σ+
b,c) + L(δ(−a, b)⋊ σc) + L(δ(−b, c)⋊ σa),

V3/V2 ∼=L(δ( 12 , b)⋊ σ+
a,c) + L(δ(−a, c)⋊ σb) + σ−

b,c,a,

V4/V3 ∼=L(δ( 12 , c)⋊ σ+
a,b).

Proof. By Theorem 11.1 we have multiplicity one representations:

δ( 12 , c)⋊ σ+
a,b ↪→ δ( 12 , c)× δ(−a, b)⋊ σ ←↩ δ( 12 , b)× δ(−a, c)⋊ σ.

By Theorems 3.9 and 9.1 all irreducible subquotents of δ( 12 , c)⋊σ
+
a,b, except its

Langlands quotient, appear as irreducible subquotients in δ( 12 , b)× δ(−a, c)⋊
σ. We conclude that the unique maximal submodule M of δ( 12 , c) ⋊ σ+

a,b

is isomorphic to a subrepresentation of δ( 12 , b) × δ(−a, c) ⋊ σ. Further, by

filtrations of δ( 12 , b) × δ(−a, c) ⋊ σ (Theorem 14.1 of [5]) and δ( 12 , b) ⋊ σ−
a,c

(Proposition 10.2. of [5]) we have

M ↪→ δ( 12 , b)× δ(−a, c)⋊ σ/δ( 12 , b)⋊ σ−
a,c
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and the claim follows.

Now we consider composition series of δ( 12 , c) ⋊ σ−
a,b. First we need a

lemma.

Lemma 12.2. We have an embedding

(12.1) δ( 12 , b)⋊ σ−
a,c ↪→ δ( 12 , c)⋊ σ−

a,b.

Proof. By Theorem 11.1 we have multiplicity one representations:

δ( 12 , b)⋊ σ−
a,c ↪→ δ( 12 , b)× δ(−a, c)⋊ σ

↪→ δ( 12 , c)× δ(−a, b)⋊ σ ←↩ δ( 12 , c)⋊ σ−
a,b.

By Lemma 3.6 and Theorem 9.1, all irreducible subquotients of δ( 12 , b)⋊ σ−
a,c

appear in composition factors of δ( 12 , c)⋊ σ−
a,b, and the claim follows.

By Lemmas 3.6 and 12.2 we have composition series

Theorem 12.3. There exists a filtration {Vi} of δ( 12 , c)⋊ σ−
a,b where

V1 ∼= L(δ( 12 , a)⋊ σ−
b,c), V2/V1 ∼= L(δ( 12 , b)⋊ σ−

a,c),

V3/V2 ∼= σ−
a,b,c, V4/V3 ∼= L(δ( 12 , c)⋊ σ−

a,b).

13. Composition series of δ( 12 , c)× δ(−a, b)⋊ σ

Now we have the main result.

Theorem 13.1. Let ψ = δ( 12 , c)× δ(−a, b)⋊σ and define representations

W1 =σ+
b,c,a + L(δ( 12 , a)⋊ σ−

b,c),

W2 =L(δ( 12 , a)⋊ σ+
b,c) + L(δ( 12 , b)⋊ σ−

a,c) + L(δ(−b, c)⋊ σa) + L(δ(−a, b)⋊ σc),

W3 =σ−
b,c,a + σ−

a,b,c + L(δ( 12 , b)⋊ σ+
a,c) + L(δ(−a, c)⋊ σb) + L(δ(−b, c)× δ( 12 , a)⋊ σ),

W4 =L(δ( 12 , b)× δ(−a, c)⋊ σ) + L(δ( 12 , c)⋊ σ+
a,b) + L(δ( 12 , c)⋊ σ−

a,b),

W5 =L(ψ).

Then there exists a sequence {0} = V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ V4 ⊆ V5 = ψ, such
that

Vi/Vi−1
∼=Wi, i = 1, . . . , 5.

Proof. Since

δ( 12 , b)× δ(−a, c)⋊ σ ↪→ ψ,

its filtration, Theorem 3.9, implies the existence of V1 and V2. Additionaly,
composition factors of δ( 12 , c) ⋊ σ−

a,b, Theorem 9.1, and δ( 12 , c) ⋊ σ−
a,b ↪→ ψ

imply

σ−
a,b,c ↪→ ψ/V2 ←↩ δ( 12 , b)× δ(−a, c)⋊ σ/V2.
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This shows W3 ↪→ ψ/V2 proving existence of V3. Finally, Theorems 3.9, 9.1
and

δ( 12 , c)⋊ σ±
a,b ↪→ ψ ←↩ δ( 12 , b)× δ(−a, c)⋊ σ.

show W4 ↪→ ψ/V3, proving existence of V4.
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[7] Y. Kim, B. Liu, and I. Matić, Degenerate principal series for classical and odd GSpin

groups in the general case, Represent. Theory 24 (2020), 403–434.
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