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Abstract. In a recent preprint entitled “Holomorphy of Eisenstein
series – a new method and applications in the case of the general linear

group”, the author has developed a new method for proving holomorphy

of degenerate Eisenstein series, based on the Franke filtration of spaces
of automorphic forms. In this paper, the method is applied in the case of

degenerate Eisenstein series on the symplectic group of rank two. Although
the analytic properties of Eisenstein series in that case are already known,

the goal is to exhibit the method in a simple setting, in which all additional

technical details are peeled off.

1. Introduction

The goal of this short note is to exhibit the strength and scope of the new
method for proving holomorphy of degenerate Eisenstein series, developed by
the author in [6], in a setting as simple as possible. For that purpose we
consider the Eisenstein series on the symplectic group of rank two. In the
case of the symplectic group of rank two, the poles of Eisenstein series are
completely understood and described in the work of Hanzer and Muić [7].
Therefore, we claim no novelty of the results in this paper, except for the
application and presentation of the new method [6].

The development of the method was motivated by the work of Ginzburg
and Soudry [4], and the work of Hanzer and Muić [8], who studied the degen-
erate Eisenstein series on the general linear group by very different methods.
Our method relies on the Franke filtration of spaces of automorphic forms.
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These filtrations are already completely described in [5] in the case of the
symplectic group of rank two. The residual spectra of the symplectic group of
rank two, and of the Levi factors of all of its proper parabolic subgroups, are
determined, cf. [9], [11]. This makes the symplectic group of rank two a per-
fect setting for the presentation of the new method for proving holomorphy of
Eisenstein series. All the technical additional details are already known from
the previous work, so that the method can be described and applied in its
bare core form with all the technical additional details peeled off.

However, we should be very careful not to fall in the trap of making a
circular argument. The point is that in constructing the Franke filtration, we
require some information on the analytic properties of Eisenstein series. On
the other hand, we intend to use the Franke filtration to prove holomorphy of
Eisenstein series. This seems as a circular argument, and we now make clear
what is the precise problem we address.

Problem 1.1. Assume that the residual spectrum of the group under con-
sideration and all the Levi factors of its proper parabolic subgroups are under-
stood in terms of induced representations, that is, in terms of the cuspidal
support. Under this assumption determine the regions of holomorphy of (de-
generate) Eisenstein series on the group under consideration.

In this paper, we solve this problem in the case of the symplectic group of
rank two using our method for proving holomorphy of Eisenstein series based
on the Franke filtration of spaces of automorphic forms [6]. We emphasize
that the Franke filtration obtained in [5] in the case of the symplectic group
of rank two is constructed using only the information on the residual spectrum
that are assumed in the statement of the problem above.

Our method of [6] is based on the construction of the Franke filtration,
cf. [2], [3]. Given a degenerate Eisenstein series associated with a residual
representation of a Levi factor, and the evaluation point in the closure of the
positive Weyl chamber, its cuspidal support can be determined. In the Franke
filtration of the space of automorphic forms with that fixed cuspidal support,
the given Eisenstein series contributes to some quotient of the filtration. The
key observation is that, if the given Eisenstein series is not holomorphic at
the given evaluation point, then it cannot contribute to the deepest quotient
of the filtration, that is, the quotient which is a subrepresentation of the
space of automorphic forms with the fixed cuspidal support. This observation
is a consequence of the fact that, by the very construction of the Franke
filtration, the coefficients in the principal part of the Laurent expansion of
the Eisenstein series around the pole must belong to a deeper quotient of
the filtration than the Eisenstein series itself. See [2], [3, Sect. 1.4], [6] for
more details. In summary, if we can show that the given Eisenstein series
evaluated at the given evaluation point contributes to the deepest quotient of
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the Franke filtration of the appropriate space of automorphic forms, then we
may conclude that it is holomorphic at the given evaluation point.

Since the paper is intended to serve as a short note presenting the new
method, we often omit details of the notation and basic notions, and refer to
[5] and [6] for details. In these references all the necessary prerequisites are
carefully introduced, and we make sure to use here exactly the same notation.

The paper is structured as follows. In Section 2 we briefly review the
necessary preliminaries, although for details the reader should consult the ref-
erences therein. Section 3 deals with the degenerate Eisenstein series arising
from residual representations of the Siegel parabolic subgroup, while Section
4 considers those arising from the non-Siegel parabolic subgroup of the sym-
plectic group of rank two. In Section 5, we summarize the most interesting
findings.

2. Brief review of the preliminaries

In this section we briefly recall the notation regarding the symplectic
group of rank two, automorphic forms and representations, and Eisenstein
series, required for the rest of the paper. For details, we refer to [5] or the
standard references mentioned below.

Let F be an algebraic number field with the ring of adèles A, and the
group of idèles I. Let G = Sp2 be the symplectic group of rank two defined
over F . The fixed choice of a Borel subgroup of G is denoted by B, and a
maximal split torus in B by T . The Siegel parabolic subgroup refers to the
standard parabolic subgroup P1 with the Levi factor L1 isomorphic to GL2.
Its Levi decomposition is P1 = L1N1, where N1 is the unipotent radical. The
non-Siegel parabolic subgroup, also called the Heisenberg parabolic subgroup,
refers to the standard parabolic subgroup P2 with the Levi factor L2 isomor-
phic to GL1 × SL2. Its Levi decomposition is P2 = L2N2, where N2 is the
unipotent radical.

Automorphic forms on the adèlic group G(A) are defined as in Borel–
Jacquet [1]. By definition, besides other requirements, these are K-finite,
where K is a fixed maximal compact subgroup of G(A). However, the K-
finiteness is not preserved under the action of G(A) by right translations.
Therefore, the considered spaces of automorphic forms on G(A) are not rep-
resentations of the full group G(A). The problem is at the archimedean places
of F , at which only the structure of a Harish-Chandra module is present. Nev-
ertheless, we always refer to these spaces as automorphic representations of
G(A), as usual in the theory of automorphic forms, cf. [1, Sect. 4.6].

The discrete spectrum of G(A) is the discrete part in the spectral decom-
position of the L2-space of (classes of) square-integrable measurable functions
on G(F )\G(A) with respect to a Haar measure. The discrete spectrum auto-
morphic representations of G(A) are the automorphic representations, in the
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sense as above, of G(A) on the space of smooth K-finite functions in irre-
ducible summands in the spectral decomposition of the discrete spectrum of
G(A).

An automorphic form on G(A) is called cuspidal if its constant terms
vanish along all proper parabolic subgroups of G. Cuspidal automorphic
representations of G(A) refer to those discrete spectrum representations of
G(A) that consist of cuspidal automorphic forms. The non-cuspidal discrete
spectrum representations of G(A) are referred to as residual automorphic
representations of G(A). The latter form the so-called residual spectrum of
G(A).

All these notions related to automorphic forms can also be formulated
for the Levi factors of G, but we omit the details. Given an automorhic
representation Π in the discrete spectrum of the Levi factor L(A) of one of
the three proper standard parabolic subgroups of G, the Eisenstein series
associated with Π is denoted by E(f, s) and defined as in [5, Sect. 3.2], [3],
viewed as a function of g ∈ G(A), where s is the complex parameter, and
f is a function in the space WΠ associated with Π. For the details of the
definition and the fundamental properties of Eisenstein series, see the standard
references [13], [12].

Let {P} denote the associate class of proper parabolic subgroups of G
represented by a standard proper parabolic subgroup P , that is, P is one
of the parabolic subgroups B, P1, P2. Let φ(π) be an associate class of
twisted cuspidal automorphic representations of the Levi factors of elements
of {P}, represented by a representation π of the Levi factor L(A) of P . Then,
A{P},φ(π) is defined as the space of all automorphic forms on G(A) with the
cuspidal support in the associate class φ(π), cf. [13], [3] for a precise definition.

3. Degenerate Eisenstein series on the Siegel parabolic
subgroup

The Levi factor L1 of the Siegel parabolic subgroup P1 is isomorphic to
GL2. The residual spectrum of GL2(A) consists of characters Π = χ ◦ det,
where χ ranges over unitary Hecke characters χ of the group of idèles I, cf. [5,
Sect. 6.1]. The cuspidal support of Π is represented by the character

χ| · |1/2 ⊗ χ| · |−1/2,

of GL1(A)×GL1(A) ∼= I× I, where | · | is the usual adèlic absolute value.
Hence, all degenerate Eisenstein series associated with the Siegel parabolic

subgroup arise from residual representations Π as above viewed as represen-
tations of the Levi factor L1(A). We denote these Eisenstein series by E(f, s),
where s is the complex parameter, and f is a function in the space WΠ asso-
ciated with Π as in [5, Sect. 3.2]. More precisely, WΠ is the space of K-finite
smooth complex functions f on L1(F )N1(A)\G(A) such that the function on
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L1(A) given by the assignment l 7→ f(lg) belongs to the space of Π for all
g ∈ G(A).

The space of complex parameters is one-dimensional, identified with char-
acters of L1(A) ∼= GL2(A) by the assignment

s 7→ | det |s,
for s ∈ C. As explained in [10, p. 121], see also [5, Sect. 3.1], we may and
will normalize the representations in such a way that the possible poles of
Eisenstein series are real. On the other hand, our method is applicable only
for values of complex parameters in the closure of the positive Weyl chamber,
which is in this case given by the condition Re(s) ≥ 0. Hence, in the theorem
below, we only consider values of the complex parameter s = s0 that are real
and s0 ≥ 0.

Theorem 3.1. Let Π = χ ◦det be a character of the Levi factor L1(A) of
the Siegel parabolic subgroup P1 of G, where χ is a unitary Hecke character of
the group of idèles I. Let E(f, s) be the degenerate Eisenstein series associated
with Π. Then, E(f, s) is holomorphic at s = s0 in the following cases:

• s0 ≥ 0 and s0 6= 3/2, 1/2,
• s0 = 3/2 and χ 6= 1,
• s0 = 1/2 and χ2 6= 1,

where 1 is the trivial character of I.

Proof. The cuspidal support of the Eisenstein series E(f, s) evaluated
at s = s0 is represented by the character

χ| · |s0+1/2 ⊗ χ| · |s0−1/2

of T (A). This follows from the cuspidal support of Π = χ ◦ det given above.
However, in [5], we always choose the representative of the cuspidal support
in such a way that the complex parameter belongs to the closure of the pos-
itive Weyl chamber determined by B. This requirement is equivalent to the
inequality

s0 + 1/2 ≥ s0 − 1/2 ≥ 0,

which is satisfied only if s0 ≥ 1/2. Hence, if 0 ≤ s0 < 1/2 we conjugate the
representative above by the element of the Weyl group of G with respect to T
that takes the inverse of the second factor in the tensor product. As a result,
we make the following choice of the representative

π =

{
χ| · |s0+1/2 ⊗ χ| · |s0−1/2, if s0 ≥ 1/2,
χ| · |s0+1/2 ⊗ χ−1| · |1/2−s0 , if 0 ≤ s0 < 1/2,

and consider the space A{B},φ(π) of automorphic forms with cuspidal support
represented by π, as in [5, Sect. 3.3].

In the construction of the Franke filtration of A{B},φ(π), the Eisenstein
series E(f, s) evaluated at s = s0 is obtained from the triple (P1, χ ◦ det, s0),
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cf. [5, Sect. 4.2]. As explained above, our method would imply holomorphy
at s = s0, if E(f, s) contributed to the deepest quotient of the filtration,
or equivalently, if this triple were a maximal element in the partial order
introduced by Franke, cf. [5, Sect. 4.2]. This can be read off from the proofs
of the appropriate theorems in [5, Sect. 7.2, Sect. 8.2]. In the notation of
loc. cit., the representative of the cuspidal support is the character

π = χ1| · |s0,1 ⊗ χ2| · |s0,2 ,

of T (A), where χ1 and χ2 are unitary Hecke characters, and s0,1 ≥ s0,2 ≥ 0
are real numbers. Hence, in our case we have

• χ1 = χ2 = χ and s0,1 = s0 + 1/2, s0,2 = s0 − 1/2, if s0 ≥ 1/2,

• χ1 = χ−1
2 = χ and s0,1 = s0 + 1/2, s0,2 = 1/2− s0, if 0 ≤ s0 < 1/2,

and look at Thm. 7.2 (Case 1–1c), Thm. 7.4 (Case 1–3b), Thm. 7.6 (Cases 2d,
2e, 2f, 2g) and Thm. 7.7 (Cases 4d, 4f, 4h, 4j, 4k) of [5], and the corresponding
steps in the proof, namely, Step 2, Step 4, Step 6, Step 9, Step 11. We refer
to these steps in the rest of the proof below.

More precisely, if s0 6= 3/2, 1/2, 0, then it follows from Step 2.2 and Step
4.2 that the triple (P1, χ◦det, s0) is maximal for every unitary Hecke character
χ, and thus E(f, s) is holomorphic at s = s0. The same conclusion in the case
of s0 = 0 follows from Steps 11.3 and 11.4. Thus, the first claim is proved.

Let now s0 = 3/2. Step 6.2 implies that (P1, χ ◦ det, 3/2) is maximal if
χ 6= 1, and thus, E(f, s) is holomorphic at s = 3/2 if χ 6= 1. We remark that
in the case of the trivial character χ = 1, the triple (P1,1 ◦ det, 3/2) is not
a maximal element in the partial order, as obtained in Step 6.4, so that our
method does not apply.

Finally, let s0 = 1/2. If χ2 6= 1, then Step 9.3 implies that the triple
(P1, χ◦det, 1/2) is a maximal element. Thus, E(f, s) is holomorphic at s = 1/2
if χ2 6= 1. We again remark that in the case of χ2 = 1 our method does not
apply, because (P1, χ ◦ det, 1/2) is not a maximal element in the partial order
according to Steps 9.7 and 9.8.

4. Degenerate Eisenstein series on the non-Siegel parabolic
subgroup

In this section we follow closely the exposition of the previous Section
3. The Levi factor L2 of the non-Siegel parabolic subgroup P2 is isomorphic
to GL1 × SL2. The residual spectrum of SL2(A) consists only of constants,
that is, only the trivial character 1SL2(A) belongs to the residual spectrum
of SL2(A), cf. [5, Sect. 6.1]. Hence, all residual representations of the Levi
factor L2(A) are of the form

Π = χ⊗ 1SL2(A),
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where χ is a unitary Hecke character of GL1(A) ∼= I. The cuspidal support of
Π is represented by the character

χ⊗ | · |,
of GL1(A) × GL1(A) ∼= I × I, where | · | stands for the usual adèlic absolute
value.

Hence, all degenerate Eisenstein series associated with the non-Siegel par-
abolic subgroup arise from residual representations Π as above viewed as rep-
resentations of the Levi factor L2(A). We denote these Eisenstein series by
E(f, s), where s is the complex parameter, and f is a function in the space
WΠ associated with Π as in [5, Sect. 3.2]. In analogy with Section 3, here WΠ

is the space of K-finite smooth complex functions f on L2(F )N2(A)\G(A)
such that the function on L2(A) given by the assignment l 7→ f(lg) belongs
to the space of Π for all g ∈ G(A).

The space of complex parameters is one-dimensional, identified with char-
acters of L2(A) ∼= GL1(A)× SL2(A) by the assignment

s 7→ | · |s ⊗ 1SL2(A),

for s ∈ C. As explained above in Section 3, the representations are normalized
in such a way that the possible poles of Eisenstein series are real. On the other
hand, the closure of the positive Weyl chamber is in this case again given by
the condition Re(s) ≥ 0. Hence, in the theorem below, we only consider
values of the complex parameter s = s0 that are real and s0 ≥ 0.

Theorem 4.1. Let Π = χ ⊗ 1SL2(A) be a character of the Levi factor
L2(A) of the non-Siegel parabolic subgroup P2 of G, where χ is a unitary
Hecke character of the group of idèles I, and 1SL2(A) is the trivial character
of SL2(A). Let E(f, s) be the degenerate Eisenstein series associated with Π.
Then, E(f, s) is holomorphic at s = s0 in the following cases:

• s0 ≥ 0 and s0 6= 2,
• s0 = 2 and χ 6= 1,

where 1 is the trivial character of I.

Proof. The cuspidal support of the Eisenstein series E(f, s) evaluated
at s = s0 is represented by the character

χ| · |s0 ⊗ | · |
of T (A). This follows from the cuspidal support of Π = χ ⊗ 1SL2(A) given
above. However, in [5], we always choose the representative of the cuspidal
support in such a way that the complex parameter belongs to the closure of
the positive Weyl chamber. This requirement is equivalent to the inequality

s0 ≥ 1 ≥ 0,
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which is satisfied only if s0 ≥ 1. Hence, if 0 ≤ s0 < 1 we conjugate the rep-
resentative above by the Weyl group element that flips the two factors in the
tensor product. As a result, we make the following choice of the representative

π =

{
χ| · |s0 ⊗ | · |, if s0 ≥ 1,
| · | ⊗ χ| · |s0 , if 0 ≤ s0 < 1,

and consider the space A{B},φ(π) of automorphic forms with cuspidal support
represented by π, as in [5, Sect. 3.3].

In the construction of the Franke filtration of A{B},φ(π), the Eisenstein se-
ries E(f, s) evaluated at s = s0 is obtained from the triple (P2, χ⊗1SL2(A), s0),
cf. [5, Sect. 4.2]. As explained above, our method would imply holomorphy
at s = s0, if E(f, s) contributed to the deepest quotient of the filtration, or
equivalently, if this triple were a maximal element in the partial order intro-
duced by Franke, cf. [5, Sect. 4.2]. This can be read off from the proofs of the
appropriate theorems in [5, Sect. 7.2, Sect. 8.2]. In the notation of loc. cit.,
the representative of the cuspidal support is the character

π = χ1| · |s0,1 ⊗ χ2| · |s0,2 ,
of T (A), where χ1 and χ2 are unitary Hecke characters, and s0,1 ≥ s0,2 ≥ 0
are real numbers. Hence, in our case we have

• χ1 = χ, χ2 = 1, and s0,1 = s0, s0,2 = 1, if s0 ≥ 1,
• χ1 = 1, χ2 = χ, and s0,1 = 1, s0,2 = s0, if 0 ≤ s0 < 1,

and look at Thm. 7.3 (Case 1–2c), Thm. 7.5 (Cases 1–4c and 1–4d) and
Thm. 7.7 (Cases 4e, 4g, 4i, 4j, 4k) of [5], and the corresponding steps in the
proof, namely, Step 3, Step 5, Step 6, Step 9, Step 10. We refer to these steps
in the rest of the proof below.

If s0 6= 2, 1, 0, then it follows from Step 3.2 and Step 5.2 that the triple
(P2, χ⊗1SL2(A), s0) is maximal for every unitary Hecke character χ, and thus
E(f, s) is holomorphic at s = s0. The same conclusion in the case of s0 = 1
follows from Steps 10.3 and 10.4, and in the case of s0 = 0 from Steps 9.5, 9.6
and 9.8. Thus, the first claim of the theorem is proved.

Let now s0 = 2. Step 6.3 implies that (P2, χ ⊗ 1SL2(A), 2) is maximal if
χ 6= 1, and thus, E(f, s) is holomorphic at s = 2 if χ 6= 1. We remark that
in the case of the trivial character χ = 1, the triple (P2,1⊗ 1SL2(A), 2) is not
a maximal element in the partial order, as obtained in Step 6.4, so that our
method does not apply.

5. Final remarks

As already mentioned in the proofs of Theorem 3.1 and Theorem 4.1, our
method is not applicable whenever the triple associated with the considered
Eisenstein series is not a maximal element in the partial order required for the
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construction of the Franke filtration. In the theorems these are precisely the
cases in which the holomorphy of the Eisenstein series could not have been
concluded. From the results of Hanzer and Muić [7], we can observe that my
method is sharp in the case of the symplectic group of rank two, that is, the
remaining points are precisely the poles of the degenerate Eisenstein series in
question.

From the point of view of our method and the Franke filtration, the most
interesting phenomenon occurs for the degenerate Eisenstein series associated
with the residual representation 1 ◦ det of the Levi factor L1(A) ∼= GL2(A) of
P1 evaluated at s = 1/2, and the degenerate Eisenstein series associated with
the residual representation 1⊗ 1SL2(A) of the Levi factor L2(A) ∼= GL1(A)×
SL2(A) of P2 evaluated at s = 0. Denote the former Eisenstein series by
E1(f, s), and the latter by E2(f, s). These two Eisenstein series, evaluated at
the given evaluation points, share the same cuspidal support represented by
the character

π = | · | ⊗ 1

of T (A), and thus both contribute to the Franke filtration of the space of
automorphic forms A{B},φ(π). However, E2(f, s) is holomorphic at s = 0, as
we obtained in Theorem 4.1, although observe that this is already well-known
since s = 0 is on the imaginary axis, cf. [12]. For the other Eisenstein series
E1(f, s), evaluated at s = 1/2, our method does not apply. The problem is
exactly the triple associated with E2(f, s) evaluated at s = 0, which is greater
than the triple associated with E1(f, s) at s = 1/2, and thus prevents us from
applying our method.

From the results of [7], and already of [9], we know the underlying reasons
for this phenomenon. The Eisenstein series E1(f, s) has a pole at s = 1/2,
but the residues are not square-integrable. That is the reason why we need
another triple, greater than the one associated with E1(f, s) at s = 1/2, but
not arising from a residual representation of G(A), as such representation
does not exist with cuspidal support represented by π. The required triple is
exactly the one associated with E2(f, s) are s = 0. For more details see [5,
Sect. 9.4]
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