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FINITE-TIME BLOW-UP OF CLASSICAL SOLUTION TO
THE TWO-FLUID MODEL WITH DENSITY-DEPENDENT
VISCOSITY

KaAryue WanG, ToNnGg TANG
Yangzhou University, China

ABSTRACT. This paper concerns the initial-boundary value problem
for a compressible two-fluid model with density-dependent viscosities (pos-
sibly degenerating in vacuum), subject to Dirichlet boundary conditions.
We prove that the two-fluid system with non-monotone pressure will blow-
up in finite time under the assumption that the initial densities include an
isolated mass group.

1. INTRODUCTION

The utilization of the two-phase flow model has been extensively em-
ployed in various industries such as the petroleum industry, low temperature
industrial biomedical microtechnology and other related fields. For more back-
ground, we refer the readers to [1, 10, 11, 28, 33]. In this paper, we study the
compressible two-fluid model with the following form:

(1.1)
Orp + div (pu) = 0,
On+div(nu) =0, (x,t) € Q xRy,
O((p+n)u)+div ((p+ n)u®u) + VP = div [2h(p,n)D(u)] + V(g(p, n)div u).

The densities of two different fluids are represented by p(z,t) and n(z,t) re-
spectively, u(zx, t) stands for the mixed velocity. The shear viscosity coefficient
h(p,n) and the bulk viscosity coefficient g(p,n) satisfy the following physical
restrictions:

(1.2) h(p,n) >0, 2h(p,n)+ dg(p,n) > 0.
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We consider the non-monotone pressure P(p,n) € C?([0, o0)?) satisfying
P(0,0) = 0 and with the form

(1.3) ci(p?” +n* —1) < P(p,n) < ea(p” +n +1),

where the constants c1, ¢, v, a, i satisfy

(1.4) c1>0,c>0,v>1, a>1 max{y,a} >2, 0 < p<1.

The strain tensor is given by D(u) := w. We consider the system (1.1)

in a bounded smooth domain Q C R%(d > 2), and pose the usual Dirichlet
boundary condition

(1.5) ulsq =0, for t > 0.
Moreover, we complement (1.1) with the initial conditions
(16) p(l‘,O) :po(l‘), n(z,O) :nO(x)7 u(x,O) :u0(‘r)‘

It is well known that the compressible Navier-Stokes (CNS) model holds a
pivotal role in the field of mechanics. Consequently, we first recall some clas-
sical advancements in the CNS model. For monotonic pressure, Kazhikhov
and Shelukhin [16] established the existence result for the model in one-
dimensional space with initial density bounded away from zero. Then Mat-
sumura and Nishida [23] proved the global existence with small initial data
in multidimensional space. For non-monotonic pressure, Feireisl [7] proved
the global existence of weak solutions on a compact set. Recently Bresch and
Jabin [2] focused on more general pressure laws that are not thermodynami-
cally stable and indicated global weak solutions to the system. Readers can
see more results and physical background in [8, 21].

The subject of two-phase flow has become increasingly important in a
wide variety of engineering systems and biological systems. From the math-
ematical point, researchers have noted the similar mathematic structure be-
tween the CNS model and the two-phase model. Therefore, in light of the
results observed in the CNS model, there has been a significant surge in re-
search focused on investigating the well-posedness of the two-phase model
in recent years. For the system (1.1) with standard polytropic pressure
P(p,n) = p¥ + n® and constant viscosity, the existence of global weak so-
lutions in the three dimensional space has been established in [3, 27]. Due to
the observed phenomena, the two-fluid model with non-monotonic pressure
is more close to the real industry applications, such as, the model of gas-kick
flow scenarios in oil wells is related to a compressible gas-liquid model with
non-monotonic pressure P(n,m) = C(; %) (see [6]). The mathematical
analysis of global solutions to the two-phase system with non-monotone pres-
sure has been established in [4, 6, 14, 15, 17, 20, 24, 29, 32]. More precisely,
Novotny and Pokorny [24] proved the existence of weak solutions for large
initial data on an arbitrarily large time interval where more general pressure
functions are considered. In the one-dimensional space, the global existence
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and uniqueness of the classical solution for the two-fluid model with density-
dependent viscosity was proved by Chen et al. [4]. Li et al. [20] established the
global existence of weak solutions to the initial value problem (IVP) for the
drift-flux system in the periodic domain T := R?/Z%(d > 2). In addition,
there has been important progress made recently about the outflow/inflow
problem for viscous multi-phase flow [9, 12, 25].

Currently, extensive research has been dedicated to the blow-up phenom-
enon of compressible fluid. In the context of the CNS model, Xin [30] estab-
lished the blow-up phenomenon when the initial densities possess compact
support. Then Rozanova [26] generalized [30] to the case with initial data
rapidly decays at far fields. Furthermore, Xin and Yan [31] showed that any
classical solutions of viscous compressible fluids lacking heat conduction will
blow up in a finite time, provided that the initial data exhibits an isolated
mass group. Inspired by the work [31], researchers extended the correspond-
ing result to other model, such as [5, 19]. Jiu, Wang and Xin [13] proved the
blow-up in the smooth solutions to the Cauchy problem for both the full CNS
equations and isentropic CNS equations, considering constant and degenerate
viscosities in arbitrary dimensions, subject to certain limitations on the ini-
tial data. In the case of the initial density pg possesses compact support, Li
et al. [18] established the non-existence of any non-trivial classical solutions
with finite energy to the Cauchy problem of the full CNS and isentropic CNS
equations in the standard inhomogeneous Sobolev space for any short time.

Due to the structural similarity between the CNS model and the two-fluid
model, the purpose of this article is to investigates the blow-up phenomenon of
the classical solution for the compressible two-fluid model with non-monotonic
pressure, under the condition that the initial density allows for the presence of
an isolated mass group. To obtain our main results, it is essential to introduce
various physical quantities, including mass, momentum, momentum of inertia,
internal energy, potential energy, total energy. The crucial step in the proof
is to provide estimate for physical measurement G(t) := %fU(t) |z (p(z,t) +
n(z,t))dz. Thus we need to control the term \fU(t) (2h(p,n) + dg(p,n))dz|.
However, compared with [5, 19], the energy inequality cannot be employed for
a direct estimate of |fU(t) (2h(p,n) + dg(p,n))dz| due to the disparity in the
pressure term. In order to overcome the difficulty, we utilize the Helmholtz
free energy function introduced by [4].

The paper is organized as follows. Section 2 is devoted to presenting our
main results. In Section 3, we will give some basic properties of the physical
quantities and the prove the main results.

2. MAIN RESULTS

Before stating our main results, we give the following definitions.
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DEFINITION 2.1. For T > 0, a pair (p(z,t),n(z,t),u(z,t)) is called a
classical solution to the Dirichlet problem for System (1.1)-(1.6) on 0Q if
the monnegative function p,n € CH(Q x [0,T)), and the vector field u €
CL([0,T); C?(Q)) satisfies the system (1.1) point-wisely on  x [0,T), take
on the initial condition (1.6) continuously, and satisfy the boundary condition
(1.5) continuously.

In light of [31], we introduce the following definition of the isolated mass
group.
DEFINITION 2.2. Let V, U be two bounded open subsets of Q and V C U.

The pair (U, V) is called an isolated mass group of initial density po(x), no(x)
if it holds that

VcVcUcUcQ, Uis connected,
po(z) =0, no(z) =0, z € U\V,
Jy po(@)dz >0, [, no(x)dz > 0.
Let (U, V) be an isolated mass group of po(z), no(x) in Q. and H(po, no)

be the Helmholtz free energy function. Then we set
Mass

M= [ po(w)dz+ | nofa)de i= My, + My,
1% 1%

Momentum
Py ::/ po(z)ug(z)dx +/ no(z)ug(z)de =P, + Py,
v 1%

Momentum weight

Fy = / po(z)up(z) - xdx +/ no(z)ug(z) - zdx := F,y + Fy,,
v v

Momentum of inertia

1 1
Go = 5/ po(x)|x>dx + 5/ no(z)|z2dz := G,y (t) + Gy (1),
v v

Total energy

Boi= [ 5(m(e) +nofa))luo(a) + Hp(e). mo(w))do.

Moreover, we assume that
]P)Q — —Q «

@1) g+ de(BrO)ITM, + [BrO)TM, ~ [Br(0)]) > 0.
Tt is well known that the Helmholtz free energy function H(p, n) corresponding
to pressure P is a solution of the following partial differential equation of the
first order in (0, 0o)?:
OH OH

(pn) | OH(p;n)

(2.2) P(p,n) =p By n

H(p,n).
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To derive the pressure estimate, we adopt the approach presented in reference
[4], employing the Helmholtz free energy function H(p,n) that corresponds
to P(p,n):

ptn P(Sp_%n,sp_%n)

(2.3) H(p,n) := (p+n)/ ds, if p+n >0, H(0, 0) =0.

1 s?
We assume that the viscosity coefficients h(p,n) and g(p,n) satisty the fol-
lowing form

(2.4) h(p,n) = Ap* + Bn”, g(p,n) = Cp™ + Dn?,

where A >0, B> 0, 2A+dC >0, 2B+ dD > 0, and one of the following
conditions:

A=m, B=q, 2A+dC =0, 2B+dD = 0;

(i)A, 7€ (0, 4], B, q € (0, a.

Our main results are stated as follows.

THEOREM 2.3. Let (p(z,t), n(z,t), u(z,t)) be a classical solution to the
Dirichlet problem of the compressible two-phase model (1.1) with initial data
(1.6). Suppose that the initial density po(z), no(x) admit an isolated mass
group (U, V) and h(p,n), g(p,n) satisfy (1.2) if one of the following condi-
tions holds:

(1) Condition (i) holds, and My is finite;
(2) Condition (ii) holds, and My, Ey are finite.
Then the classical solution (p(z,t), n(x,t), u(x,t)) will blow up in finite time.

REMARK 2.4. If My, Ey are finite and h(p,n) and g(p,n) satisfy: A =
T, 2A4+dC =0, 8, ¢ € (0, aJor A\, 7 € (0, 7], B =¢q, 2B+ dD =0, the
Theorem 2.3 still holds.

3. PROOF OF THEOREM 2.3

Let (p(x,t), n(x,t), u(z,t)) be a classical solution to the compressible
two-fluid model (1.1) on Q@ x (0, T'), where T is the maximal time of existence.
We denote by X (a, t) the particle path starting from a when ¢t =0, i.e.

(3.1) { %()&a,o? zZ’(X(a, 1, 1),
and set
(3.2) U(t) = {X(a, t)lae U}, V(t) = {X(a, t)]a eV}

The pair (U(t), V(¢)) is an isolated mass group of the density p(z,t), n(x,t)
in Q at time t, and it will not disappear for any ¢t < T. In fact, u €
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CL([0, T); C?()) ensures that X(a, t) is well-defined (existence and unique-
ness)iby the classical theory of ordinary differential system. Furthermore,
VcVcUcU cC S implies that

Vi)cVv(i)cU(@l) cU) C.
Since po(z) =0, no(z) = 0in U\ V, we can immediately obtain the following
lemma from mass equation (1.1); and (1.1)s.

LEMMA 3.1. Suppose (p(z,t), n(z,t), u(z,t)) is a classical solution to
system (1.1)-(1.6) with a suitable boundary condition on 0, it holds that

(3.3) p(z,t) =0, n(z,t)=0in U)\ V(1)

Similar to [19], we assume that the density p,n equal to 0 on OU(t),
otherwise we could choose R(t) instead of U(t) satisfying V(t) c V(t) C
R(t) C R(t) CU(t), then p,n equal to 0 on OR(t).

The following lemma is the famous transport formula. It can be found in [22]:

LEMMA 3.2. Let U(t) be defined as (3.2), for any f(x,t) € C*(R? x RY),
we have

(3.4) 4 flz,t)de = fi(z, t)dx + / f(z,t)(u-v)de,

dt Ju Ut oU (1)
where v is the unit out normal to OU(t).
Before showing Lemma 3.3, we set G(t) := 3 fU(t) p +n)|z|?dz, F(t) ==
Jo (0 + -z, E®) = [y [Sp + mlul? + H(p, )] do = Ee(t) + 1(2).
LEMMA 3.3. Suppose (p(x,t), n(z,t), u(z,t)) is a classical solution to

system (1.1)-(1.6) in Q x (0, T) with a suitable boundary condition on OS2,
then for each 0 <t < T, we have

(3.5) /U(t) pdx = M,,, /U(t) ndx = M,,,

(36) / (ot muds = %o

(3.7) Lo = o)

(3.8) %F( t) =2E(t)+d v Pdx — /U(t) [(2h(p7 n) + dg(p, n))div u] dz,

/U(t) [%(P +n)ul? + H(p, n)} da

(3.9) / / Vu+ (Vu)! ) .Vu+g(p,n)|divu|2}dxds .
Ul(s) 2
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PROOF. According to (1.1), Lemma 3.2 and the assumption: p, n|py ) =
0, P(0,0) = 0, we obtain the conservation of mass and momentum :

(pe + div (pu))dz = 0,
(n¢ + div (nu))dz = 0,
o ((p +n) +div((p+n)ue u))da:

(div [2h(p,n)D(u)] + V(g(p, n)divu) — VP) dz =0,

which imply (3.5) and (3.6). Meanwhile, we can obtain (3.7) and (3.8) by

using integration by parts as:

d . d [ 1 .

ﬁGdeAm2@+mxwm2
1

/ ((p+n)t+div ((p+n)u))|zx|2—|—2(p—|—n)u-xd:x
U

5[ (@smla), =+ div (o + w)lafu)ds
U

S 2
:/ (p+n)u-zde = F(t),
U(t)

and

d d .
%F(t) = dt/{J@)(p—ﬁ—n)u-xdw = /U(t) (((p—l—n)u)t + div ((p—l—n)u@u)) -
+ (p+n)lude

= /U(t)(P +n)ul® + (div [2h(p,n)D(u)] + V(g(p, n)divu) — VP) . xdx

= 2B,(t) + d/ . Pdz — /U(t) ((2h(p, n) + dg(p, n))div u)d:c.

U
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Taking the time derivative on E(t), and combining with (2.2), we get

d_, . d 1 )
2E0 == v [5(p+m)luf® + H(p,n)]dx

- /U<t) [(%(er n)luf* + H (p, "))t + div ((%(PwLn)\u\Q + H(p, n))u)}dm

- /U(t) (((p+n)u)t +div <('O+ n)u ®u)) ‘u - %((er n)y + div ((/HLTl)u))|u|2

+ Hype + Hyng + (H,Vp + H,Vn) - u+ Hdivudz

= / [(div (2hD(u)) + V(gdivu) — VP) - u — Pdivu|dz
U®)

- 7/ [2h(p, n)D(u) : D(u) + g(p, n)|div ul?*]dz
Ut)

integrating the above equation and we obtain that
1
/ {*(p+n)\u|2+H(p, n)}dw E(0 / / Vu+ (Vu)* ) Vu+tg(p,n)|divul?|dzds,
Ut) L2 U(s) 2
which implies (3.9). O

Inspired by [5], we will estimate | fg fU(s)(Qh(p, n) + dg(p,n))divu dxds|.

LEMMA 3.4. Suppose (p(z,t), n(z,t), u(z,t)) is a classical solution to
system (1.1)-(1.6) in Q x (0, T') with a suitable boundary condition on ON.
If h(p,n) and g(p,n)satisfy the conditions in Theorem 2.1, then for each 0 <
t <T, it holds that

t
(3.10) / / (2h(p,n) + dg(p,n))divu dzds| < Cst?,
0 JU(s)

where C3 is a positive constant independent of t.

PROOF. By virtue of Holder inequality, we get
(3.11)

(2h(p,n) + dg(p,n))divu dzds

U(s)

t
S// (2h(p,n) + dg(p,n))|div u|dzds
U(s)
/ [ (2hlp.m)+ dg(pm)ldiv udeds) b / | L2t +dgtp.n)] o)
U(s) U(s)

// [2h(p, )—I—dg(p,n)}dmds)%
U(s)

Omw
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When h(p,n), g(p,n) satisfy Condition (i), the result is obviously true.
When h(p,n), g(p,n) satisfy Condition (ii), according to (1.3) and (2.3) , we
have

(3.12)

ptn ﬂ’y+ sn a,]_ ptn £7+ sn a+1
c1(ptn) / G+ G) 1, H(p,n) < c2(p+n) / Gl + ) 1,
1 1

s2 52

By virtue of the fact that (p_%n)wil <1, (;H_Ln)ail < 1, we have

[e3

P’ n P an
) (-1 e a-1) S7-1 a-1
Combine with (3.12), we get the upper and lower bounds of the Helmholtz
function H(p, n)

pY n
1— _
Cl(’y—1+a—1+ y—1 a-1

p+n+

e} ¥ «
Yp an p n
) < H(p,n) < Cz( 1+ 1

—14p+n).

Integrating on domain, we have

v o % a
cl/ ( d + n +1— p___on )dx < H(p,n)dx < 02/ ( p + n —1+p—|—n)dx.
U(t) ’)/—1 a—1 ’)/—]. a—1 U(t) U(t) "}/—]. a—1
Then according to (1.4), there exist two positive numbers C; and Cj such

that
(3.13)

/ [2h(p,n) + dg(p,n)]dzx
U(t)

< C’l/ (p7 +n%+1)dx
U(t)

o «
<Cimax{y—-1, a—1} <L+ n +1_l_ an )d:r
vy Ny —1 a—1 y—1 a-1

+Cimax{y—1, a—1} (l—i— an )dx
U(t) ’}/*1 a—1

< Cy(Eo + 1).
Integrating (3.13) on time, we get
t
/ / [2h(p,n) + dg(p,n)|dzds < Co(Eo + 1)t.
0 JU(s)
Which implies

(3.14) < Csts,

t
/ / (2h(p,n) + dg(p,n))divu dzds
0 JU(s)

[N

C3:= (CQ(EO + 1)E0) .
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In the light of [13], we derive the estimate of G(t).

LEMMA 3.5. Suppose (p(x,t), n(x,t), u(z,t)) is a classical solution to
system (1.1)-(1.6) in Q x (0, T). If h(p,n) and g(p,n) satisfy the conditions
in Theorem 2.1, then for each 0 <t < T, it holds that

1 2
(3.15) G(t) 2 Go + Fot + 5(Cs + dCs)t* — §C’3t%.

PRrROOF. Owing to (3.7) and (3.8), we take time derivative get

d? d
L ity =L@ = / [(p+ m)lul? + dP — (2h(p, n) + dg(p, n))div u]dz.
dt dt Ut)
Given the Holder inequality, we can get
]P>2
(3.16) / (p+n)|uf’de > —L .= Cy.
Ut) My

By virtue of the mass conservation equation and the fact that U(t) is always
in a bounded domain Q C Bg(0) for some R > 0, we obtain that

/ Pdz > cl/ (p7 +n® — 1)d1:
Ut) U

> e (U@ MR, + U0 My, — [U(t)])
> 1 (IBrO)' M, + [Br(0)'=* My, — [Br(0)]) = Cs.
Combining (3.16), (3.17) and Lemma 3.4, we have

(3.17)

%G(t) > Fy+ (Cy + dCs)t — Cst?,
which infers that
1
(3.18) G(t) > Go + Fot + 5(Ca + dCs)e* — ;C’gt%.

Now we are ready to prove the Theorem 2.3.
Proof of Theorem 2.3. Combining the previous assumption (2.1), we de-
duce the following inequality from Lemma 3.5

1 2
G(t) > Go + Fot + 5(04 + dC5)t2 — §C3t% — 400 as t — +o0.

While on the other side, we have

1) o=g [ ot ) 4t ) < SR My, + My,),

Combining (3.18) with (3.19) yields that

1 2 1
(3.20) Go + Fot + 5 (Ca + dC5)t* — gC’gt% < SR (M, + M),
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Let t — 400, we find the left side of (3.20) goes to infinity, while the right
side of (3.20) is bounded. Which means that the time span of the classical
solutions (p(z,t), n(z,t), u(m,t)) is finite. Therefore, the proof of Theorem
2.1 is completed.
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