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PRESCRIBED WEINGARTEN CURVATURE
EQUATIONS IN WARPED PRODUCT MANIFOLDS

Ya Gao, Chenyang Liu and Jing Mao∗

Abstract. In this paper, under suitable settings, we can obtain the

existence of solutions to a class of prescribed Weingarten curvature equa-

tions in warped product manifolds of special type by the standard degree
theory based on the a priori estimates for the solutions. This is to say that

the existence of closed hypersurface (which is graphic with respect to the
base manifold and whose k-Weingarten curvature satisfies some constraint)

in a given warped product manifold of special type can be assured.

1. Introduction

Throughout this paper, let (Mn, g) be a compact Riemannian n-manifold
with the metric g, and let I be an (unbounded or bounded) interval in R.
Clearly, M̄ := I ×f Mn is actually the (n + 1)-dimensional warped product
manifold (sometimes, for simplicity, just say warped product) endowed with
the following metric

ḡ = dt2 + f2(t)g,(1.1)

where f : I → R+ is a positive differential function defined on I. Given a
differentiable function u : Mn → I, its graph actually corresponds to the
following graphic hypersurface

G = {X(x) = (u(x), x)|x ∈ Mn}(1.2)

in M̄ . Equivalently, we can say that G is graphic w.r.t. the base manifold Mn.
Denote by ∇̄, D the Riemannian connections on M̄ and Mn, respectively.
Let {ei}i=1,2,··· ,n be an orthonormal frame field in Mn. Then one can find
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an orthonormal frame field {ēα}α=0,1,··· ,n in M̄ such that ēi = (1/f)ei, 1 ≤
α = i ≤ n and ē0 = ∂/∂t. The existence of the frame fields can always be
assured in the tangent space of a prescribed point. Denote by1 ui := Diu,
uij := DjDiu, and uijk := DkDjDiu the covariant derivatives of u w.r.t. the
metric g. Clearly, the tangent vectors of G are given by

Xi = (Du, 1) = ei + ui∂/∂t = fēi + uiē0, i = 1, 2, . . . , n.

Let 〈·, ·〉 be the inner product w.r.t. the metric ḡ. Then the induced metric g̃
on G has the form

g̃ij = 〈Xi, Xj〉 = f2δij + uiuj ,

its inverse is given by

g̃ij =
1

f2

(
δij − uiuj

f2 + |Du|2
)
,

where ui = gijuj = δijuj = ui and |Du|2 = uiui =
n∑

i=1

u2
i . Of course, in this

paper we use the Einstein summation convention – repeated superscripts and
subscripts should be made summation2. The outward unit normal vector field
of G is given by

ν =
1√

f2 + |Du|2

(
f
∂

∂t
− ui ei

f

)
=

1√
f2 + |Du|2

(
fē0 − uiēi

)
,

and the component hij of the second fundamental form A of G is computed
as follows

(1.3) hij = −〈∇̄XjXi, ν〉 =
1√

f2 + |Du|2
(
−fuij + 2f ′uiuj + f2f ′δij

)
.

One can also see [3, Subsection 2.2] for the computations of the above geomet-
ric quantities. Denote by λ1, λ2, . . . , λn the principal curvatures of G, which
are actually the eigenvalues of the matrix (hij)n×n w.r.t. the metric g̃. The
so-called k-th Weingarten curvature at X(x) = (u(x), x) ∈ G is defined as

σk(λ1, λ2, · · · , λn) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik .(1.4)

V = f(t) ∂
∂t is the position vector field3 of the hypersurface G in M̄ , and

clearly, for any x ∈ Mn, V |x is a one-to-one correspondence with X(x). Let
ν(V ) be the outward unit normal vector field along the hypersurface G and

1 Clearly, for accuracy, here Diu should be Deiu. In the sequel, without confusion and

if needed, we wish to simplify covariant derivatives like this. In this setting, uij := DjDiu,

uijk := DkDjDiu mean uij = DejDeiu and uijk = DekDejDeiu, respectively. We will

also simplify covariant derivatives on G and M̄ similarly if necessary.
2 In this setting, repeated Latin letters should be made summation from 1 to n.
3 In Rn+1 or the hyperbolic (n+ 1)-space Hn+1, there is no need to define the vector

field V since these two spaces are two-points homogeneous and global coordinate system
can be set up, and then X(x) can be seen as the position vector directly.
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λ(V ) = (λ1, λ2, · · · , λn) be the principal curvatures of G at V . Define the
annulus domain M̄+

− ⊂ M̄ as follows

M̄+
− := {(t, x) ∈ M̄ |r1 ≤ t ≤ r2}

with r1 < r2. In this paper, we consider the following Weingarten curvature
equation

(1.5) σk(λ(V )) =
k−1∑

l=0

αl(u(x), x)σl(λ(V )), ∀V ∈ G, 2 ≤ k ≤ n,

where {αl(u(x), x)}k−1
l=0 are given smooth functions defined on G. The k-th

Weingarten curvature σk(λ(V )) is also called k-th mean curvature. Besides,
when k = 1, 2 and n, σk(λ(V )) corresponds to the mean curvature, the scalar
curvature and the Gaussian curvature of G at V .

We also need the following conception:

Definition 1.1. For 1 ≤ k ≤ n, let Γk be a cone in Rn determined by

Γk = {λ ∈ Rn|σl(λ) > 0, l = 1, 2, . . . , k}.

A smooth graphic hypersurface G ⊂ M̄ is called k-admissible if at every posi-
tion vector V ∈ G, (λ1, λ2, . . . , λn) ∈ Γk.

For the Eq. (1.5), we can prove the following:

Theorem 1.2. Let Mn be a compact Riemannian n-manifold (n ≥ 3) and
M̄ = I×fM

n, with the metric (1.1), be the warped product manifold defined as
before. Assume that the warping function f is positive C2 differential, f ′ > 0
and αl(u(x), x) ∈ C∞(I × Mn) are positive functions for all 0 ≤ l ≤ k − 1.
Suppose that

σk(e)

(
f ′

f

)k

≥
k−1∑

l=0

αl(u, x)σl(e)

(
f ′

f

)l

for u ≥ r2,(1.6)

σk(e)

(
f ′

f

)k

≤
k−1∑

l=0

αl(u, x)σl(e)

(
f ′

f

)l

for 0 < u ≤ r1,(1.7)

and

∂

∂u

[
fk−l(u)αl(u, x)

]
≤ 0 for r1 < u < r2, 0 ≤ l ≤ k − 1,(1.8)

where [r1, r2] ⊂ I, e = (1, 1, · · · , 1). Then there exists a smooth k-admissible,
closed graphic hypersurface G contained in the interior of the annulus M̄+

−
and satisfying the Eq. (1.5).
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Remark 1.3. (1) The proof of Theorem 1.2 can be discussed in two cases:
f ′′ ≤ 0 or f ′′ > 0, where f is the warping function defined as before. After
careful calculations in Section 4, we find that an important ingredient in C1

estimate is to keep (ϕf ′)′ non-positive. In the case f ′′ ≤ 0, this ingredient
can be assured because of the assumptions made on the auxiliary function ϕ
(see Section 3 for details). However, in the case f ′′ > 0, one cannot guarantee
that (ϕf ′)′ is positive or negative if the same assumptions were made on ϕ.
In this situation, we need to do some change, that is, we define a new ϕ as
ϕ = k̃(f ′)−1, where k̃ is a positive constant and satisfies f ′(r1) < k̃ < f ′(r2),
and then this function ϕ satisfies ϕ(u) > 0, ϕ(u) > 1 for u ≤ r1, ϕ(u) < 1 for
u ≥ r2, ϕ

′(u) < 0. Thus (ϕf ′)′ ≤ 0 can also be obtained by this change, and
then in the case f ′′ > 0 the rest of the argument for Theorem 1.2 would go
back to that of the case f ′′ ≤ 0 – please see Section 4 for details.
(2) The k-admissible and the graphic properties of the hypersurface G make
sure that the Eq. (1.5) is a single scalar second-order elliptic PDE of the
graphic function u, which is the cornerstone of the a prior estimates given
below. If furthermore Mn is convex, then Mn is diffeomorphic to Sn (i.e. the
Euclidean unit n-sphere), G is also a graphic hypersurface over Sn and should
be starshaped. In this setting, Theorem 1.2 degenerates into the following:

• FACT 1. Under the assumptions of Theorem 1.2, if furthermore Mn

is convex, then there exists a smooth k-admissible, starshaped closed
hypersurface G contained in the interior of the annulus M̄+

− and satis-
fying the Eq. (1.5).

(3) We refer readers to, e.g., [21, Appendix A], [23, pp. 204-211 and Chap-
ter 7] for an introduction to the notion and properties of warped product
manifolds. Submanifolds in warped product manifolds have nice geometric
properties and interesting results can be expected – see, e.g., several nice
eigenvalue estimates for the drifting Laplacian and the nonlinear p-Laplacian
on minimal submanifolds in warped product manifolds of prescribed type have
been shown in [18, Sections 3-5].
(4) The Eq. (1.5) is actually a combination of elementary symmetric functions
of eigenvalues of a given (0, 2)-type tensor. Equations of this type are impor-
tant not only in the study of PDEs but also in the study of many important
geometric problems. For instance, if λ(V ) in the Eq. (1.5) were replaced by
eigenvalues of the Hessian D2u of a graphic function u defined over a bounded
(k − 1)-convex domain Ω ⊂ Rn, Krylov [15] studied the corresponding PDE

σk(D
2u(x)) =

k−1∑

l=0

αl(x)σl(D
2u(x)), ∀x ∈ Ω,(1.9)

with a prescribed Dirichlet boundary condition (DBC for short) and coeffi-
cients αl(x) ≥ 0 for all 0 ≤ l ≤ k−1, and observed that the natural admissible
cone to make equation elliptic is Γk; Guan-Zhang [12] showed that comparing
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with Krylov’s this observation, for the admissible solution of Eq. (1.5) with
prescribed DBC in the sense that λ(D2u) ∈ Γk−1, there is no sign requirement
for the coefficient function of αk−1(x). Moreover, they also investigated the
solvability of the following fully nonlinear elliptic equation

σk(D
2u+ uI) =

k−1∑

l=0

αl(x)σl(D
2u+ uI), ∀x ∈ Sn,

for some unknown function u : Sn → R defined over Sn, where αl(x), 0 ≤
l ≤ k − 2, are positive functions; Fu-Yau [7, 8] proposed an equation of
this type in the study of the Hull-Strominger system in theoretical physics;
Phong-Picard-Zhang investigated the Fu-Yau equation and its generalization
in series works [25, 26, 27]. Inspired by Krylov’s and Guan-Zhang’s works
[12, 15], Chen-Shang-Tu [2] considered the following equation

(1.10) σk(κ(X)) =

k−1∑

l=0

αl(X)σl(κ(X)), ∀X ∈ M ⊂ Rn+1, 2 ≤ k ≤ n

on an embedded, closed starshaped n-hypersurface M, n ≥ 3, where κ(X)
are principal curvatures of M at X, and αl(x), 0 ≤ l ≤ k − 1, are positive
functions defined over M. Under the k-convexity for M and several other
growth assumptions (see [2, Theorem 1.1]), they can show the existence of
solutions to the Eq. (1.10). This result has been generalized by Shang-Tu [28]
to the situation that the ambient space Rn+1 was replaced by the hyperbolic
space Hn+1. Recently, Chen-Tu-Xiang [4] studied the equation

σk(κ(V )) = ψ(V, ν(V )), ∀V ∈ G,(1.11)

where as before G ⊂ M̄ := I×f M
n, with f a positive C2 differential function

defined on I ⊂ R, is a graphic hypersurface (defined as (1.2)) in the warped
product manifold M̄ , σk(·) denotes the elementary symmetric function, V and
ν(V ) are the position vector field, the outward unit normal vector field along
the hypersurface G respectively. Besides, κ(V ) = (κ1, κ2, · · · , κn) stand for
the principal curvatures of hypersurface G at V . If the function ψ(·, ·) and the
warping function f satisfy some growth assumptions, by applying the degree
theory, they can prove the existence of C4,α-solution to the Eq. (1.11) in the
case k ≥ n− 2, provided G is k-convex and starshaped.

If Mn = Sn, I = (0, `) with 0 < ` ≤ ∞, putting a one-point compactifica-
tion topology by identifying all pairs {0}×Sn with a single point p∗ to M̄ (see,
e.g., [6, page 705] for this notion) and requiring that f(0) = 0, f ′(0) = 1, then
the warped product manifold M̄ becomes the spherically symmetric manifold

M̃ := [0, `)×f Sn. The single point p∗ is called the base point of M̃ . Applying
FACT 1 in Remark 1.3 directly, one has:

Corollary 1.4. Under the assumptions of Theorem 1.2 with additionally
Mn = Sn, I = (0, `) with 0 < ` ≤ ∞, one-point compactification topology
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imposed, f(0) = 0 and f ′(0) = 1, then there exists a smooth k-admissible,
starshaped (w.r.t. the base point p∗), closed hypersurface G contained in the

interior of the annulus M̄+
− ⊂ M̃ and satisfying the Eq. (1.5).

Remark 1.5. (1) If furthermore the warping function f satisfies f ′′(t) +
Kf(t) = 0 for some constant K, i.e. the Jacobi equation, then

f(t) =





sin(
√
Kt)/

√
K, K > 0, ` = π/2

√
K,

t, K = 0, ` = ∞,
sinh(

√
−Kt)/

√
−K, K < 0, ` = ∞,

and moreover, in this setting, M̃ corresponds to Sn+1(1/
√
K) (i.e., the Eu-

clidean (n + 1)-sphere with radius 1/
√
K) with the antipodal point of p∗

missed, since we need to make sure that f ′ > 0, so we can only get the case
of ` = π/2

√
K, Rn+1 and Hn+1(K) (i.e., the hyperbolic (n + 1)-space with

constant curvature K < 0), respectively. From this, one can see that spher-
ically symmetric manifolds cover space forms as a special case and actually
they were called generalized space forms by Katz and Kondo [13].
(2) Clearly, our Corollary 1.4 covers Chen-Shang-Tu’s and Shang-Tu’s main
results in [2, 28] (mentioned in (4) of Remark 1.3) as special cases.
(3) Spherically symmetric manifolds have nice symmetry in non-radial direc-
tion, which leads to the fact that one can use this kind of manifolds as model
space in the study of comparison theorems. In fact, Prof. J. Mao and his
collaborators have used spherically symmetric manifolds as model space to
successfully obtain Cheng-type eigenvalue comparison theorems for the first
Dirichlet eigenvalue of the Laplacian on complete manifolds with radial (Ricci
and sectional) curvatures bounded, Escobar-type eigenvalue comparison the-
orem for the first nonzero Steklov eigenvalue of the Laplacian on complete
manifolds with radial sectional curvature bounded from above, heat kernel
and volume comparison theorems for complete manifolds with suitable curva-
ture constraints, and so on – see [6, 19, 20, 22, 30] for details.

This paper is organized as follows. In Section 2, we will list some useful
formulas including several basic properties of σk, structure equations for hy-
persurfaces in warped product manifolds. A priori estimates (including C0,
C1 and C2 estimates) for solutions to the Eq. (1.5) will be shown continu-
ously in Sections 3-5. We wish to mention that the calculation about prior
estimates is performed at a fixed point on Mn, and so the sign of the pre-
scribed function restricted to this point is fixed. In Section 6, by applying the
degree theory, together with the a priori estimates obtained, we can prove the
existence of solutions to prescribed Weingarten curvature equations of type
(1.5).
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2. Some useful formulae

Except the setting of notations in Section 1, denote by ∇̄, ∇ the Rie-
mannian connections on M̄ and G, respectively. The curvature tensors in M̄
and G will be denoted by R̄ and R, respectively. Let {E0 = ν,E1, · · · , En}
be an orthonormal frame field in G and {ω0, ω1, · · · , ωn} be its associated
dual frame field. The connection forms {ωij} and curvature forms {Ωij} in G
satisfy the structure equations

dωi −
∑

i

ωij ∧ ωj = 0, ωij + ωji = 0,

dωij −
∑

k

ωik ∧ ωkj = Ωij = −1

2

∑

k,l

Rijklωk ∧ ωl.

The coefficients hij , 1 ≤ i, j ≤ n, of the second fundamental form are given
by Weingarten equation

ωi0 =
∑

j

hijωj .(2.1)

The covariant derivatives of the second fundamental form hij in G are given
by

∑

k

hijkωk = dhij +
∑

l

hilωlj +
∑

l

hljωli,

∑

l

hijklωl = dhijk +
∑

l

hljkωli +
∑

l

hilkωlj +
∑

l

hijlωlk.

The Codazzi equation is

hijk − hikj = −R̄0ijk,(2.2)

and the Ricci identity can be obtained as follows:

Lemma 2.1. (see also [3, Lemma 2.2]) Let X(x) be a point of G and
{E0 = ν,E1, · · · , En} be an adapted frame field such that each Ei is a principal
direction and ωk

i = 0 at X(x). Let (hij) be the second quadratic form of G.
Then, at the point X(x), we have

hllii =hiill − hlm(hmihil − hmlhii)− hmi(hmihll − hmlhli)

+ R̄0iil;l − 2hmlR̄miil + hilR̄0i0l + hllR̄0ii0

+ R̄0lil;i − 2hmiR̄mlil + hiiR̄0l0l + hliR̄0li0.

(2.3)

As mentioned in Section 1, one can suitably choose local coordinates such
that {ei}i=1,2,··· ,n is an orthonormal frame field in Mn, and then one can
find an orthonormal frame field {ēα}α=0,1,··· ,n in M̄ such that ēi = (1/f)ei,
1 ≤ α = i ≤ n and ē0 = ∂/∂t. Correspondingly, the associated dual frame
field of {ēα}α=0,1,··· ,n should be {θ̄α}α=0,1,··· ,n with θ̄i = fθi, 1 ≤ i ≤ n, and
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θ̄0 = dt. Clearly, {θi}i=1,··· ,n is the dual frame field of the orthonormal frame
field {ei}i=1,2,··· ,n. We have the following fact:

Lemma 2.2. (see [3]) On the leaf Mt of the warped product manifold
M̄ = I ×f Mn, the curvature satisfies

R̄ijk0 = 0(2.4)

and the principal curvature is given by

κ(t) =
f ′(t)
f(t)

,(2.5)

where the outward unit normal vector ē0 = ∂
∂t is chosen for each leaf Mt.

Remark 2.3. In fact, the leaf Mt can also be seen as a closed graphic
hypersurface in M̄ , which corresponds to the graph of some constant function,
i.e. u = const.. Besides, we refer readers to [3, Section 2] or [24] for the
geometry of hypersurfaces in warped product manifolds if necessary.

Consider two functions τ : G → R and Λ : G → R given by

τ = f〈ν, ē0〉 = 〈V, ν〉, Λ =

∫ u

0

f(s)ds,(2.6)

where V = fē0 = f ∂
∂t is the position vector field and ν is the outward unit

normal vector field. Then we have:

Lemma 2.4. (see [1]) The gradient vector fields of the functions τ and Λ
are

∇Ei
Λ = f 〈ē0, Ei〉 ,(2.7)

∇Ei
τ =

∑

j

∇Ej
Λhij ,(2.8)

and the second order derivatives of τ and Λ are given by

∇2
Ei,Ej

Λ = −τhij + f ′gij ,(2.9)

(2.10) ∇2
Ei,Ej

τ = −τ
∑

k

hikhkj + f ′hij +
∑

k

(hijk + R̄0ijk)∇Ek
Λ.

The following Newton-Maclaurin inequality will be used frequently (see,
e.g., [17, 29]).

Lemma 2.5. Let λ ∈ Rn. For 0 ≤ l ≤ k ≤ n, r > s ≥ 0, k ≥ r, l ≥ s, we
have

k(n− l + 1)σl−1(λ)σk(λ) ≤ l(n− k + 1)σl(λ)σk−1
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and

[
σk(λ)/C

k
n

σl(λ)/Cl
n

] 1
k−l

≤
[
σr(λ)/C

r
n

σs(λ)/Cs
n

] 1
r−s

, for λ ∈ Γk.

At end, we also need the following truth to ensure the ellipticity of the
Eq. (3.1).

Lemma 2.6. Let G = {(u(x), x) |x ∈ Mn} be a smooth (k − 1)-admissible
closed hypersurface in M̄ and αl(u, x) ≥ 0 for any x ∈ Mn and 0 ≤ l ≤ k−2.
Then the operator

G (hij(V ), u, x) :=
σk(λ(V ))

σk−1(λ(V ))
−

k−2∑

l=0

αl(u, x)
σl(λ(V ))

σk−1(λ(V ))

is elliptic and concave with respect to hij(V ).

Proof. The proof is almost the same with the one of [12, Proposition
2.2], and we prefer to omit here.

3. C0 estimate

We consider the family of equations for 0 ≤ t ≤ 1,

(3.1)
σk(λ(V ))

σk−1(λ(V ))
−

k−2∑

l=0

tαl(u, x)
σl(λ(V ))

σk−1(λ(V ))
− αk−1(u, x, t) = 0,

where

αk−1(u, x, t) := tαk−1(u, x) + (1− t)ϕ(u)
σk(e)

σk−1(e)

f ′

f
,

and ϕ is a positive function defined on I and satisfying the following condi-
tions:

(a) ϕ(u) > 0;
(b) ϕ(u) > 1 for u ≤ r1;
(c) ϕ(u) < 1 for u ≥ r2;
(d) ϕ′(u) < 0.

Lemma 3.1 (C0 estimate). Assume that 0 ≤ αl(u, x) ∈ C∞(I × Mn).
Under the assumptions (1.6) and (1.7) mentioned in Theorem 1.2, if G =
{(u(x), x)|x ∈ Mn} ⊂ M̄ is a smooth (k − 1)-admissible, closed graphic hy-
persurface satisfying the curvature equation (3.1) for a given t ∈ [0, 1], then

r1 ≤ u(x) ≤ r2, ∀x ∈ Mn.
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Proof. Assume that u(x) attains its maximum at x0 ∈ Mn and u(x0) ≥
r2. Then from (1.3), one has

hi
j =

1

v

(
f ′δij −

1

f
uij +

f ′ujui

v2
+

n∑

k=1

ujkukui

fv2

)
,

where v =
√
f2 + |∇u|2, which implies

hi
j(x0) =

1

f

(
f ′δij −

uij

f

)
≥ f ′

f
δij .

Note that σk

σk−1
and σk−1

σl
with 0 ≤ l ≤ k − 2 are concave in Γk−1. Thus,

σk

σk−1
(hi

j) ≥
σk

σk−1

(
f ′

f
δij

)
+

σk

σk−1

(
− 1

f2
uij

)
≥ σk

σk−1

(
f ′

f
δij

)
.

Therefore, it follows that

σk(λ(V ))

σk−1(λ(V ))
≥ σk(e)

σk−1(e)

f ′

f
.

Similarly, one can get

σl(λ(V ))

σk−1(λ(V ))
≤ σl(e)

σk−1(e)

(
f

f ′

)k−l−1

.

Combining with the above two inequalities, we have

σk(e)

σk−1(e)

f ′

f
−

k−2∑

l=0

tαl(u, x)
σl(e)

σk−1(e)

(
f

f ′

)k−l−1

≤ αk−1(u, x, t).

Clearly, if t = 0, the above inequality is contradict with (3.1). When 0 < t ≤ 1,
we can obtain

αk−1(u, x) =

(
1− 1

t

)
ϕ
f ′

f

σk(e)

σk−1(e)
+

1

t
αk−1(x, u, t)

≥
(
1

t

f ′

f
+

(
1− 1

t

)
ϕ
f ′

f

)
σk(e)

σk−1(e)
−

k−2∑

l=0

αl(u, x)
σl(e)

σk−1(e)

(
f

f ′

)k−l−1

>
f ′

f

σk(e)

σk−1(e)
−

k−2∑

l=0

αl(u, x)
σl(e)

σk−1(e)

(
f

f ′

)k−l−1

,

which is contradict with

f ′

f

σk(e)

σk−1(e)
−

k−2∑

l=0

αl(u, x)
σl(e)

σk−1(e)

(
f

f ′

)k−l−1

≥ αk−1(u, x)

in view of (1.6) and the condition ϕ(u) < 1 for u ≥ r2. This shows supu ≤ r2.
Similarly, we can obtain inf u ≥ r1 in view of (1.7) and the condition ϕ(u) > 1
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for u ≤ r1. Our proof is finished.

Now, we can prove the following uniqueness result.

Lemma 3.2. For t = 0, there exists a unique admissible solution of the
Eq. (3.1), namely G0 = {(u(x), x) ∈ M̄ |u(x) = u0}, where u0 is the unique
solution of ϕ(u0) = 1.

Proof. Let G0 be a solution of (3.1), and then for t = 0,

σk(λ(V ))

σk−1(λ(V ))
− ϕ(u)

σk(e)

σk−1(e)

f ′

f
= 0.

Assume that u(x) attains its maximum umax at x0 ∈ Mn. Then one has

σk(λ(V ))

σk−1(λ(V ))
≥ σk(e)

σk−1(e)

f ′

f
,

which implies

ϕ(umax) ≥ 1.

Similarly, the minimum umin of u(x) satisfies

ϕ(umin) ≤ 1.

Since ϕ is a decreasing function, we obtain

ϕ(umax) = ϕ(umin) = 1,

which implies that u(x) = u0 for any (u(x), x) ∈ G0, with u0 the unique solu-
tion of ϕ(u0) = 1.

4. C1 estimate

We can rewrite the Eq. (3.1) as follows:

G(hij(V ), u, x, t) =
σk(κ(V ))

σk−1(κ(V ))
−

k−2∑

l=0

tαl(u, x)
σl(κ(V ))

σk−1(κ(V ))
= αk−1(u, x, t).

For convenience, we will simplify notations as follows:

Gk(hij(V )) :=
σk(λ(V ))

σk−1(λ(V ))
, Gl(hij(V )) =: − σl(λ(V ))

σk−1(λ(V ))
,

and

Gij(λ(V )) :=
∂G

∂hij
, Gij,rs(λ(V )) :=

∂2G

∂hij∂hrs
.
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Lemma 4.1 (C1 estimate). Assume that k ≥ 2 and

αl(u, x) ≥ cl > 0, ∀x ∈ Mn

for 0 ≤ l ≤ k−1. Under the assumption (1.8), if the smooth (k−1)-admissible,
closed graphic hypersurface G satisfies the Eq.(1.5) and u has positive upper
and lower bounds, then there exists a constant C depending on n, k, cl, |αl|C1 ,
the C0 bound of f and the curvature tensor R̄, the minimum and maximum
values of u such that

|∇u(x)| ≤ C, ∀x ∈ Mn.

Proof. First, we know from (1.3) and (2.6) that

τ =
f2(u)√

f2(u) + |Du|2
.

It is sufficient to obtain a positive lower bound of τ . Define

ψ := − log τ + γ(Λ),

where γ(t) is a function chosen later. Assume that x0 is the maximum value
point of ψ. If V is parallel to the normal direction ν of G at x0, our result
holds since 〈V, ν〉 = |V |. So, we assume that V is not parallel to the normal
direction ν at x0, we may choose the local orthonormal frame {E1, · · · , En}
on G satisfying

〈V,E1〉 6= 0 and 〈V,Ei〉 = 0, ∀ i ≥ 2.

Then, we arrive at x0 that

τi = τγ′Λi(4.1)

and

ψii =− τii
τ

+
(τi)

2

τ2
+ γ′′Λ2

i + γ′Λii

=− 1

τ

(∑

k

(hiik + R̄0iik)Λk + f ′hii − τ
∑

k

hikhki

)

+
(
(γ′)2 + γ′′)Λ2

i + γ′(f ′ − τhii)

in view of

τii =
∑

k

(hiik + R̄0iik) 〈V,Ek〉+ f ′hii − τ
∑

k

hikhki.

By (2.7), (2.8) and (4.1), we have at x0

h11 = τγ′, h1i = 0, ∀ i ≥ 2.(4.2)

Therefore, we can rotate the coordinate system such that {Ei}ni=1 are the
principal curvature directions of the second fundamental form hij , i.e. κi =
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hii = hi
i = hijδ

ij . Since Λ1 = 〈V,E1〉, Λi = 〈V,Ei〉 for any i ≥ 2. So, we can
get

Giiψii =− f ′

τ
Giihii −

1

τ
Gii(hii1 + R̄0ii1)Λ1 +Giih2

ii

+
(
(γ′)2 + γ′′)G11Λ2

1 + γ′Gii(f ′ − τhii).

Noting that

Gijhij = G−
k−2∑

l=0

t(k − l)αlGl = αk−1(u, x, t)−
k−2∑

l=0

t(k − l)αlGl

and

Gijhij1 = ∇1αk−1(u, x, t)−
k−2∑

l=0

t∇1αlGl,

we conclude

Giiψii =
Λ1

τ

(
−∇1αk−1(u, x, t) +

k−2∑

l=0

t∇1αlGl

)

+
f ′

τ

(
−αk−1(u, x, t) +

k−2∑

l=0

t(k − l)αlGl

)
+Giih2

ii

− 1

τ
GiiR̄0ii1Λ1 +

(
(γ′)2 + γ′′)G11Λ2

1 + γ′Gii(f ′ − τhii)

=
1

τ
(−Λ1∇1αk−1(u, x, t)− f ′αk−1(u, x, t))

+
1

τ

k−2∑

l=0

tGl (Λ1∇1αl + f ′(k − l)αl) +Giih2
ii

− 1

τ
GiiR̄0ii1Λ1 +

(
(γ′)2 + γ′′)G11Λ2

1 + γ′Gii(f ′ − τhii).

(4.3)

Since 〈V,Ei〉 = 0 for i = 2, · · · , n, we obtain

V = 〈V,E1〉E1 + 〈V, ν〉 ν = Λ1E1 + τν,

which results in

Λ1∇1αl(u, x) + (k − l)f ′αl(u, x) = ∇̄V αl(u, x) + (k − l)f ′αl(u, x)− τ∇̄ναl(u, x).

We know from the assumption (1.8) that

[
(k − l)f ′αl(u, x) + ∇̄V αl(u, x)

]
=

[
(k − l)f ′αl(u, x) + f

∂αl(u, x)

∂u

]
≤ 0.

Thus,

−τ∇̄ναl(u, x) ≥ Λ1∇1αl(u, x) + (k − l)f ′αl(u, x)(4.4)
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and

(1− t) (ϕ′f ′ + ϕf ′′)
σk(e)

σk−1(e)
− τ∇̄ναk−1(u, x, t)

≥ Λ1∇1αk−1(u, x, t) + f ′αk−1(u, x, t).

(4.5)

Taking (4.4) and (4.5) into (4.3), we have at x0 that

0 ≥ Giiψii

≥ Giih2
ii +

(
(γ′)2 + γ′′)G11Λ2

1 + γ′Gii(f ′ − τhii)−
1

τ
GiiR̄0ii1Λ1

− (1− t)

τ
(ϕ′f ′ + ϕf ′′)

σk(e)

σk−1(e)
− t

k−2∑

l=0

Gl∇̄ναl(u, x) + ∇̄ναk−1(u, x, t)

= Gii

(
hii −

1

2
γ′τ

)2

+
(
(γ′)2 + γ′′)G11Λ2

1 +Gii

(
γ′f ′ − 1

4
(γ′)2τ2

)

− 1

τ
GiiR̄0ii1Λ1 −

(1− t)

τ
(ϕ′f ′ + ϕf ′′)

σk(e)

σk−1(e)

− t
k−2∑

l=0

Gl∇̄ναl(u, x) + ∇̄ναk−1(u, x, t).

(4.6)

According to Remark 1.3, there always exists

ϕ′f ′ + ϕf ′′ < 0.

Choosing

γ(t) = −α

t

for sufficiently large positive constant α, we have

γ′(t) =
α

t2
, γ′′(t) = −2α

t3
.

Therefore, (4.6) becomes

0 ≥ Gii

(
γ′f ′ − 1

4
(γ′)2τ2

)
− c1

(
k−2∑

l=0

|Gl|+ 1

)
− 1

τ
GiiR̄0ii1Λ1(4.7)

in view of

(γ′)2 + γ′′ ≥ 0,

where c1 is a positive constant depending on |αl|C1 . Since V = 〈V,E1〉E1 +
〈V, ν〉 ν, we can find that V ⊥ Span(E2, · · · , En), i.e. V is orthogonal with the
subspace spanned by E2, · · · , En. On the other hand, E1, ν are orthogonal
with Span(E2, · · · , En). It is possible to choose a suitable coordinate system
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such that Ē1 ⊥ Span(E2, · · · , En), which implies that the pairs {V, Ē1} and
{ν,E1} lie in the same plane and

Span(E2, ..., En) = Span(Ē2, · · · , Ēn),

where of course {Ē0 = ē0, Ē1, · · · , Ēn} is a local orthonormal frame field in
M̄ . Therefore, we can choose E2 = Ē2, . . . , En = Ēn, and then vectors ν and
E1 can be decomposed into

ν = 〈ν, ē0〉 ē0 +
〈
ν, Ē1

〉
Ē1 =

τ

f
ē0 +

〈
ν, Ē1

〉
Ē1,

E1 = 〈E1, ē0〉 ē0 +
〈
E1, Ē1

〉
Ē1.

By (2.4) and the fact V = Λ1E1 + τν, we can obtain

R̄0ii1 = R̄(ν,Ei, Ei, E1)

=
τ

f
〈E1, ē0〉 R̄(ē0, Ēi, Ēi, ē0) +

〈
ν, Ē1

〉 〈
E1, Ē1

〉
R̄(Ē1, Ēi, Ēi, Ē1)

=
τ

f
〈E1, ē0〉 R̄(ē0, Ēi, Ēi, ē0)− τ

〈
ν, Ē1

〉2

Λ1
R̄(Ē1, Ēi, Ēi, Ē1)

= τ

(
1

f
〈E1, ē0〉 R̄(ē0, Ēi, Ēi, ē0)−

〈
ν, Ē1

〉2

Λ1
R̄(Ē1, Ēi, Ēi, Ē1)

)
,

(4.8)

where the third equality comes from
〈
V, Ē1

〉
= 0. Substituting (4.8) into (4.7)

yields

0 ≥ Gii

(
γ′f ′ − 1

4
(γ′)2τ2

)
− c1

(
k−2∑

l=0

|Gl|+ 1

)
− c2

∑

i

Gii,(4.9)

where c2 > 0 depends on the C0 bound of f and the curvature tensor R̄. To
continue our proof, we need to estimate Gl for 0 ≤ l ≤ k− 2. Let P ∈ R be a
fixed positive number.

(I) If σk

σk−1
≤ P , then we get from αl ≥ cl that

|Gl| =
σl

σk−1
≤ 1

αl

(
σk

σk−1
+ αl(u, x, t)

)
≤ c3(P + 1),

where the constant c3 > 0 depends on cl, |αl|C0 .
(II) If σk

σk−1
> P , then by Lemma 2.5, one has

|Gl| =
σl

σk−1
≤ σl

σl+1
· σl+1

σl+2
· · · ·σk−2

σk−1
≤ c4

(
σk−1

σk

)k−1−l

≤ P−(k−1−l),

where the positive constant c4 depends on k.
Hence, |Gl| can be bounded for any 0 ≤ l ≤ k − 2. By the definition of

operator G and a direct computation, we have ΣiG
ii ≥ n−k+1

k , and so we can
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choose sufficiently large α such that

0 ≥ Gii
[
γ′f ′ − (γ′)2τ2

]
.

Thus,

γ′f ′ ≤ (γ′)2τ2,

which means

τ ≥ c5

for some positive constant c5 depending on n, k, cl, |αl|C1 , the C0 bound of
f and the curvature tensor R̄. The conclusion of Lemma 4.1 follows directly.

Remark 4.2. After several careful revisions to the manuscript of this
paper, we prefer to number (by subscripts) nearly all the constants in the C1

and C2 estimates, and we believe that this way can reveal the relations among
constants clearly to readers.

5. C2 estimates

This section devotes to the C2 estimates. However, before that, we need
to make some preparations. First, we need the following fact:

Lemma 5.1. Let G = {(u(x), x) |x ∈ Mn} be a (k−1)-admissible solution
of the Eq. (3.1) and assume that αl(u, x) ≥ 0 for 0 ≤ l ≤ k − 1. Then, we
have the following inequality

Gijhijpp ≥ ∇p∇pαk−1(u, x, t) +

k−2∑

l=0

1

1 + 1
k+1−l

t(∇pαl)
2

αl
Gl −

k−2∑

l=0

t∇p∇pαlGl.

Proof. Differentiating the Eq. (3.1) once, we have

∇pαk−1(u, x, t) = Gijhijp +
k−2∑

l=0

t∇pαlGl.

Differentiating the Eq. (3.1) twice, we obtain

∇p∇pαk−1(u, x, t) = Gij,rshijphrsp +Gijhijpp + 2
k−2∑

l=0

t∇pαlG
ij
l hijp +

k−2∑

l=0

t∇p∇pαlGl.

Moreover, since the operator
(

σk−1

σl

) 1
k−1−l

is concave for 0 ≤ l ≤ k − 2, we

have (see also (3.10) in [12])

Gij,rs
l hijphrsp ≤

(
1 +

1

k − 1− l

)
G−1

l Gij
l G

rs
l hijphrsp.
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Thus, in view that Gk is concave in Γk−1, we have

∇p∇pαk−1(u, x, t)

≤
k−2∑

l=0

tαlG
ij,rs
l hijphrsp +Gijhijpp + 2

k−2∑

l=0

t∇pαlG
ij
l hijp +

k−2∑

l=0

t∇p∇pαlGl

≤
k−2∑

l=0

tαlG
−1
l

(
1 +

1

k − 1− l

)
(Gij

l hijp)
2 +Gijhijpp + 2

k−2∑

l=0

t∇pαlG
ij
l hijp +

k−2∑

l=0

t∇p∇pαlGl

=
k − l

k − 1− l

k−2∑

l=0

tαlG
−1
l

(
Gij

l hijp +
1

1 + 1
k−1−l

∇pαl

αl
Gl

)2

−
k−2∑

l=0

1

1 + 1
k−1−l

t(∇pαl)
2

αl
Gl

+Gijhijpp +
k−2∑

l=0

t∇p∇pαlGl

≤−
k−2∑

l=0

1

1 + 1
k−1−l

t(∇pαl)
2

αl
Gl +Gijhijpp +

k−2∑

l=0

t∇p∇pαlGl,

which completes the proof of Lemma 5.1.

We also need the following truth:

Lemma 5.2. Let G = {(u(x), x) |x ∈ Mn} be a (k−1)-admissible solution
of the Eq. (3.1) with the position vector V in M̄ . We have the following
equality

Gijτij +
∑

k

τGijhikhkj

=

(
∇pαk−1(u, x, t)−

k−2∑

l=0

t∇pαlGl +
∑

p

GijR̄0ijp

)
〈V,Ep〉+ f ′

(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)
.

Proof. By Lemma 2.4, we have

τij = −τ
∑

k

hikhkj + f ′hij +
∑

k

(hijk + R̄0ijk) 〈V,Ek〉 ,

which results in

Gijτij = −τGij
∑

k

hikhkj + f ′Gijhij +
∑

k

Gij(hijk + R̄0ijk) 〈V,Ek〉 .

Note that

Gijhij = G−
k−2∑

l=0

t(k − l)αlGl = αk−1(u, x, t)−
k−2∑

l=0

t(k − l)αlGl
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and

Gijhijp = ∇pαk−1(u, x, t)−
k−2∑

l=0

t∇pαlGl.

Thus,

Gijτij =
∑

p

(
∇pαk−1(u, x, t)−

k−2∑

l=0

t∇pαlGl +GijR̄0ijp

)
〈V,Ep〉

+ f ′
(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)
−
∑

k

τGijhikhkj .

Therefore, we complete the proof.

Now we begin to estimate the second fundamental form.

Lemma 5.3 (C2 estimates). Assume that k ≥ 2 and

αl(u, x) ≥ cl > 0, ∀x ∈ Mn

for 0 ≤ l ≤ k − 1. If the k-admissible, closed graphic hypersurface G =
{(u(x), x) |x ∈ Mn} satisfies the Eq. (3.1) with the position vector V in M̄ ,
then there exists a constant C depending on n, k, cl, |αl|C1 , |αl|C2 , |∇u|C0 ,
the C0, C1 bounds of f and the curvature tensor R̄ such that for 1 ≤ i ≤ n,
the principal curvatures of G at V satisfy

|λi(V )| ≤ C, ∀x ∈ Mn.

Proof. Since k ≥ 2, G is 2-admissible, for sufficiently large c6, one has

|λi| ≤ c6H,

where the positive constant c6 depends on n, k. So, we only need to estimate
the mean curvature H of G. Taking the auxiliary function

W (x) = logH − log τ.

Assume that x0 is the maximum point of W . Then at x0, one has

0 = Wi =
Hi

H
− τi

τ
(5.1)

and

0 ≥ Wij(x0) =
Hij

H
− τij

τ
.(5.2)

Choosing a suitable coordinate system {x1, x2, ..., xn} in the neighborhood of
X0 = (u(x0), x0) ∈ G such that the matrix (hij)n×n is diagonal at X0, i.e.,
hij = hiiδij . This implies at x0,

0 ≥ GijWij(x0) =

n∑

p=1

1

H
Giihppii −

Giiτii
τ

.(5.3)
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By (2.3), we can obtain

hppii =hiipp + h2
pphii − h2

iihpp + R̄0iip;p + R̄0pip;i − 2hppR̄piip

+ hiiR̄0i0i + hppR̄0ii0 + hiiR̄0p0p + hiiR̄0ii0 − 2hiiR̄ipip.

Note that

Gijhij = G−
k−2∑

l=0

(k − l)αlGl = αk−1(u, x, t)−
k−2∑

l=0

(k − l)αlGl.

So, we have

∑

p

Giihppii =
∑

p

Gii
(
hiipp + R̄0iip;p + R̄0pip;i

)
−

∑

p

hppG
ii
(
h2
ii + 2R̄piip − R̄0ii0

)

+
∑

p

Giihii

(
h2
pp − 2R̄ipip + R̄0i0i + R̄0p0p + R̄0ii0

)

≥
∑

p

Giihiipp +
(
|A|2 − c8

)
(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)αlGl

)
− c7

∑

i

Gii

−HGii
(
h2
ii + c9

)
,

where the positive constant c7 depends on the C1 bound of the curvature ten-
sor R̄, the positive constants c8, c9 depend on the C0 bound of the curvature
tensor R̄. Together with Lemma 5.1, we know that (5.3) becomes

0 ≥ 1

H

n∑

p=1

Giihiipp +
|A|2 − c8

H

(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)αlGl

)
− Giiτii

τ

− c7
H

∑

i

Gii −Gii(h2
ii + c9)

≥ 1

H

n∑

p=1

(
∇p∇pαk−1(u, x, t) +

k−2∑

l=0

1

1 + 1
k+1−l

t(∇pαl)
2

αl
Gl −

k−2∑

l=0

t∇p∇pαlGl

)
− Giiτii

τ

+
|A|2 − c8

H

(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)
− c7

H

∑

i

Gii −Gii(h2
ii + c9).
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By Lemma 5.2, the above inequality becomes

0 ≥ 1

H

n∑

p=1

(
∇p∇pαk−1(u, x, t) +

k−2∑

l=0

1

1 + 1
k+1−l

t(∇pαl)
2

αl
Gl −

k−2∑

l=0

t∇p∇pαlGl

)

+
|A|2 − c8

H

(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)
− c7

H

∑

i

Gii −Gii(h2
ii + c9)

− 1

τ

(
∇pαk−1(u, x, t)−

k−2∑

l=0

t∇pαlGl +
∑

p

GiiR̄0iip

)
〈V,Ep〉

− f ′

τ

(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)
+Giih2

ii.

Hence, we have

0 ≥|A|2
H

(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)
−

( c7
H

+ c9

)∑

i

Gii − 〈V,Ep〉
τ

∑

p

GiiR̄0iip

+
1

H

n∑

p=1

(
∇p∇pαk−1(u, x, t) +

k−2∑

l=0

1

1 + 1
k+1−l

t(∇pαl)
2

αl
Gl −

k−2∑

l=0

t∇p∇pαlGl

)

− 〈V,Ep〉
τ

(
∇pαk−1(u, x, t)−

k−2∑

l=0

t∇pαlGl

)
−
(
c8
H

+
f ′

τ

)(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)
.

A direction calculation implies

(5.4) |∇pαk−1(u, x, t)| ≤ c10, |∇p∇pαk−1(u, x, t)| ≤ c11(1 +H),

where the positive constant c10 depends on |αl|C1 , and the positive constant
c11 depends on |αl|C2 . So,

− 1

H
c12

(
k−2∑

l=0

|Gl|+ 1

)
(H + 1)− c13

(
k−2∑

l=0

|Gl|+ 1

)

≤ 1

H

n∑

p=1

(
∇p∇pαk−1(u, x, t) +

k−2∑

l=0

1

1 + 1
k+1−l

t(∇pαl)
2

αl
Gl −

k−2∑

l=0

t∇p∇pαlGl

)

− 〈V,Ep〉
τ

(
∇pαk−1(u, x, t)−

k−2∑

l=0

t∇pαlGl

)

−
(
c8
H

+
f ′

τ

)(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)

(5.5)
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holds, where the positive constant c12 depends on c8, c10, n, k, cl, |αl|C1 and
the C1 bound of f , and the positive constant c13 depends on c8, c11, the C1

bound of f . Then, together with the fact |A|2 ≥ 1
nH

2, we have

1

n
Hαk−1(u, x, t)−

( c7
H

+ c14

)∑

i

Gii ≤

|A|2
H

(
αk−1(u, x, t)−

k−2∑

l=0

(k − l)tαlGl

)

−
( c7
H

+ c9

)∑

i

Gii − 〈V,Ep〉
τ

∑

p

GiiR̄0iip,

(5.6)

where the positive constant c14 depends on c9, the C
0 bound of the curvature

tensor R̄. From [12, page 11-12], we have

n∑

i=1

Gii =(n− k + 1)− (n− k + 2)
σkσk−2

σ2
k−1

+ (n− k + 2)α0
σk−2

σ2
k−1

+
k−2∑

l=1

αl
(n− k + 2)σlσk−2 − (n− l + 1)σk−1σl−1

σ2
k−1

.

Since graphic hypersurface G is k-admissible and αl > 0 for all 0 ≤ l ≤ k− 1,
thus

n∑

i=1

Gii ≤(n− k + 1) + (n− k + 2)α0
σk−2

σ2
k−1

+
k−2∑

l=1

αl
(n− k + 2)σlσk−2

σ2
k−1

=(n− k + 1) +
k−2∑

l=0

αl
(n− k + 2)σlσk−2

σ2
k−1

.

Together with Lemma 4.1, we have

ΣiG
ii ≤ (n− k + 1) + (n− k + 2)(k − 1)

k−2∑

l=0

αl|Gl||Gk−2|

≤ (n− k + 1) + (n− k + 2)(k − 1) sup |αl| sup |Gl|2.

Combining inequalities (5.5) and (5.6) with the fact that ΣiG
ii has positive

upper bound estimate, we have

0 ≥ 1

n
Hαk−1(u, x, t)−

( c7
H

+ c14

)
− 1

H
c12

(
k−2∑

l=0

|Gl|+ 1

)
(H + 1)− c13

(
k−2∑

l=0

|Gl|+ 1

)
.

Let us divide the rest of the proof into two cases:
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Case I. If σk

σk−1
≤ H

1
k , then we get from αl ≥ cl that

|Gl| =
σl

σk−1
≤ 1

αl

(
σk

σk−1
+ αl(u, x, t)

)
≤ c15(H

1
k + 1),

where the positive constant c15 depends on cl, |αl|C0 . Thus, we have a con-
tradiction when H is large enough, which implies H ≤ C.

Case II. If σk

σk−1
> H

1
k , then by Lemma 2.5, one has

|Gl| =
σl

σk−1
≤ σl

σl+1
· σl+1

σl+2
· · · ·σk−2

σk−1
≤ c16

(
σk−1

σk

)k−1−l

≤ H− k−1−l
k ,

where the constant c16 > 0 depends on k. In this case, we can also derive
H ≤ C easily.

In sum, the conclusion of Lemma 5.3 follows directly by using the fact
|λi| ≤ c6H.

6. Existence

In this section, we use the degree theory for nonlinear elliptic equation
developed in [16] to prove Theorem 1.2.

After establishing a priori estimates (see Lemmas 3.1, 4.1 and 5.3), we
know that the Eq. (3.1) is uniformly elliptic. By [5], [14] and Schauder
estimates, we have

|u|C4,α(Mn) ≤ C(6.1)

for any k-convex solution G to the equation (3.1). Define

C4,α
0 (Mn) = {u ∈ C4,α(Mn) : G = {(u(x), x) |x ∈ Mn} is k−convex}.

Let us consider the function

F (·; t) : C4,α
0 (Mn) → C2,α(Mn),

which is defined by

F (u, x, t) =
σk(κ(V ))

σk−1(κ(V ))
−

k−2∑

l=0

tαl(u, x)
σl(κ(V ))

σk−1(κ(V ))
− αk−1(u, x, t).

Set

OR = {u ∈ C4,α
0 (Mn) : |u|C4,α(Mn) < R},

which clearly is an open set in C4,α
0 (Mn). Moreover, if R is sufficiently large,

F (u, x, t) = 0 does not have solution on ∂OR by the priori estimate established
in (6.1). Therefore, the degree deg (F (·; t),OR, 0) is well-defined for 0 ≤ t ≤ 1.
Using the homotopic invariance of the degree, we have

deg(F (·; 1),OR, 0) = deg(F (·; 0),OR, 0).
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Lemma 3.2 shows that u = u0 is the unique solution to the above equation
for t = 0. By direct calculation, one has

F (su0, x; 0) = [1− ϕ(su0)]
σk(e)

σk−1(e)

f ′(su0)

f(su0)
.

Using the fact ϕ(u0) = 1, we have

δu0F (u0, x; 0) =
d

ds

∣∣∣∣∣
s=1

F (su0, x; 0)

= −ϕ′(u0)
σk(e)

σk−1(e)

f ′(u0)

f(u0)
u0 + [1− ϕ(u0)]

σk(e)

σk−1(e)

f ′′(u0)f(u0)− (f ′(u0))
2

f(u0)
u0

= −ϕ′(u0)
σk(e)

σk−1(e)

f ′(u0)

f(u0)
u0 > 0,

where δF (u0, x; 0) is the linearized operator of F at u0. Clearly, δF (u0, x; 0)
has the form

δωF (u0, x; 0) =
d

ds

∣∣∣∣∣
s=0

F (u0 + sw, x; 0) = −aijωij + biωi − ϕ′(u0)
σk(e)

σk−1(e)

f ′(u0)

f(u0)
ω,

where (aij)n×n is a positive definite matrix. Since −ϕ′(u0)
σk(e)

σk−1(e)
f ′(u0)
f(u0)

> 0,

then δF (u0, x; 0) is an invertible operator. Therefore,

deg(F (·; 1),OR, 0) = deg(F (·; 0),OR, 0) = ±1,

which implies that we can obtain a solution at t = 1. This finishes the proof
of Theorem 1.2.
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