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PERMUTATION TEST OF INDEPENDENCE IN TAILS FOR
DEPENDENT PROCESSES

Darko Brborović

Abstract. In this article, we propose a permutation test for indepen-
dence in the tails of two strongly mixing and strictly stationary sequences.

We establish the asymptotic validity of the test by demonstrating that

both the test statistic and its permutation distribution are asymptotically
normal. These results build upon and generalize findings from Basrak and

Brborović [1]. Additionally, we conduct a simulation study to evaluate the

size and power properties of the proposed test.

1. Introduction

In this article, we present a permutation test of independence in tails for
a sequence of bivariate random vectors Xi = (Yi, Zi), i ∈ N, which is strictly
stationary and strongly mixing. We assume Yi and Zi are non-negative for
all i ∈ N. Our test statistic is based on the number of joint upcrossings of the
sequences (Yi) and (Zi) over high thresholds, i.e.

(1.1)
n∑

i=1

I{Yi>u′
n,Zi>v′

n},

for some suitable increasing sequences (u′
n) and (v′n).

The permutation test of independence for i.i.d. (independent and identi-
cally distributed) Xi and based on the sample correlation statistic is a well-
known test that was generalized by DiCiccio and Romano [8]. In [8], the
authors extended the validity of the testing procedure under the null hypoth-
esis of uncorrelated samples by applying suitable studentization to the test
statistic. More details on the studentization procedure can be found in Chung
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and Romano [5] and the references therein. Subsequently, Romano and Tirlea
[21] further generalized the permutation testing procedure for strictly station-
ary and strongly mixing sequences under the null hypothesis that first-order
or higher-order autocorrelations are equal to zero. Additional results on per-
mutation testing for time series can be found in Tirlea [23].

Despite the usefulness of correlations as a measure of dependence between
two distributions, it has been noted in various references (see, for example,
Embrechts, McNeil, Straumann [9] or de la Pena, Ibragimov, Sharakhmetov
[7]) that correlation is an insufficient measure of dependence when dealing
with distributions that are not elliptic. Furthermore, correlation may not
be applicable to some heavy-tailed distributions, as their moments, even the
first moments, may be unbounded. On the other hand, many time series
exhibit heavy-tailed behavior (see Cont [6] for a discussion related to financial
applications).

Inspired by such observations, the authors in [1] propose a permutation
test of independence for the case where Xi are i.i.d. and based on a test
statistic that focuses on the tails of the distributions of Yi and Zi, as in (1.1).
By applying similar ideas to those in [8], but in the context of triangular
arrays, the authors in [1] extend the proposed permutation test procedure
to test for tail dependence by using appropriate studentization of the test
statistic. An illustration of the application of the proposed permutation test
to financial data can also be found in [1].

In this article, we present a generalization of the permutation test of
independence given in [1] (see Remark 2 in [1]) to the case where the sequence
(Xi) is strictly stationary and strongly mixing. Precise definitions, along with
further details are provided in the next section. We note that a generalization
of the test of independence for m-dependent processes Yi and Zi is presented
in Brborović [2]. The proofs of the main results in [2] were rather technical
and involved lengthy arguments, while the results presented here, especially
Theorem 2.5, are more in the spirit of the proof of the main Theorem 1 in
[1]. Please note that we assume the marginal distributions of the sequences
of random variables (Yi) and (Zi) are known; thus, we do not incorporate the
estimation of these marginal distributions into our testing procedure.

We will work under the null hypothesis

H0 : Yi and Zj are independent above some threshold level u0 > 0, i, j ∈ N.

Clearly, if sequences (Yi) and (Zi) are independent the null hypothesis H0 is
valid. Therefore, the permutation test we are proposing may be used as a test
of independence. In order to justify the application of the proposed permuta-
tion test, we prove that under the null hypothesis H0 both the test statistic Tn

given in (2.13) and its permutation distribution R̂n asymptotically follow the
standard normal distribution. To define the permutation distribution of the
test statistic, let Xn = (X1, . . . , Xn), Y

n = (Y1, . . . , Yn), Z
n = (Z1, . . . , Zn),
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n ∈ N. Denote the finite group of permutations of the set {1, 2, . . . , n} by
Gn. The group action of Gn on R2n is defined by the action of an element
π ∈ Gn as

(1.2) π((y1, z1), . . . (yn, zn)) = ((y1, zπ(1)), . . . (yn, zπ(n))),

where ((y1, z1), . . . (yn, zn)) ∈ R2n. The permutation distribution of the
statistic Tn is defined as

(1.3) R̂n(t) =
1

n!

∑

π∈Gn

I{Tn(Y n,Zn
π )≤t}, t ∈ R

where Zn
π = (Zπ(1), . . . , Zπ(n)). Its (1− α) quantile is defined as

r̂(1− α) = R̂−1
n (1− α) = inf{t : R̂n(t) ≥ 1− α}.

The permutation test rejects the null hypothesis if the value of the statistic
Tn is greater than r̂(1− α).

The asymptotic results we prove in this article allow us to construct a per-
mutation test that uses the permutation distribution as the null distribution.
To perform the test, we calculate the test statistic Tn for multiple permuta-
tions of the vector (Z1, . . . , Zn) and then reject the null hypothesis whenever
the original test statistic exceeds a predetermined quantile of the empirical
permutation distribution. A standard reference for permutation tests is the
book by Lehmann and Romano [17], Section 15.2. For a brief overview of
permutation tests, you can also refer to the Appendix in [1].

The article is organized into four sections. In the next section, we present
our main theoretical results supporting the construction of the permutation
test of independence. Section 3 presents a simulation study concerning the
suggested test’s power and in Section 4 we present proofs of the theoretical
results from Section 2.

2. Main results

Let Xi = (Yi, Zi), i ∈ N, be a sequence of strictly stationary, strongly
mixing, and non-negative bivariate random vectors defined on a probability
space (Ω,F , P ). We use Rosenblatt’s α-mixing coefficient to define the strong
mixing property. For n ∈ N and sequence (Xi)i∈N we define σ-algebras

En = σ(Xk : k ≤ n), Fn = σ(Xk : k ≥ n).

The α-mixing coefficient is given by

αX(n) = sup
k∈N

sup
A∈Ek,B∈Fk+n

|P (A ∩B)− P (A)P (B)|, n ∈ N.
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The sequence (Xi)i∈N is said to be strongly mixing if αX(n) → 0, n → ∞.
We will further assume:

(2.4)
∞∑

n=1

αX(n) < ∞.

Remark 2.1. Let f : R2 → R2 (or R) be a Borel measurable function
and let Vi = f(Xi) = f(Yi, Zi). Then, the sequence (Vi)i∈N is also strongly
mixing, with

αV (n) ≤ αX(n), n ∈ N.
To understand why, see Remarks 1.4 (III), 1.8, and 1.9 in Bradley [4]. The
argument is based on the fact that, for example, σ(Vk : k ≤ n) ⊂ σ(Xk : k ≤
n), n ∈ N. Consequently, the sequences (Yi)i∈N and (Zi)i∈N are also strongly
mixing, with

αY (n) ≤ αX(n), αZ(n) ≤ αX(n), n ∈ N.

Thus, for them the analogue of (2.4) also holds. Similarly, for g : R → R
Borel measurable and Wi = g(Yi), it follows that the sequence (Wi)i∈N is also
strongly mixing, with αW (n) ≤ αY (n), n ∈ N. □

Due to strict stationarity, all Yi, i ∈ N, and all Zi, i ∈ N, have the same
distribution. Let (mn)n∈N be an intermediate sequence of integers such that
mn → ∞ as n → ∞ and

(2.5) mn = O
(
n1−τ

)
,

for some 0 < τ < 1. Condition (2.5) implies that mn/n → 0, as n → ∞.
Denote by FY and FZ the distribution functions of Y1 and Z1, respectively.

Suppose that there exist two sequences (un) and (vn) of positive real numbers
such that un → sup{x : FY (x) < 1}, vn → sup{x : FZ(x) < 1} and

(2.6) nP (Y1 > un) → 1, nP (Z1 > vn) → 1, n → ∞.

Note that the existence of such sequences (un) and (vn) is immediate for
continuous random variables (see p. 430 in [17]). The same is true for regularly
varying sequences (see Theorem 3.6. in Resnick [20])

Let IY,i = I{Yi>u√
mn} and IZ,i = I{Zi>v√

mn}. Note that
√
mn may not

be an integer, but in that case, we use ⌊√mn⌋ as an index in u√
mn

, where ⌊x⌋
denotes the greatest integer less than or equal to x ∈ R (floor). For notational
simplicity, we omit the floor notation in the rest of the text.

Additionally, let pY = P (Yi > u√
mn

) and pZ = P (Zi > v√mn
). Note

that IY,i, IZ,i, pY and pZ depend on n. From (2.6) we have

(2.7) pY = pY (n) ∼
1√
mn

, pZ = pZ(n) ∼
1√
mn

.

where ∼ denotes asymptotic equivalence.
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Remark 2.2. Our null hypothesis H0, presented in Introduction, requires
that all random events {Yi > u} and {Zj > v} are independent for u, v > u0

and for all i, j ∈ N. Therefore, the sequences (un) and (vn) should be chosen
such that un, vn > u0, n ∈ N. This condition may be restrictive in some
cases under assumption (2.6), but it is always satisfied when (Yi) and (Zi)
are independent. We emphasize that the term ’independence in tails’ refers
to the specific context of the null hypothesis and the clarification above. It
should not be confused with the concept of tail independence, as defined in
[1]. □

We proceed with the following lemma, which is an immediate consequence
of assumptions (2.4), (2.5) and (2.6). Its proof is given in Section 4.

Lemma 2.3. Let (Yi, Zi), i ∈ N, be a sequence of strictly stationary,
strong mixing and non-negative bivariate random vectors such that (2.4) holds.
Suppose that a sequence of integers mn and a sequence of thresholds un and
vn are chosen such that (2.5) holds for some 0 < τ < 1 and (2.6) holds as
n → ∞. Then

√
mn

n

n∑

i=1

(IY,i − pY )
P−→ 0, n → ∞.

An analogous result holds for the sequences (Zn) and (vn).

Let Gn be a random element on Ω with uniform distribution on the per-
mutation group Gn. We assume that Gn and Xn are independent throughout
the rest of the document. Let PGn

be the probability on Gn induced by Gn.
Clearly PGn

({π}) = 1/n!, for π ∈ Gn. Consider the following auxiliary statis-
tic

Sn(X
n) =

mn

n

n∑

i=1

I{Yi>u√
mn}I{Zi>v√

mn} =
mn

n

n∑

i=1

IY,iIZ,i.

and define the permuted sum SGn
n as

SGn
n = Sn(GnX

n) :=
mn

n

n∑

i=1

I{Yi>u√
mn}I{ZGn(i)>v√

mn}=
mn

n

n∑

i=1

IY,iIZ,Gn(i).

Because of the independence between Xn and Gn, by Theorem 6.4 in Kallen-
berg [15], we obtain

E(SGn
n | Xn) =

∫

Gn

mn

n

n∑

i=1

IY,iIZ,π(i)PGn(dπ) (a.s.)

=
1

n!

∑

π∈Gn

mn

n

n∑

i=1

IY,iIZ,π(i) (a.s.)(2.8)
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Similarly, by the same theorem, we conclude that almost surely

P
(
SGn
n −E(SGn

n |Xn) ≤ t

√
Var (SGn

n |Xn) |Xn
)

=

∫

Gn

I{mn
n

∑n
i=1 IY,iIZ,π(i)−E(SGn

n |Xn)≤ t
√

Var (SGn
n |Xn)}PGn

(dπ)

=
1

n!

∑

π∈Gn

I{mn
n

∑n
i=1 IY,iIZ,π(i)−E(SGn

n |Xn)≤ t
√

Var (SGn
n |Xn)},(2.9)

for t ∈ R. A more detailed explanation of relations (2.8) and (2.9) is provided
in [1]. Further details can be found in Section 1.3. in [2].

Let

ĪY =
1

n

n∑

i=1

IY,i and ĪZ =
1

n

n∑

i=1

IZ,i.

Then we have the following lemma, whose proof is given in Section 4.

Lemma 2.4. With the same notation as above, we have

(2.10) E(SGn
n | Xn) = mnĪY ĪZ (a.s.),

and

(2.11) Var (SGn
n | Xn) =

1

n− 1

m2
n

n2

n∑

i=1

n∑

j=1

(
IY,i − ĪY

)2(
IZ,j − ĪZ

)2
(a.s.).

Our main asymptotic result is summarized in the following theorem.

Theorem 2.5. Let Xi = (Yi, Zi), i ∈ N, be a sequence of strictly station-
ary, strongly mixing, and non-negative bivariate random vectors for which
(2.4) holds. Suppose that a sequence of integers mn and a sequence of thresh-
olds un and vn are chosen such that (2.5) holds for some 0 < τ < 1 and
(2.6) holds as n → ∞. Then, for t ∈ R, we have the following convergence in
probability

(2.12) (P ) lim
n→∞

P
(
SGn
n − E(SGn

n |Xn) ≤ t

√
Var (SGn

n |Xn) | Xn
)
= Φ(t),

where Φ is the standard normal cumulative distribution function.

Define the statistic Tn as

(2.13) Tn(X
n) :=

√
n− 1

∑n
i=1 IY,iIZ,i − nĪY ĪZ√∑n

i=1

(
IY,i − ĪY

)2√∑n
j=1

(
IZ,j − ĪZ

)2 .

Then we have

Tn(GnX
n) =

√
n− 1

∑n
i=1 IY,iIZ,Gn(i) − nĪY ĪZ√∑n

i=1

(
IY,i − ĪY

)2√∑n
j=1

(
IZ,j − ĪZ

)2 .
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Use the expressions in (2.10) and (2.11) and rearrange slightly the terms of

(SGn
n − E(SGn

n |Xn))/
√

Var (SGn
n |Xn) to see that

(2.14) Tn(GnX
n) =

SGn
n − E(SGn

n |Xn)√
Var (SGn

n |Xn)
.

Recall the definition of the permutation distribution R̂n(t) of the statistic Tn

given in (1.3). By using the expression in (2.9), we conclude from (2.14) that

Theorem 2.5 states that the permutation distribution R̂n(t) of the statistic
Tn converges in probability to the standard normal distribution function Φ.
In other words, we have shown

(2.15) (P ) lim
n→∞

R̂n(t) = Φ(t), t ∈ R, as n → ∞.

Observe that when Y and Z are independent, Xn and GnX
n have the same

distribution for any permutation Gn. Then, by definition, the randomization
hypothesis holds for Xn (see [17], Definition 15.2.1.). Note that the permu-

tation distribution R̂n(t) is a function of the random variables IY,i and IZ,i,
which are independent under the null hypothesis. Since the randomization
hypothesis holds for these variables, and due to the linearity of expectation,
it follows from the definition of the permutation distribution that

E(R̂n(t)) = P (Tn ≤ t), t ∈ R.

Given the convergence in probability in (2.15), and the fact that R̂n(t) is
uniformly bounded by 1 for all n ∈ N, Theorem 25.12 in Billingsley [3] implies
that

lim
n→∞

E(R̂n(t)) = E(Φ(t)) = Φ(t), t ∈ R.

From the above, we deduce that

lim
n→∞

P (Tn ≤ t) = Φ(t), t ∈ R.

Thus, we conclude that the distribution of the test statistic Tn also con-
verges to the standard normal distribution. Hence, the permutation distri-
bution R̂n(t) asymptotically approximates the true sampling distribution of
the statistic Tn, enabling the construction of the permutation test. Note that
the convergence of the quantiles of the permutation distribution of the test
statistic Tn to the quantiles of the standard normal distribution follows from
Lemma 11.2.1 in [17].

We summarize the above considerations in the following theorem. Its
proof is given in Section 4.

Theorem 2.6. Under the same assumptions as in Theorem 2.5, and un-
der the null hypothesis H0, the permutation distribution R̂n of the statistic Tn
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satisfies

(2.16) sup
t∈R

∣∣∣R̂n(t)− Φ(t)
∣∣∣→ 0, n → ∞,

in probability. It also holds that

(2.17) sup
t∈R

|Rn(t)− Φ(t)| → 0, n → ∞,

where Rn denotes the distribution of the statistic Tn.

Remark 2.7. In Remark 2.2, we noted that independent processes (Yi)
and (Zi) are also independent in tails. One may naturally ask whether there
are examples of processes that are independent in tails, yet not fully indepen-
dent. Such an example can be constructed as follows: Let (Bi)i∈N be an i.i.d.
sequence of Bernoulli random variables with parameter η ∈ (0, 1). Define the
bivariate sequence

(Yi, Zi) = (1−Bi)(U
1
i , V

1
i ) +Bi(U

2
i , V

2
i ), i ∈ N,

where: (U1
i , V

1
i ) are dependent random vectors supported on [0, u0]

2, and U2
i

and V 2
i are independent Pareto random variables with distribution function

F (x) = (1− u0/x)I{x>u0}. We assume Bi are independent of U2
i and V 2

i .

In this construction, dependence between U1
i and V 1

i may be introduced
in various ways. For instance, one can take (U0

i , V
0
i ) to follow a dependent

copula C on [0, 1]2, and then define U1
i = u0U

0
i and V 1

i = u0V
0
i . In this setup,

(Yi, Zi) are dependent overall, but independent above the threshold u0, since
joint exceedances beyond u0 only arise from the independent Pareto random
variables. □

3. Simulations

In this section, we investigate the behaviour of the test statistic Tn de-
fined in (2.13) through a simulation study. We denote the simulated data by
(Y1, Z1), . . . , (Yn, Zn), where n ∈ N. The threshold levels used to calculate
the value of the statistic Tn are determined by the empirical upper quantiles
of the given data. After calculating the value of Tn, the following permuted
values of Tn are computed:

Tn(Y
n, Zn

π ) :=
√
n− 1

∑n
i=1 IY,iIZ,π(i) − nĪY ĪZ√∑n

i=1

(
IY,i − ĪY

)2√∑n
j=1

(
IZ,j − ĪZ

)2 .

For a given significance level α, we calculate k = n − ⌊nα⌋ and compare the
value of the statistic with the k-th largest value among the permuted values
of Tn. The permutation test rejects the null hypothesis when the value of the
test statistic exceeds the k-th largest value of the permuted statistics. In the
case where the value equals the k-th largest value, the test randomizes (see
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test ϕ in [17], Section 15). This procedure is repeated to obtain simulated
rejection probabilities, referred to as empirical rejection probabilities.

3.1. Independent sequences (Yi) and (Zi). A sequence {Yi, i ∈ N} is called
M -dependent, M ∈ N0, if for all j ∈ N, the vector (Y1, . . . , Yj) is independent
of (Yj+k, Yj+k+1 . . .) whenever k > M . An i.i.d. sequence is zero-dependent
(i.e., M = 0).

It is natural to investigate the proposed permutation testing procedure for
two independent sequences (Yi) and (Zi) that are 1-dependent, 2-dependent
or 3-dependent. Where applicable, we simulate Pareto-type random variables.
Specifically, to simulate Pareto-distributed random variables, we first generate
i.i.d. random variables Ui from a continuous uniform distribution U(0, 1), and
then define the Pareto-distributed random variables Xi = 1/Ui. Below, we
list various combinations of independent sequences (Yi) and (Zi) for which we
provide simulation results.

1) Let Ui and Vi, i ∈ N, be two independent sequences of i.i.d. random
variables from standard normal distribution. Define two independent
sequences as Yi = Ui ·Ui+1 and Zi = Vi ·Vi+1. This type of 1-dependent
sequences is more thoroughly analysed in Example 2.1. in [21].

2) Let Ui and Vi, i ∈ N, be two independent sequences of i.i.d. Pareto-
distributed random variables. Define two independent sequences as
Yi = Ui · Ui+1 and Zi = Vi · Vi+1. (Yi) and (Zi) are 1-dependent
sequences.

3) Let Ui and Vi, i ∈ N, be two independent sequences of i.i.d. Pareto-
distributed random variables. Define two independent sequences as
Yi = Ui + Ui+1 and Zi = Vi + Vi+1. (Yi) and (Zi) are 1-dependent
sequences.

4) Let Ui and Vi, i ∈ N, be two independent sequences of i.i.d. Pareto-
distributed random variables. Define two independent sequences as
Yi = Ui + Ui+1 and Zi = Vi + Vi+1 + Vi+2 + Vi+3. Here, (Yi) is a
1-dependent sequence, while (Zi) is a 3-dependent sequence.

5) Let Ui and Vi, i ∈ N, be two independent sequences of i.i.d. Pareto-
distributed random variables. Define two independent sequences Yi =
Ui+Ui+1 and Zi = Vi+Vi+2. (Yi) is 1-dependent sequences while (Zi)
is 2-dependent.

A generalized autoregressive conditional heteroscedastic (GARCH) process
(Xt)t∈Z with parameters p and q, denoted as GARCH(p, q), and volatility
(σt)t∈Z, is a solution to the equations:

Xt = σtϵt, σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j , t ∈ Z,
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where (ϵi) is a sequence of i.i.d. random variables. A GARCH(p, q) admits
strictly stationary solution if

E(ϵ20)

p∑

i=1

αi +

q∑

j=1

βj < 1.

More on this topic can be found in Lindner [18] (see Theorem 3).
In models 6) and 7), we utilize independent GARCH processes to generate

the sequences (Yi) and (Zi), where ϵi are standard normal random variables,
with the following parameter settings:

6) (Yi) and (Zi) are GARCH(1, 1) processes with parameters α0 = 0.5,
α1 = 0.2 and β1 = 0.7.

7) (Yi) and (Zi) are GARCH(2, 2) processes with parameters α0 = 0.5,
α1 = 0.1, α2 = 0.1, β1 = 0.4 and β2 = 0.2.

Below, we provide empirical rejection probabilities for the above-listed cases
at various threshold levels (30%, 20%, 10%). Those threshold levels refer to
upper-tail quantiles. For example, the threshold level of 20% indicates that
the upper 20% quantile of the simulated data was used (i.e., the 80% quantile
of the data). In other words, in this case, we are using the most extreme 20%
of the simulated data points. In all simulations, the significance level of the
test is set at 5%, the sample size is 1, 000, and the number of permutations and
repetitions is 2, 000. Additionally, simulations were conducted with varying
significance levels, sample sizes, and numbers of permutations and repetitions,
yielding results comparable to those presented here.

Table 1. Empirical rejection probabilities for various cases
of dependence in independent sequences (Yi) and (Zi). The
significance level of the test is set at 5%, the sample size is
1, 000, and the number of permutations and repetitions is
2, 000.

Model for Yi and Zi 30% threshold 20% threshold 10% threshold
Case 1) 0.0490 0.0515 0.0560
Case 2) 0.0675 0.0635 0.0655
Case 3) 0.0740 0.0710 0.0760
Case 4) 0.0905 0.0880 0.0875
Case 5) 0.0500 0.0505 0.0465
Case 6) 0.0515 0.0530 0.0605
Case 7) 0.0575 0.0570 0.0550

Permutation tests are exact for independent data (see Section 15 in [17]).
Therefore, for the significance level set at 5%, the empirical rejection probabil-
ities presented in Table 1 should be close to 5%. In most of the cases presented
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in Table 1, this is indeed the case. However, rows 3 and 4 indicate that the
dependence caused by the addition of i.i.d. Pareto-type random variables in-
creases the empirical rejection probabilities above the desired level. This issue
becomes more pronounced as the dependence strengthens. It is worth noting,
though we do not present the simulation results here, that this problem was
less severe when Ui and Vi were drawn from other distributions, such as the
standard normal or uniform distribution.

Pareto-type random variables typically show many small values punctu-
ated by occasional large spikes. The dependence models in cases 2), 3) and
4) combine these spikes with neighbouring elements of Yi and Zi, forming
clusters of large values. Please note the difference in case 5), where Zi is not
defined as the sum of two consecutive members of the sequence (Vi), thereby
partially preventing the clustering of large spikes mentioned above.

To investigate whether other types of clustering result in similar devia-
tions from expected rejection probabilities, we added models 6) and 7), based
on GARCH processes, which are known for modelling clusters of extremes,
such as volatility clustering in financial markets. As shown in Table 1, the
empirical rejection probabilities for the GARCH models closely match the
expected value of 5%. Similar results were observed when simulations were
performed using different GARCH parameters. Additionally, we note that
GARCH processes can attain both positive and negative values. Therefore, a
30% upper quantile reported in Table 1 refers to 60% of extreme data points
in the upper tail, which may be excessive. However, when simulations were
run with a 5% threshold level (i.e., using 10% of data in the upper quantile)
we obtained similar results: the empirical rejection probability in case 6) was
0.049, while in case 7) it was 0.047.

To gain further insight into the impact of dependence on the empirical
rejection probabilities in cases 3) and 4), we conducted additional simulations
by modifying the process (Yi) to Yi = Ui + b · Ui+1, where b ∈ [0, 1]. The pa-
rameter b controls the strength of dependence between adjacent observations,
allowing us to quantify how varying levels of autocorrelation within sequences
impact the performance of the test. The results for selected values of b are
shown in the table below, with a threshold level set to 20%.

Table 2. Empirical rejection probabilities for different val-
ues of b. The significance level of the test is set at 5%, the
sample size is 1, 000, and the number of permutations and
repetitions is 2, 000.

Model for Yi and Zi b = 0.8 b = 0.6 b = 0.4 b = 0.2 b = 0
Case 3), Yi = Ui + b · Ui+1 0.0750 0.0665 0.0650 0.0605 0.0575
Case 4), Yi = Ui + b · Ui+1 0.0865 0.0815 0.0730 0.0685 0.0455
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As expected, as the dependence within sequences decreases (i.e., as b
decreases), the empirical rejection probabilities approach 5%.

Overall, we conclude that the proposed permutation test demonstrates
solid size characteristics. The somewhat inflated rejection rates observed in
cases 3) and 4) are likely a result of the strong dependence caused by the
addition of i.i.d. Pareto-type random variables. These issues could potentially
be addressed by using block permutation tests, such as those analyzed in
[2]. Note that the results presented in Section 3 of [2] are valid under the
assumption of independence in tails, as described by the null hypothesis of
this article.

3.2. Dependent sequences (Yi) and (Zi). Let (U1
i ), (U

2
i ), (U

3
i ), (U

4
i ) and (U5

i )
be five independent i.i.d. sequences of random variables distributed as U(0, 1).
We define the corresponding sequences of independent Pareto-distributed ran-
dom variables as X1

i = 1/U1
i , X2

i = 1/U2
i , X3

i = 1/U3
i , X4

i = 1/U4
i and

X5
i = 1/U5

i , i = 1, 2, . . .. We then analyse the following models of linear
dependence:

a) Let Yi = X1
i +a ·X2

i and Zi = X3
i +a ·X2

i , where a ∈ [0, 1]. This type
of dependence is more thoroughly analysed in Section 3.2 in [1].

b) Let Yi = X1
i +X2

i +a ·X3
i and Zi = X4

i +X5
i +a ·X3

i , where a ∈ [0, 1].
c) Let Yi = X1

i + X1
i+1 + a · X2

i and Zi = X3
i + X3

i+1 + a · X2
i , where

a ∈ [0, 1].

Figure 1 shows simulation results for these models, with the threshold level
set at 20%, the significance level of the test set at 5% and the number of
permutation and repeats set to 2, 000.

As the parameter a increases, the dependence between the sequences (Yi)
and (Zi) increases in all three models. The rejection probabilities converge
toward 1 most rapidly in model a), which is expected since the dependence
structure in this model depends directly on the parameter a. In models b)
and c), the increase in rejection probabilities is comparatively slower, as the
dependence on a is diluted across additional terms. However, the rise remains
satisfactorily fast, especially considering the behaviour of Pareto-type pro-
cesses, which exhibit many small values with occasional large spikes. Similar
results were obtained when different threshold levels (e.g., 10% or 5%) were
used.

Next, we present simulation results for dependent GARCH processes.
Specifically, we used GARCH(1, 1) and GARCH(2, 2) models with the same
parameters as described in cases 6) and 7) above. To introduce dependence
between the sequences (Yi) and (Zi), we simulated correlated innovations ϵi
for both sequences. These innovations were drawn from a bivariate normal
distribution with mean zero, unit variance, and correlation parameter ρ. The
relationship between the strength of dependence between the sequences (Yi)
and (Zi), measured by ρ, and the empirical rejection probabilities of the
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Figure 1. Rejection probabilities for models a)-c). The
threshold level is set at 20%, the significance level of the
test is 5% and the number of permutation and repeats is
2, 000.

proposed permutation test is presented in Table 3. For illustration, we chose
threshold levels of 10% and 5%. Due to the possibility of both positive and
negative values in the simulated GARCH processes, these threshold levels
correspond to the 20% and 10% upper-tail quantiles of the simulated data,
respectively.

Table 3. Empirical rejection probabilities for dependent
GARCH sequences with different values of ρ. The signifi-
cance level of the test is set at 5%, the sample size is 1, 000,
and the number of permutations and repetitions is 2, 000.
Parameter ρ denotes the correlation between innovations of
two GARCH processes we simulate.

Model for Yi and Zi ρ=0.0 ρ=0.1 ρ=0.2 ρ=0.3 ρ=0.4
GARCH(1, 1), thresh. 10% 0.0455 0.2910 0.6780 0.9390 0.9980
GARCH(1, 1), thresh. 5% 0.0535 0.1770 0.4065 0.7040 0.8975
GARCH(2, 2), thresh. 10% 0.0420 0.2960 0.7140 0.9570 0.9985
GARCH(2, 2), thresh. 5% 0.0495 0.1925 0.4590 0.7500 0.9270
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As we can see from the Table 3, there are notable differences in rejection
probabilities for different threshold levels. A similar effect was observed in
simulation results from [1] (see Section 3.4 in [1]).

Although not explicitly shown here, we tested our statistic Tn on various
models of i.i.d. data (Yi, Zi)i∈N. Our simulation results were consistent with

those obtained for the studentized statistic T̂n in all cases reported in [1],
including those based on the Gumbel-Hougaard, Morgenstern and Normal
copula. Additionally, we conducted simulations using the GARCH(1, 1) model
with innovations generated from the Gumbel-Hougaard copula, and the results
were comparable to those shown in Figure 2 in [1].

Overall, our simulation studies suggest that the proposed test demon-
strates considerable power against alternatives.

All the simulations and analysis were done in R [19] using the publicly
available packages permute [22], rugarch [10] and copula [12], [13], [16], [24].

4. Proofs

Proof of Lemma 2.3. Let n ∈ N and ϵ > 0 be arbitrarily chosen. By
the Chebyshev’s inequality, we have

(4.18) P
(√mn

n

∣∣∣
n∑

i=1

(IY,i − pY )
∣∣∣ > ϵ

)
≤ mn

n2ϵ2
Var

( n∑

i=1

(IY,i − pY )
)
.

Due to the stationarity of the sequence (Yi), we have

Var
( n∑

i=1

(IY,i − pY )
)
= nVar (IY,1 − pY )

+ 2

n∑

i=2

(n− i+ 1)Cov (IY,1 − pY , IY,i − pY ).(4.19)

Since E(IY,i − pY ) = 0, we immediately get

Var (IY,1 − pY ) = E(IY,1 − pY )
2 = pY − p2Y = pY (1− pY ).

To bound the covariance term, we use the fact that 0 ≤ IY,i ≤ 1 (a.s.),
i = 1, 2, . . . n, and apply an inequality for covariances of strongly mixing
stationary sequences due to Ibragimov [14]. For i ∈ {2, . . . , n} we have

|Cov (IY,1 − pY , IY,i − pY )| = |Cov (IY,1, IY,i)|
≤ 2αIY (i)∥IY,1∥∞∥IY,i∥∞ ≤ 2αY (i).

Note that αIY is the α-mixing coefficient of the stationary sequence (IY,i)i∈N.
The last inequality above follows from the argument given in Remark 2.1.

Taking the absolute value in (4.19), using the triangle inequality, and
applying the last inequality above, we conclude that the right-hand side in
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(4.18) can be bounded by

mn

n2ϵ2
npY (1− pY ) + 4

mn

n2ϵ2

n∑

i=2

(n− i+ 1)αY (i) ≤
mn

nϵ2
pY + 4

mn

nϵ2

∞∑

i=1

αY (i).

Note that
∑∞

i=1 αY (i) < ∞ follows from assumption (2.4) and Remark 2.1.

Also, pY ∼ m
−1/2
n by assumption (2.6). Then, by assumption (2.5) it follows

that the right-hand side in (4.18) converges to zero as n → ∞, and thus the
claim of the Lemma follows.

Proof of Lemma 2.4. The proofs of this lemma and Theorem 2.5 are
based on results proven in Hoeffding [11], with the main result given by the
Combinatorial Central Limit Theorem (Theorem 4 in [11]). The setup of the
problem analyzed in [11] is the following: assume that for each n ∈ N we
are given 2n real numbers an(i), bn(i), i = 1, 2, . . . , n, such that neither all
instances of an(i) nor those of bn(i) are equal. Let

(4.20) Sn =

n∑

i=1

an(i)bn(Gn(i)).

The mean and variance of Sn can be expressed explicitly, as is shown in
Theorem 2 in [11], to get:

(4.21) ESn =
1

n

n∑

i=1

n∑

j=1

an(i)bn(j),

(4.22) Var (Sn) =
1

n− 1

n∑

i=1

n∑

j=1

d2n(i, j),

where

dn(i, j) = an(i)bn(j)−
1

n

n∑

g=1

an(g)bn(j)

− 1

n

n∑

h=1

an(i)bn(h) +
1

n2

n∑

g=1

n∑

h=1

an(g)bn(h).(4.23)

To apply the above setup, we define two triangular arrays of random variables,
an(i) and bn(i), i ∈ {1, . . . , n}, as

an(i) =

√
mn

n
IY,i and bn(i) =

√
mn

n
IZ,i.

Next, we define

ān :=
1

n

n∑

i=1

an(i) =

√
mn

n

1

n

n∑

i=1

IY,i
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and

b̄n :=
1

n

n∑

i=1

bn(i) =

√
mn

n

1

n

n∑

i=1

IZ,i.

On the right-hand side of (2.8) we recognize the expectation of Sn, relative
to the probability measure PGn . From (4.21) we conclude that E(SGn

n | Xn)
is almost surely equal to

1

n

n∑

i=1

n∑

j=1

an(i)bn(j) =
1

n

mn

n

n∑

i=1

n∑

j=1

IY,iIZ,j

and so (2.10) follows. To prove (2.11) first observe that by relation (4.23) we
have

dn(i, j) =
mn

n
IY,iIZ,j −

1

n

mn

n

n∑

k=1

IY,kIZ,j

− 1

n

mn

n

n∑

l=1

IY,iIZ,l +
1

n2

mn

n

n∑

k=1

n∑

l=1

IY,kIZ,l

=
mn

n
IZ,j

(
IY,i −

1

n

n∑

k=1

IY,k

)
− mn

n

1

n

n∑

l=1

IZ,l

(
IY,i −

1

n

n∑

k=1

IY,k

)

=
mn

n

(
IY,i − ĪY

)(
IZ,j − ĪZ

)
.(4.24)

Use similar arguments as those employed in (2.8), together with (2.10), to
obtain

Var (SGn
n | Xn) =

1

n!

∑

π∈Gn

(mn

n

n∑

i=1

IY,iIZ,π(i) −mnĪY ĪZ

)2
(a.s.).

Note that the right-hand side of the above expression is the variance of Sn and
then apply (4.22), along with the expression for dn(i, j) in (4.24), to conclude
that (2.11) holds.

In the proofs of the next two theorems, we will repeatedly use Theorem
20.5 from [3], which provides a characterization of convergence in probability:
a sequence of random variables (Xn)n∈N converges in probability to a random
variable X if and only if every subsequence {nj : j ∈ N} ⊂ N contains a
further subsequence {njk : k ∈ N} ⊂ {nj : j ∈ N} such that

Xnjk
→ X, k → ∞ (a.s.).

Proof of Theorem 2.5. The proof of this theorem relies on the Com-
binatorial Central Limit Theorem due to Hoeffding (Theorem 4 in [11]). Fol-
lowing the notation used in the proof of Lemma 2.4 we need to verify the
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condition from Hoeffding’s CLT

(4.25) lim
n→∞

n
max1≤i≤n(an(i)− ān)

2

∑n
i=1(an(i)− ān)2

max1≤i≤n(bn(i)− b̄n)
2

∑n
i=1(bn(i)− b̄n)2

= 0.

Since an(i) and bn(i) are random variables, we need the almost sure conver-
gence in the above expression to hold. The idea behind the proof of this
theorem is to use the characterization of convergence in probability presented
before this proof.

For simplicity, we focus separately on the numerator and the denominator
of the expression in (4.25). The numerator in (4.25) is equal to

n max
1≤i≤n

(√mn

n
IY,i−

√
mn

n

1

n

n∑

j=1

IY,j

)2
max
1≤i≤n

(√mn

n
IZ,i−

√
mn

n

1

n

n∑

j=1

IZ,j

)2
,

or, equivalently,

m2
n

n
max
1≤i≤n

(
IY,i − ĪY

)2
max
1≤i≤n

(
IZ,i − ĪZ

)2
.

Both maxima in the numerator are almost surely bounded by 1 since this is
true for each IY,i and IZ,i. Therefore, the numerator is almost surely bounded
by m2

n/n. Consequently, the expression under the limit in (4.25) is almost
surely bounded by

(4.26)
1

n
m2

n

∑n
i=1(an(i)− ān)2

∑n
i=1(bn(i)− b̄n)2

.

By Lemma 2.3, we know that

√
mn

n

n∑

i=1

(IY,i − pY )
P−→ 0, and

√
mn

n

n∑

i=1

(IZ,i − pZ)
P−→ 0, as n → ∞.

Let {nj : j ∈ N} be an arbitrary subsequence of natural numbers. Using
Theorem 20.5. from [3], we conclude that there exists a further subsequence
{njk : k ∈ N} ⊂ {nj : j ∈ N} such that

(4.27)

√
mnjk

njk

njk∑

i=1

(IY,i − pY ) → 0, k → ∞ (a.s.)

and yet another subsequence {njkl
: l ∈ N} ⊂ {njk : k ∈ N} such that

(4.28)

√
mnjkl

njkl

njkl∑

i=1

(IZ,i − pZ) → 0, l → ∞ (a.s.).

Clearly, (4.27) also holds with njkl
instead of njk . We conclude that there

exists a subsequence of {nj : j ∈ N} such that both (4.27) and (4.28) are true.
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For notational simplicity we will denote that subsequence by {njk} in the rest
of the proof. Note that now

IY,i = I{Yi>
√

umnjk
}

with an analogous relation for the sequence Z. We will show that
(4.29)

lim
k→∞

njk

max1≤i≤njk
(anjk

(i)− ānjk
)2

∑njk
i=1(anjk

(i)− ānjk
)2

max1≤i≤njk
(bnjk

(i)− b̄njk
)2

∑njk
i=1(bnjk

(i)− b̄njk
)2

= 0.

holds on the set A, i.e. almost surely. Using the calculations from the begin-
ning of the proof of this theorem, we conclude that the expression under the
limit in (4.29) is almost surely bounded by

(4.30)
1

njk

m2
njk

∑njk
i=1(anjk

(i)− ānjk
)2
∑njk

i=1(bnjk
(i)− b̄njk

)2
.

We will show that the denominator in (4.30) tends to +∞ almost surely. Both
sums in the denominator of (4.30) can be treated analogously, so we focus on
the first sum. We have:
njk∑

i=1

(anjk
(i)− ānjk

)2 =

njk∑

i=1

(√mnjk

njk

IY,i −
1

njk

njk∑

j=1

√
mnjk

njk

IY,j

)2

=
mnjk

njk

( njk∑

i=1

I2Y,i − 2

njk∑

i=1

IY,i
1

njk

njk∑

j=1

IY,j +

njk∑

i=1

( 1

njk

njk∑

j=1

IY,j

)2
)

=
mnjk

njk

njk∑

i=1

IY,i −mnjk

( 1

njk

njk∑

j=1

IY,j

)2
= mnjk

ĪY (1− ĪY )

and analogously
njk∑

i=1

(bnjk
(i)− b̄njk

)2 = mnjk
ĪZ(1− ĪZ).

Note, now we have

ĪY =
1

njk

njk∑

i=1

IY,i.

We conclude that the denominator in (4.30) can be written as
√
njk√
mnjk

√
mnjk

ĪY (1− ĪY )

√
njk√
mnjk

√
mnjk

ĪZ(1− ĪZ).

Consider the term
√
mnjk

ĪY . We have

√
mnjk

ĪY =

√
mnjk

njk

njk∑

i=1

(IY,i−pY +pY ) =

√
mnjk

njk

njk∑

i=1

(IY,i−pY )+
√

mnjk
pY ,
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We know, by the assumption (2.6), that
√
mnpY → 1, as n → ∞. This is

also true for the subsequence (mnjk
) of (mn). By using Lemma 2.3 and the

choice of the subsequence (njk), we conclude that
√
mnjk

ĪY converges to 1

almost surely. Therefore, ĪY → 0 almost surely and the same is then true for√
mnjk

ĪY ĪY . Thus,
√
mnjk

ĪY (1− ĪY ) → 1 almost surely as k → ∞.

We conclude that both
√
mnjk

ĪY (1 − ĪY ) and
√
mnjk

ĪZ(1 − ĪZ) almost

surely converge to 1. Then, the whole expression in (4.30) converges to zero
because of the term

√
njk/

√
mnjk

in the denominator, which tends to infinity

(recall (2.5)).
Note that, after taking into account the definition of the probability PGn ,

we can explicitly write the statement of the Combinatorial Central Limit
Theorem as

(4.31) lim
n→∞

1

n!

∑

π∈Gn

I{(Sπ
n−ESn)/

√
Var Sn≤x} = Φ(x), (a.s.)

where we sum over all permutations π of the set {1, 2, . . . , n} and

Sπ
n =

n∑

i=1

an(i)bn(π(i)).

Compare (4.31) with relation (2.9) to conclude that almost surely
(4.32)

lim
k→∞

P
(
S
Gnjk
njk

− E(S
Gnjk
njk

|Xnjk ) ≤ t

√
Var (S

Gnjk
njk

|Xnjk ) | Xnjk

)
= Φ(t).

We conclude that for any arbitrary subsequence of natural numbers {nj},
there exists a further subsequence {njk} of {nj} such that (4.32) holds. Then,
again by Theorem 20.5. from [3], it follows that (2.12) holds.

Proof of Theorem 2.6. The relation in (2.16) follows by a subsequence
argument, specifically by the repeated use of Theorem 20.5 from [3].

Suppose that (2.15) holds, and choose an arbitrary subsequence (nk) in
N and a dense countable set D = {t1, t2, . . .} in R. Then, for t1 ∈ D, there

exists a further subsequence (n1,i) such that R̂n1,i
(t1) → Φ(t1) holds almost

surely. Furthermore, for this sequence, there exists yet another subsequence,
say (n2,i), such that R̂n2,i(t2) → Φ(t2) holds almost surely. We continue this
process for each tj ∈ D, creating a sequence of subsequences (nj,i), where
each (nj+1,i) is a subsequence of (nj,i).

To handle convergence for all points in D, we apply the diagonal argu-
ment. Define a new sequence li by taking li = ni,i. The sequence (li) is

constructed such that, for each t ∈ D, R̂li(t) → Φ(t) almost surely. Due to
the continuity of Φ and right continuity of Rli , this convergence also holds for
all t ∈ R.
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By Polya’s theorem (see Theorem 11.2.9 in [17]), which states that if
a sequence of distribution functions converges to a continuous distribution
function at all continuity points, then the convergence is uniform, we obtain
that

sup
t∈R

∣∣∣R̂li(t)− Φ(t)
∣∣∣→ 0, as i → ∞.

Since the original subsequence (nk) was arbitrary, we have shown that for
every subsequence, there exists a further subsequence along which the con-
vergence is almost surely uniform. By Theorem 20.5 from [3], this implies
that (2.16) holds. The relation in (2.17) follows directly from Polya’s theorem
as well.
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