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PARTITIONS INTO TRIPLES WITH EQUAL PRODUCTS
AND FAMILIES OF ELLIPTIC CURVES

Ahmed El Amine Youmbai, Arman Shamsi Zargar and Maksym
Voznyy

Abstract. Let Sℓ(M,N) denote a set of ℓ triples of positive integers

having the same sum M and the same product N . For each 2 ≤ ℓ ≤ 4
we establish a connection between a subset of Sℓ(M,N) with (integral)

parametric elements and a family of elliptic curves. When ℓ = 2 and

3, we use certain known subsets of Sℓ(M,N) with parametric elements
and respectively find families of elliptic curves of generic rank ≥ 5 and

≥ 6, while for ℓ = 4 we first obtain a subset of Sℓ(M,N) with parametric

elements, then construct a family of elliptic curves of generic rank ≥ 8.
Finally, we perform a computer search within these families to find specific

curves with rank ≥ 11 and in particular we found two curves of rank 14.

1. Introduction

For any positive integers ℓ and n, let S(n)
ℓ (M,N) denote a set of ℓ triples

(xn
j1, x

n
j2, x

n
j3) of positive integers having the same sum M and the same prod-

uct N . For the j-th element of the set, we define

M
(n)
j =

3∑

i=1

xn
ji, N

(n)
j =

3∏

i=1

xn
ji, T

(n)
j =

∑

1≤i<k≤3

xn
jix

n
jk, (1 ≤ j ≤ ℓ).

We drop the notation “(n)” from the terminology when n = 1.
In this context, we are interested in the following partitioning problem,

which from the geometric point of view, is equivalent to examining the exis-
tence of ℓ rectangular boxes with integer sides having the same perimeter and
the same volume:
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Problem 1.1. For given positive integers ℓ ≥ 2 and n, construct a subset

of S(n)
ℓ (M,N) with (integral) parametric elements.

Note that solving this problem is equivalent to finding a parametric solu-
tion to the symmetric system of diophantine equations

(1.1) M = M
(n)
j , N = N

(n)
j ,

for all j = 1, . . . , ℓ.
Ever since Motzkin’s conjecture, the aforesaid problem has been subjected

to investigations by some authors (see [4], [23, D16] and [26]). In 1989, Kelly
[24] showed the existence of an arbitrarily large number of such triples. In
1996, Schinzel [33] reproved the same result in a different way. None of these
two proofs was effective for constructing a numerical example until in 2012,
Choudhry [10] gave a constructive method. It is pertinent to note that in
2013, Zhang and Cai [36] generalized the aforesaid result of Kelly from triples
to m-tuples.

To the best knowledge of the authors, Problem 1.1 has been effectively
solved only for the (ℓ, n)’s given in the following table:

Table 1. Known parametric solutions to (1.1)

(ℓ, n) References in the chronological order of discovery

(2, 1) [28], [22], [5], [9], [11]

(2, 2) [2], [22], [35], [5], [25], [6], [18], [15]

(2, 3) [22], [7]

(2, 4) [8], [13]

(3, 1) [31]

(3, 2) [18]

On the other direction, making any connection between algebraic or geo-
metric notions and elliptic curves has been of interest to researchers. Specifi-
cally, symmetric diophantine equations of certain forms have led to families of
elliptic curves with higher ranks, see, for example, [1, 17, 20]. As far as we are
aware, there are only a few works in literature that have studied some con-
nections between elliptic curves of positive rank and triples satisfying (1.1).
In 1989, Kelly [24] illustrated such a connection between positive rank ellip-
tic curves of the form y2 − Mxy − Ny = x3 and triples satisfying (1.1) for
(ℓ, n) = (1, 1). In 2015, Sadek and El-Sissi [31] extended this result by study-
ing the same family assigned to triples satisfying (1.1) for (ℓ, n) = (2, 1) and
(3, 1) and showed that the generic ranks of the associated families are ≥ 2
and ≥ 3, respectively. In 2019, Choudhry [14] constructed several families of
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elliptic curves whose generic ranks range from ≥ 8 to ≥ 12 coming from the
system M = Mj and T = Tj for some j’s.

In this work, we establish a new connection between each of certain solu-
tions of (1.1) for 2 ≤ ℓ ≤ 4 with n = 1 and a family of elliptic curves, whose
torsion subgroups are trivial in general. When (ℓ, n) = (2, 1) and (3, 1), we
use the solutions given in [11] and [31] and correspondingly introduce a family
of generic rank ≥ 5 and ≥ 6. For the case (ℓ, n) = (4, 1), we first obtain a
parametric solution of (1.1) and then construct a family of elliptic curves of
generic rank ≥ 8. Finally, we perform a computer search within those families
to find specific curves with high rank and in particular we found two curves
of rank 14

2. Families of elliptic curves related to (1.1)

First we recall the following specialisation theorem of Néron [34, Theo-
rem 20.1] that we need for our next results:

Theorem 2.1. Let K be a number field, and let E be an elliptic curve
defined over the function field K(Pn). Then there are infinitely many points
t ∈ Pn(K) such that the specialisation homomorphism

σt : E(K(Pn)) → Et(K)

is injective. The set of t for which σt is noninjective forms a thin set.

2.1. A family with rank ≥ 5. According to [11, Subsection 3.1], Choudhry
has fully determined the set S2(M,N) by finding two complete solutions to
the related equations (1.1). Without loss of generality, we consider his first
solution, then

A := A(M,N) := S2(M,N) = {(a1, a2, a3), (b1, b2, b3)}
where

a1 = p(s+ rt), a2 = q(s+ pt), a3 = r(s+ qt),

b1 = q(s+ rt), b2 = r(s+ pt), b3 = p(s+ qt).

To this set, we assign an elliptic curve described by the equation

y2 = (x+ a1a2)(x+ a2a3)(x+ a1a3) + e21x
2,

where e1 is a nonzero rational number which will be defined later.
The above elliptic curve can be rewritten as:

(2.2) y2 = x3 + (T1 + e21)x
2 +MNx+N2,

where T1 = a1a2 + a1a3 + a2a3.
By imposing

(2.3) T1 + e21 = T2 + e22,
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for some rational e2, the curve (2.2) will contain the seven rational points
P1 = (0, N), Pij = (−aiaj , aiaje1) and Qij = (−bibj , bibje2), 1 ≤ i < j ≤ 3.
Here, T2 = b1b2 + b1b3 + b2b3.

The quadratic (2.3) is easily accomplished by parametrising

e1 =
k2 + T2 − T1

2k
, e2 =

k2 + T1 − T2

2k
,

for any nonzero rational number k.
By this description, we have thus constructed a family of elliptic curves,

defined over Q(p, q, r, s, t, k), coming from the elements of A, that has the
above rational points. We denote this family by EA.

Remark 2.2. Notice that the points Pij are co-linear (because their
(x, y)-coordinates satisfy the linear equation y + e1x = 0), showing that at
most two of them can be linearly independent. The same result holds for the
points Qij . Therefore, at most five points of the seven points of EA can be
linearly independent.

In the next theorem we show that five of seven points of EA are linearly
independent for infinitely many tuples (p, q, r, s, t, k).

Theorem 2.3. For the set of all tuples (p, q, r, s, t, k) except for a thin
subset, the rank of the family EA is at least five with the five linearly indepen-
dent points P1, P12, P13, Q12, Q13.

Proof. By Néron’s specialisation theorem (Theorem 2.1), in order to
prove that the family EA has rank ≥ 5 over Q(p, q, r, s, t, k), it suffices to
find a specialisation (p, q, r, s, t, k) = (p0, q0, r0, s0, t0, k0) such that the above
points in the statement are linearly independent on the specialised curve over
Q. We take (p, q, r, s, t, k) = (1, 4, 2, 4, 1, 1) for which we have

A(42, 1920) = {(6, 20, 16), (24, 10, 8)}
and

T1 = 536, T2 = 512, e1 = −23

2
, e2 =

25

2
.

The five points are linearly independent and of infinite order on the specialised
rank 5 elliptic curve

EA(42,1920) : y
2 = x3 +

2673

4
x2 + 80640x+ 3686400.

Indeed, the determinant of the Néron–Tate height pairing matrix (a.k.a. reg-
ulator) of the specialised five points with x-coordinates

x(P1) = 0, x(P12) = −120, x(P13) = −96, x(Q12) = −240, x(Q13) = −192,

is the nonzero value 23.4808049005680 as computed by SageMath [32]. This
shows that the family of elliptic curves EA has rank ≥ 5 over Q(p, q, r, s, t, k)
with independent points P1, P12, P13, Q12, Q13 (except for a thin subset of
(p, q, r, s, t, k)’s).
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Remark 2.4. Corresponding to each of the known subsets S ̸= A of

S(n)
ℓ (M,N) with ℓ ≥ 2, being found in the references mentioned in Table 1

and in Subsection 2.3 (i.e., the set C), one can assign a family of elliptic curves
similar to EA and accordingly establish a result as that of Theorem 2.3.

2.2. A family with rank ≥ 6. From [31, Section 4], we consider the subset
B := B(M,N) of S3(M,N) with the elements

(a1, a2, a3) = (pqrw, s, z), (b1, b2, b3) = (w, qrs, pz), (c1, c2, c3) = (pw, qs, rz),

where

s = pqr(r − p) + p2 − p− r + 1, w = q(r2 − p− r + 1) + p− r,

and z = pqr(qr − q − 1) + p+ q − 1.

Then, we set

f1(x) =
3∏

i=1

(x+ ai), f2(x) =
3∏

i=1

(x+ bi), f3(x) =
3∏

i=1

(x+ ci),

so that

(2.4) f1(x) = fi(x) + (T1 − Ti)x, i = 2, 3.

We now introduce the quartic elliptic curve

(2.5)

E : y2 = Axf1(x) +B2x2,

= Ax(f2(x) + (T1 − T2)x) +B2x2,

= Ax(f3(x) + (T1 − T3)x) +B2x2,

where

T1 =
∑

1≤i<j≤3

aiaj , T2 =
∑

1≤i<j≤3

bibj , T3 =
∑

1≤i<j≤3

cicj ,

and the coefficients A and B will be given later. Note that the last two
equalities in (2.5) come from (2.4). By the first equality of (2.5), the elliptic
curve E clearly contains the three rational points with abscissas −a1, −a2,
−a3. Besides, by the second and third equality of (2.5), the curve E has the
additional rational points with abscissas −bi and −ci, i = 1, 2, 3, if and only
if the system of equations

A(T1 − Ti+1) = m2
i −B2, i = 1, 2,

is solvable. This system has the following parametric solution

(2.6)

A = −4hk(h− k) ((T1 − T2)h− (T1 − T3)k) ,

B = (T1 − T2)h
2 − (T1 − T3)k

2,

mi = (T1 − T2)h
2 − 2(T1 − Ti+1)hk + (T1 − T3)k

2, i = 1, 2,

for any nonzero, unequal rationals h, k.
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Henceforth, we have constructed a quartic family of elliptic curves, defined
over Q(p, q, r, h, k), coming from the elements of B, that has the nine points

Pi = (−ai, aiB), Qi = (−bi, bim1), Ri = (−ci, cim2), i = 1, 2, 3,

where A, B and mi’s are given in (2.6).
The quartic elliptic curve E is birationally equivalent to the cubic elliptic

curve EB given by the equation

Y 2 = X3 + (AT1 +B2)X2 +A2MiNiX +A3N2
i , i = 1, 2, 3,

via the rational transformation X = ANi/x, Y = ANiy/x
2.

In the view of this transformation, the nine points Pi, Qi and Ri, i =
1, 2, 3, are mapped respectively to the points Pi, Qi and Ri, given below,

P1 = (−a2a3A, a2a3AB), Q1 = (−b2b3A, b2b3Am1), R1 = (−c2c3A, c2c3Am2),

P2 = (−a1a3A, a1a3AB), Q2 = (−b1b3A, b1b3Am1), R2 = (−c1c3A, c1c3Am2),

P3 = (−a1a2A, a1a2AB), Q3 = (−b1b2A, b1b2Am1), R3 = (−c1c2A, c1c2Am2).

Remark 2.5. Notice that the points Pi are co-linear (because their (x, y)-
coordinates satisfy the linear equation x+By = 0), showing that at most two
of them can be linearly independent. The same result holds for each of the
points Qi and Ri. Therefore, at most six of the nine points of EB can be
linearly independent.

In the next theorem we show that six of the nine points of EB are linearly
independent for infinitely many tuples (p, q, r, h, k).

Theorem 2.6. For the set of all tuples (p, q, r, h, k) except for a thin
subset, the rank of the family EB is at least six with the six linearly independent
points Pi, Qi, Ri, i = 1, 2.

Proof. Take the specialisation (p, q, r, h, k) = (2, 2, 4, 1,−1) which makes
s = 31, z = 83, w = 20, and hence we have

B(434, 823360) = {(320, 31, 83), (20, 248, 166), (40, 62, 332)}
and

T1 = 39053, T2 = 49448, T3 = 36344,

A = −61488, B = −13104, m1 = −28476, m2 = −2268.

The regulator of the six specialised points with X-coordinates

X(P1) = 158208624, X(Q1) = 2531337984, X(R1) = 1265668992,

X(P2) = 1633121280, X(Q2) = 204140160, X(R2) = 816560640,

on the specialised elliptic curve

EB(434,823360) : Y
2 = X3 − 2229576048X2 + 1351015178454466560X

− 157597974109784775013171200
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is the nonzero value 534.520794417629, carried out by SageMath. The result
follows from Theorem 2.1.

Remark 2.7. Corresponding to each of the known subsets S ≠ B of

S(n)
ℓ (M,N) with ℓ ≥ 3, being found in [31] and [18] (cf. Table 1) and in

Subsection 2.3, one can assign a family of elliptic curves similar to EB and
accordingly establish a result as that of Theorem 2.6.

2.3. A family with rank ≥ 8. For (ℓ, n) = (4, 1), there is no known parametric
solution of (1.1). We first begin with presenting such a parametric solution.

Proposition 2.8. For arbitrary integers q and s with q ̸= 0, s2, s ̸= 0, 1,
let

t1 = q2s2 − 2q2s+ qs+ q − 1,

t2 = q2s2 − 2q2s+ qs2 − qs+ s2 + q − s,

t3 = q3s3 − q2s4 − 4q3s2 + 5q2s3 − qs4 + 4q3s− 6q2s2 + 2qs3 − s4 + q2s+ 2s3

− 2q2 + qs− 2s2 + q,

t4 = −q2s5 + q3s3 + 4q2s4 − 4q3s2 − 4q2s3 − 2qs4 + 4q3s+ q2s2 + 4qs3 − q2s

− s3 − 2q2 − qs+ s2 + 2q − s,

t5 = q2s7 + q4s4 − 3q3s5 − 4q2s6 + qs7 − 4q4s3 + 15q3s4 − qs6 + 4q4s2 − 22q3s3

+ 12q2s4 − 5qs5 + 2s6 + 10q3s2 − 12q2s3 + 7qs4 − 4s5 − 4q3s

+ 12q2s2 − 7qs3 + 4s4 − 4q2s+ qs2 − s3 + q2.

Then,

(a1, a2, a3) =
(
(s− 1)t1t2t3, sq(1− s)t1t5, (s

2 − q)t21t4
)
,

(b1, b2, b3) =
(
(s− 1)qt1t2t3,−t21t5, (s− 1)s(s2 − q)t1t4

)
,

(c1, c2, c3) =
(
(1− s)t1t5, (s− 1)qt1t2t4, s(s

2 − q)t21t3
)
,

(d1, d2, d3) =
(
(1− s)qt1t5, (s− 1)st1t2t4, (s

2 − q)t21t3
)
,

is a two-parameter solution to (1.1) with (ℓ, n) = (4, 1).

Proof. Consider (a1, a2, a3) = (p, wqs, rz), (b1, b2, b3) = (pq, rw, sz),
(c1, c2, c3) = (w, qr, spz) and (d1, d2, d3) = (wq, rs, pz). Then, clearly the
products of the components of these triples are equal. Solving the equations
M1 = M2, M2 = M3, M3 = M4 gives three formulas for w. By the equality
between the first two and the second two of the resulting w’s, we get two
formulas for z. The equality between these z’s gives rise to

(q2s2 − 2q2s+ qs− rs+ q + r − 1)p2

+ (−qrs3 + q2rs+ r2s2 + q2r − qr2 − qr − qs+ s)p

− r(q2s2 − qs3 + q2r − q2s− qr2 + r2s− rs+ s2) = 0.
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By putting q2s2 − 2q2s + qs − rs + q + r − 1 = 0 in the latter equation, it
follows that

(2.7) r =
q2s2 − 2q2s+ qs+ q − 1

s− 1

and

(2.8) p = −r
q2s2 − qs3 + q2r − q2s− qr2 + r2s− rs+ s2

qrs3 − q2rs− r2s2 − q2r + qr2 + qr + qs− s
.

Now, by substituting (2.7) in (2.8) and one of the obtained z’s and w’s, we get
a rational solution of (1.1) for (ℓ, n) = (4, 1) in terms of q and s. By scaling
we get the desired result as given in the statement of the theorem.

Now, we consider the subset C := C(M,N) of S4(M,N) with the elements
introduced in Proposition 2.8. Then, we set

f1(x) =
3∏

i=1

{(x+ ai)(x+ bi)}, f2(x) =
3∏

i=1

{(x+ ci)(x+ di)},

so that

(2.9) f1(x)− f2(x) = Tx4 +MTx3 + (T1T2 − T3T4)x
2 +NTx,

where

T1 =
∑

1≤i<j≤3

aiaj , T2 =
∑

1≤i<j≤3

bibj , T3 =
∑

1≤i<j≤3

cicj , T4 =
∑

1≤i<j≤3

didj ,

and T = T1 + T2 − T3 − T4.
One can rewrite (2.9) as ϕ2

1(x)− ϕ2
2(x) where

ϕ1(x) = x3 +Mx2 +
4(T1T2 − T3T4) + T 2

4T
x+N,

ϕ2(x) = x3 +Mx2 +
4(T1T2 − T3T4)− T 2

4T
x+N.

It follows that

ϕ2
i (x)− fi(x) = Kx4 +MKx3 +Hx2 +NKx, i = 1, 2,

where

K = −T 2 + 2(T3 + T4)T − 4(T1T2 − T3T4)

2T
,

H =

(
T 2 + 4(T1T2 − T3T4)

)2

16T 2
− T1T2.

We now introduce the quartic elliptic curve

(2.10) y2 = Kx4 +MKx3 +Hx2 +NKx,

which contains the rational points Pai
, Pbi , Pci , Pdi

with abscissas −ai, −bi,
−ci and −di for i = 1, 2, 3, respectively.
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The quartic curve (2.10) reduces to the following cubic elliptic curve

(2.11) EC : Y 2 = X3 +HX2 +MNK2X +N2K3,

by the rational transformation X = NK/x, Y = NKy/x2. In the view of
this transformation, the above twelve points are sent respectively to the points
Pai

, Pbi , Pci , Pdi
with X-coordinates

−NK

ai
, −NK

bi
, −NK

ci
, and − NK

di
for i = 1, 2, 3.

We have thus constructed a family of elliptic curves, defined over Q(q, s),
coming from the elements of C, that has the above twelve points.

Remark 2.9. Notice that the points Pai
are co-linear, showing that at

most two of them can be linearly independent. The same result holds for each
of the points Pbi , Pci and Pdi

. Therefore, at most eight points of the twelve
points of EC can be linearly independent.

In the next theorem we show that eight of the twelve points of EC are
linearly independent for infinitely many tuples (q, s).

Theorem 2.10. For the set of all tuples (q, s) except for a thin subset,
the rank of the family EC is at least eight with the eight linearly independent
points Pai

, Pbi , Pci , Pdi
, i = 1, 2.

Proof. We specialise at (q, s) = (3, 2) which makes

t1 = 8, t2 = 11, t3 = 1, t4 = −6, t5 = 29,

and hence we have

C(−1688, 47038464) = {(88,−1392,−384), (264,−1856,−96),

(−232,−1584, 128), (−696,−1056, 64)}
and

T1 = 378240, T2 = −337152, T3 = 135040, T4 = 622848, T = −716800,

K = 191008, H = 140991510784.

The regulator of the eight points with X-coordinates

X(Pa1
) = −102099124224, X(Pc1) = 38727254016,

X(Pa2
) = 6454542336, X(Pc2) = 5672173568,

X(Pb1) = −34033041408, X(Pd1
) = 12909084672,

X(Pb2) = 4840906752, X(Pd1) = 8508260352,

on the specialised elliptic curve

EC : Y 2 = X3 + 140991510784X2 − 2896867880665872334848X

+ 15419167818458889008922652311552
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is the nonzero value 15150.2483213544, carried out by SageMath. The result
follows now from Theorem 2.1.

3. Heuristics

As all curves in the families EA, EB and EC have trivial torsion subgroups
in general, to identify promising high-rank candidates we used heuristic argu-
ments (motivated by the BSD conjecture) given by Mestre [27] and Nagao [30].
They suggest that for curves of high rank, certain sums should assume the
largest values in the observed families. The first of these sums is

S1(X) =
∑

p≤X

Np + 1− p

Np
log p

where X is a prime bound for primes p, and Np = |E(Fp)| is the number of
points on elliptic curve E under the reduction modulo p. We followed the sieve
phase of the general method for finding high-rank elliptic curves described in
[21, pp. 64–68].

The Mestre–Nagao sum S1(X) with the prime bound X = 106 was cal-
culated in Magma [3] for all curves with the absolute values of parameters
p,q,r,s,t,k,h up to 40. For curves with S1(10

6) ≥ 100, TwoSelmerGroup func-
tion in Magma was used to deduce the upper bound R on the rank of the
Mordell–Weil group of the curve. For all curves with R ≥ 11, DescentInfor-
mation function in Magma was used to uncover the independent generators of
the Mordell–Weil group of the curve.

Parameters for some high-rank curves are listed in the next tables. Note
that all listed curves are non-isomorphic.

We were also able to find a number of curves of rank 15 in the form (2.11)
where the set of four triples {(a1, a2, a3), (b1, b2, b3), (c1, c2, c3), (d1, d2, d3)}
was determined by a direct search given a fixed sum M rather than using
Proposition 2.8. The first curve of rank 15 occurs for M = 4907 (N =
1628394768) whose respective set is

{(632, 726, 3549), (312, 2054, 2541), (507, 924, 3476), (474, 1001, 3432)};
the minimal model of the curve is

y2 + xy = x3 − 901882569760647935195484561648738x

+ 13932920298020241870290850727467604223423326273092.

Magma’s special function DescentInformation was able to find 15 inde-
pendent points on this curve in 184 core-hours on Intel Core i7-8700 CPU,
although our knowledge of the 8 independent points on (2.11) reduced the
search time to 1.6 core-hours (over a hundredfold calculation speedup).

In that light, Proposition 2.8 and a rank 13 curve obtained from rational
(q, s) in the last table present significant value.
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Table 2. High rank curves EA

(p, q, r, s, t, k) Rank (p, q, r, s, t, k) Rank

(−71,−54,−36, 14, 36, 1) 14 (32, 41, 55, 60, 46, 1) 14

(−37,−36, 37, 25, 36, 37) 13 (−33,−29, 17, 6, 13, 9) 13
(−36,−33, 31, 6, 23, 7) 13 (−30,−27, 12, 16, 13, 17) 13
(−35,−34, 17, 29, 14, 13) 13 (−25,−15, 20, 8, 21, 22) 13
(−35,−31, 8, 12, 18, 11) 13 (−22,−11, 22, 13, 22, 2) 13

(−22,−18, 4, 20, 9, 19) 12 (−19,−18,−5, 6, 19, 1) 12
(−21,−13, 11, 14, 15, 19) 12 (−18, 6, 12, 16, 6, 11) 12
(−20,−16, 13, 3, 16, 7) 12 (−17,−10, 9, 1, 14, 9) 12
(−19, 8, 16, 7, 9, 16) 12 (−16,−5, 20, 2, 25, 1) 12

Table 3. High rank curves EB

(p, q, r, k, h) Rank (p, q, r, k, h) Rank

(−12, 7,−3, 15,−1) 13 (−1,−8,−6, 5, 4) 13
(−4, 5,−13,−1, 1) 13 (4,−3,−14, 13,−14) 13
(−2,−13, 11, 1, 6) 13 (11,−2,−12, 4,−3) 13
(−2, 8, 15, 11,−4) 13 (14,−2,−13, 1, 8) 13

(−11, 5, 3, 5, 6) 12 (−3, 10, 3, 2,−5) 12
(−8,−6, 9, 5,−7) 12 (−2, 10, 2, 8,−7) 12
(−7, 3, 2, 8,−5) 12 (−1, 7,−9, 1,−6) 12
(−5,−6, 5,−3, 4) 12 (3,−7, 9, 7, 6) 12

(−6, 3,−1,−2, 6) 11 (−2, 4, 3,−4, 5) 11
(−5,−5, 5,−2,−3) 11 (2, 3, 6,−5,−2) 11
(−4,−3, 4,−2, 6) 11 (2, 4,−5,−3,−4) 11
(−3,−4, 3,−3,−5) 11 (5,−2,−5, 5,−1) 11

4. A concluding remark

In this work, we considered the system of diophantine equations

3∑

i=1

x1i = · · · =
3∑

i=1

xℓi,

3∏

i=1

x1i = · · · =
3∏

i=1

xℓi

for ℓ ranging from 2 to 4, which from the geometric point of view is equivalent
to ℓ rectangular boxes with integer sides having the same perimeter and the
same volume, and for each system we introduced a family of elliptic curves
and then studied them closely. Here arises this natural question that whether
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Table 4. High rank curves EC

(q, s) Rank (q, s) Rank

(7/11,−1) 13

(−12/11, 2) 12 (−1/4,−1) 12
(−9/5,−2/5) 12 (3/4, 2) 12
(−8,−7/2) 12 (9/5,−1) 12
(−2/15, 2) 12 (12/7, 14/9) 12

(−11/7,−1/3) 11 (−4/13, 2) 11
(−9,−1) 11 (−2/3, 3) 11
(−5/7,−1/2) 11 (1/7,−1) 11
(−4/9, 2) 11 (11/8, 6/5) 11

there exists more than four rectangular boxes with integer sides that have the
same perimeter and the same volume.
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