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THE LAPLACE TRANSFORM ON THE CONES OF
LATTICE-STRUCTURED BANACH SPACES

Diana Hunjak

University of Zagreb, Croatia

Abstract. Characterizations of positive definite function defined on

convex cones using the Laplace transform of a measure are commonly re-
ferred to as Nussbaum-type theorems. This paper establishes a Nussbaum-

type theorem in the context where the domain of a B(H)-valued positive

definite function is a positive cone within a Banach space that is also a
vector lattice, but not necessarily a Banach lattice. Such spaces include

examples like Sobolev spaces W 1,p(Ω). Utilizing the Berg-Maserick the-

orem, we prove that the unique representing measure is Radon measure
concentrated on a subset of the topological dual.

1. Introduction

A foundational result in harmonic analysis and representation theory is
the Hausdorff-Bernstein-Widder theorem, established in 1928. It states that
a function ϕ : [0,∞⟩ → R is completely monotone on [0,∞⟩ if and only if it
can be represented as the Laplace transform of a finite positive Borel measure
µ on [0,∞⟩:

ϕ(x) =

∫ ∞

0

e−xt dµ(t).

The notion of complete monotonicity, introduced by Hausdorff in 1921, implies
that ϕ is continuous on [0,∞⟩, infinitely differentiable on ⟨0,∞⟩ and satisfies
(−1)nϕ(n)(x) ≥ 0, for all n ∈ N ∪ {0} and x > 0.

Over time, the concept of complete monotonicity was replaced by the more
modern framework of bounded positive definite functions. These functions,
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defined as ϕ : [0,∞⟩ → R, satisfy:
n∑

j,k=1

cjckϕ(xj + xk) ≥ 0, ∀n ∈ N, {c1, . . . , cn} ⊆ R, {x1, . . . , xn} ⊆ [0,∞⟩ .

The relationship between completely monotonic and positive definite func-
tions, in a very general setting, is discussed in [11, Chapter 7].

Given that Laplace transforms serve as classic examples of positive defi-
nite functions, a natural question arises: can every positive definite function
be represented as a Laplace transform, and under what conditions?

Significant progress on this question was made by Berg, Christensen, and
Ressel in the 1980s [4], who developed a general theory for characterizing gen-
eralized Laplace transforms on commutative involutional semigroups with a
neutral element (S, ◦, ∗). In this abstract setting, the representing measure is

defined on a broad space Ŝ, the space of all characters of S. A character is a
non-zero homomorphisms of semigroups ξ : S → (C, ·) such that ξ(s∗) = ξ(s)

for all s ∈ S, and Ŝ is equipped with the topology of pointwise convergence.
Their work demonstrated that any exponentially bounded (bounded with re-
spect to some absolute value) positive definite function ϕ : S → C admits an
integral representation:

ϕ(s) =

∫

Ŝ

ξ(s) dµ(ξ),

where µ is a unique positive Radon measure on Ŝ. This integral representation
generalizes the concept of the Laplace transform, as the characters ξ are not
necessarily of exponential type. To obtain the Laplace-like transform it was
necessary to define the measure on a smaller set.

In a general framework, the problem involves identifying functions ϕ : S →
R that can be expressed as Laplace transforms of some positive measure on
(V ∗,Σ(V ∗)). Here, S ⊆ V is a convex cone in the (not necesarilly finite-
dimensional) real vector space V , V ∗ is the algebraic dual of V , and Σ(V ∗)
is the smallest σ-algebra on V ∗ making all point evaluations V ∗ → R, λ 7→
λ(v) measurable. Specifically, the conditions on the function are examined to
ensure it takes the form:

(1.1) ϕ(s) = L(µ)(s) =
∫

V ∗
eλ(s) dµ(λ), ∀ s ∈ S

Many authors have contributed to the study of this question. Positive def-
inite functions on convex cones within finite-dimensional vector spaces were
extensively examined by Bochner [6], Nussbaum [16] and Neeb [14, 13]. In con-
trast, the study of positive definite functions on infinite-dimensional convex
cones has largely been motivated by concrete problems in probability theory
and theoretical physics, leading to the consideration of specific cases for S.
These cases were explored in the works of Dettweiler [8], Hoffmann-Jørgensen
and Ressel [12], Ressel and Ricker [17], and Šikić [20].
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This paper builds upon these foundations, focusing on lattice-structured
Banach spaces which provide a promising environment for Nussbaum-type
theorems. These spaces still form a large class of function spaces and in-

clude Sobolev spaces W
1,p

(Ω). By leveraging the Berg-Maserick theorem, we
establish a unique Radon measure representation under specific conditions.

Fitzsimmons utilized a similar framework and corresponding theorems for
semigroups of bounded positive measurable functions in constructing super-
processes [9]. Šikić later generalized these results in [19], demonstrating that
Fitzsimmons’ construction represents a special case of a more general theory.

Glöckner conducted a particularly comprehensive study resolving problem
(1.1) within the broadest framework so far in, proving that a positive definite
function ϕ defined on a convex subset of a real vector space V needs to be
countinuous along line segments in order to satisfy (1.1) [11, Theorem 18.8].
The generalization of his work is manifested in the fact that B(H)-valued pos-
itive definite functions are observed (here B(H) denotes the complex algebra
of bounded operators on a Hilbert space H). We will preserve this context in
this paper, focusing on the case of B(H)-valued positive definite functions.

The concept of B(H)-valued positive definite functions was first intro-
duced by B. Sz.-Nagy in 1960, where they were referred to as positive type
functions. For a semigroup with involution (S, ◦, ∗), these functions are map-
pings ϕ : S ◦ S → B(H) satisfying:

n∑

j,k=1

〈
ϕ(sj ◦ s∗k)vk, vj

〉
≥ 0, ∀n ∈ N, {v1, . . . , vn} ⊆ H, {s1, . . . , sn} ⊆ S.

If S contains a neutral element, then obviusly S ◦S = S. In the more general
case, the domain of ϕ is S ◦ S ⊆ S.

The investigation of how different structures of convex cones impose spe-
cific conditions on positive definite functions, enabling their representation
as Laplace transforms and determining when the corresponding measure is
Radon, has been extensively studied by Glöckner in [11]. His research on this
subject is both detailed and comprehensive.

Glöckner demonstrated that in the case of an empty interior there may not
exist a Radon representative measure on V ∗ nor any representative measure on
the topological dual (V ′,Σ(V ′)). This was shown through a concrete example
of a 1-bounded positive definite function on the cone S = ℓ1+ of all non-
negative absolutely summable sequences [11, Proposition 20.9]. The cone S
is obviously closed, generating and has empty interior. For the continuous,
1-bounded positive definite function

ϕ : (xn)n∈N 7→
∏

n∈N
(1 + xn)

−1
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on ℓ1+ no representing measure exists on ((ℓ1)′,Σ((ℓ1)′)) nor does any Radon

measure exist on
(
V ∗,Σ(V ∗)

)
. Glöckner’s example highlights the challenges

in generalizing Laplace transform representations to broader settings. De-
spite these challenges, lattice-structured Banach spaces provide a promising
environment for Nussbaum-type theorems.

In this paper we examine the conditions on the initial space, convex
cone, and the function itself to obtain an integral representation using the
Laplace transform of a measure defined on the topological dual space. The
α-boundedness condition ensures the growth of positive definite function ϕ
is controlled by the absolute value α, which itself is a function that mea-
sures “size” in a way compatible with the semigroup structure. For the exact
definition of α-boundedness, see Remark 2.2.

Our results are focused on lattice-structured Banach spaces (B, ∥ · ∥,≤)
with a positive cone B+ that is closed and generating. In spaces with an
order unit, the positive cone also has a non-empty interior (Lemma 3.2),
which guarantees the existence of a Radon representative measure. By refining
techniques from [11] and adapting them to this specific setting, we establish
that the measure is concentrated on a smaller subset of continuous α-bounded
characters, which is homeomorphic to the set of α-bounded continuous linear
functionals (Remark 4.6). The main result of this paper is stated here, with
the proof to be presented later in Section 4.

Theorem 1.1. Let (B, ∥ · ∥,≤) be a lattice-structured Banach space with
an order unit, and α a locally bounded absolute value on B+. For every α-
bounded positive definite function ϕ : B+ → Herm+(H) satisfying the following
condition:

There exists an order unit u and a sequence (rn) of positive real numbers
converging to zero such that

lim
n→∞

ϕ(rnu) = ϕ(0) in the ultraweak topology,

there exists a unique Radon Herm+(H)-valued measure µ on B′ with support
in Cα, such that

ϕ(x) =

∫

B′
eλ(x) dµ(λ), ∀x ∈ B+.

2. Vector valued positive definite functions and measures

2.1. Commutative semigroups with involution.

Definition 2.1. A function α : S → [0,∞⟩ on an involutive semigroup
(S, ◦, ∗) is called an absolute value if:

(i) α ̸≡ 0
(ii) α(s∗) = α(s) for all s ∈ S
(iii) α(s ◦ t) ≤ α(s)α(t) for all s, t ∈ S.
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If S contains a neutral element e, condition (i) is equivalent to α(e) ≥ 1.

Remark 2.2. Let α be an absolute value on an involutive semigroup
(S, ◦, ∗). The exact definition of α-boundedness for B(H)-valued positive def-
inite functions is provided in [11, Chapter 7]. There, a B(H)-valued positive
definite function ϕ is α-bounded if the associated invariant positive definite
kernel Kϕ is α-bounded, i.e., Kϕ is exponentially bounded and the associated
∗-representation is α-bounded. This leads to a more practical characterization
of α-boundedness for semigroups S with a neutral element:

- ϕ : S → B(H) is α-bounded if and only if ∥ϕ(s)∥ ≤ Cα(s) for all s ∈ S
and some C > 0 [15]

- ϕ : S → C is α-bounded if |ϕ(s)| ≤ Cα(s) [4]

In particular, a positive definite function ϕ : S → C is bounded if and only if
it is 1-bounded.

Remark 2.3. Let S be a convex cone in a real vector space V . If ϕ is a
B(H)-valued positive definite function on S, then for all s ∈ S, v ∈ H:

〈
ϕ( s2 + s

2 )v, v
〉
≥ 0 =⇒ ϕ(s) ∈ Herm+(H).

For scalar-valued positive definite functions on S, it is evident that they are
real and non-negative.

Remark 2.4. The set of B(H)-valued positive definite functions on an in-
volutive semigroup S forms a convex cone closed in the weak operator topology
on B(H), while the α-bounded subset forms a closed subcone. These asser-
tions are formalized in [11, Corollary 7.8] from which we extract a statement
that will later be useful in proofs.

Let S be an involutive semigroup acting on the set X on the right, H be a
complex Hilbert space, and α be an absolute value on S. If K : X×X → B(H)
is an S-invariant positive definite kernel on X and A ∈ Herm+

1 (H) a positive
trace class operator, we define KA : X×X → C by KA(x, y) ..= tr(K(x, y)A).
Then KA is an S-invariant positive definite kernel on X and K is α-bounded
if and only if so are all kernels KA.

Definition 2.5. For a commutative semigroup with involution (S, ◦, ∗),
a character of S is a non-zero homomorphism ξ : S → C of semigroups S and
(C, ·,̄ ), i.e., it holds:
(i) ξ(s ◦ t) = ξ(s)ξ(t) for all s, t ∈ S.

(ii) ξ(s∗) = ξ(s) for all s ∈ S.

If S has a neutral element e, the condition ξ ̸≡ 0 is equivalent to ξ(e) = 1

Note that each character restricted to S ◦ S is a scalar positive definite
function.

Remark 2.6. If the involution on the semigroup S is the identity then
ξ(s) = ξ(s), meaning that every character on S is real. Additionally, if S is
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2-divisible (i.e., every element s ∈ S can be expressed as s = t ◦ t for some
t ∈ S), then every character on S is non-negative since:

ξ(s) = ξ(t ◦ t) = (ξ(t))2 ≥ 0.

These conditions are clearly satisfied for convex cones.

Definition 2.7. Let S be a commutative semigroup with involution, and

let α : S → [0,∞⟩ be an absolute value on S. Define Ŝ as the set of all

characters on S, and Ŝα as the set of all α-bounded characters on S, i.e.,

characters ξ : S → C such that |ξ(s)| ≤ α(s) for all s ∈ S. Sets Ŝ and Ŝα are
equipped with the topology of pointwise convergence, i.e., the topology inherited
from the product topology on CS.

2.2. Cone-valued measures. Let us recall some standard definitions. If C is a
convex cone in a real vector space V , the dual cone of C is

C∗ ..= {λ ∈ V ∗ : λ(C) ⊆ [0,∞⟩}.
For convex cone T ⊆ V ∗ we define

∗T ..= {x ∈ V : λ(x) ≥ 0, ∀λ ∈ T}.
The proof of the following lemma can be found in [14, Lemma I.5].

Lemma 2.8. If S is a generating closed convex cone in a Banach space
V , then S∗ ⊆ V ′.

The following definition of a cone-valued measure, introduced by Neeb in
[14], extends the notion of a positive measure µ : Σ → [0,∞] on a measurable
space (X,Σ), where [0,∞] is considered as a compactification of the convex
cone [0,∞⟩ which is dense in [0,∞]. Due to their extensiveness, the definitions
for the integration of scalar and vector-valued functions with respect to cone-
valued measures are omitted here but can be found in [14] or [11].

Definition 2.9. A range data is a triple (W,W ♯, C) where W is a real
vector space, W ♯ a vector subspace of W ∗ and C a convex cone in W , satis-
fying the following conditions:

(i) C is pointed and generating, meaning C ∩ (−C) ⊆ {0} and C −C = W .
(ii) C = ∗(C∗) =

{
x ∈ W : λ(x) ≥ 0,∀λ ∈ C∗} holds where

C∗ ..=
{
λ ∈ W ♯ : λ(C) ⊆ [0,∞⟩

}
.1

Additionally, C∗ is generating, i.e., C∗ − C∗ = W ♯.
(iii) Let

C∞ ..= hom
(
C∗, [0,∞]

)

1The set C∗ defined here is not the full dual cone, but only its intersection with W ♯.
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denote the compact topological monoid of monoid homomorphisms from
C∗ into the additive monoid [0,∞], equipped with the topology of point-
wise convergence. The mapping

k : C → C∞, x 7→ (λ 7→ λ(x))

is injective by (i) and (ii). We require that k(C) = hom
(
C∗, [0,∞⟩

)
.

The mapping k becomes a topological embedding when W is equipped
with the σ(W,W ♯) topology, the coarsest topology in which all linear func-
tionals from W ♯ are continuous. Moreover, k(C) is dense in C∞, making C∞
a compactification of C [14, Proposition I.4].

Definition 2.10. Let (W,W ♯, C) be range data and (X,Σ) a measurable
space. A C-valued measure on (X,Σ) is a σ-additive function µ : Σ → C∞
such that µ(∅) = 0. The C-valued measure µ is:

- finite if µ(X) ∈ hom(C∗, [0,∞⟩) ∼ C,
- σ-finite if there exists a sequence of sets (Xn), Xn ∈ Σ such that X =

n∈N

⋃
Xn and µ(Xn) ∈ C for all n ∈ N.

Remark 2.11. For λ ∈ C∗, a positive measure µλ : Σ → [0,∞] can be
defined by:

µλ(A) = µ(A)(λ), A ∈ Σ.

Note that µλ1+λ2
= µλ1

+ µλ2
hence the mapping λ 7→ µλ is a monoid

homomorphism C∗ → [0,∞]
Σ
. Conversely, if (νλ)λ∈C∗ is a family of positive

measures on (X,Σ) such that λ 7→ νλ is a monoid homomorphism C∗ →
[0,∞]

Σ
, there exists a unique C-valued measure ν on (X,Σ) such that νλ = νλ,

∀λ ∈ C∗.

If X is a Hausdorff space with Borel σ-algebra B(X), we say that a C-
valued measure on (X,B(X)) with range data (W,W ♯, C) is Radon if the
associated positive measure µλ (defined as above) is Radon for all λ ∈ C∗.

Remark 2.12. If µ is a finite cone-valued measure on a measurable space
(X,Σ) with range data (W,W ♯, C), it can also be regarded as a σ-additive
map µ : Σ → W where W is equipped with the σ(W,W ♯) topology. Thus,
µ can be interpreted as a vector measure, taking values in the convex cone
C. Definition 2.10 generalizes this notion by allowing “infinite” values outside
W .

We introduce notation concerning bounded operators, Hermitian opera-
tors and certain topologies. Let H be a complex Hilbert space. We define the
following spaces and notations:

- B(H): the complex algebra of bounded operators on H.
- Herm(H): the real vector subspace of Hermitian operators.
- Herm+(H): the convex cone of positive semidefinite operators.
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- B1(H): the subalgebra of trace class operators, consisting of operators

T ∈ B(H) that satisfy ∥T∥1 ..= tr
√
T ∗T < ∞, where the trace func-

tional for a positive bounded linear operator A is defined as tr(A) =∑ ⟨Aek, ek⟩.
Recall that the operator A ∈ B(H) is hermitian if and only if ⟨Ax, x⟩ ∈ R for
all x ∈ H and positive semidefinite if ⟨Ax, x⟩ ≥ 0 for all x ∈ H. Operators
A ∈ B(H), B ∈ B1(H) satisfy AB, BA ∈ B1(H) with tr(AB) = tr(BA).
Using the mapping:

B(H) ∋ A 7→ ϕA ∈ B1(H)
′
, ϕA(B) = tr(AB), B ∈ B1(H)

we identify the Banach space (B(H),∥·∥) with the dual of a space (B1(H),∥·∥1).
This mapping can also be expressed as follows:

B(H)×B1(H) → C, (A,B) 7→ tr(AB).

Define:

Herm1(H) ..= Herm(H) ∩B1(H), Herm+
1 (H) ..= Herm+(H) ∩Herm1(H).

Similar as above, using the mapping:

Herm1(H)×Herm(H) → R, (A,B) 7→ tr(AB),

we identify Herm1(H) with the subspace of Herm(H)
′
. Let us recollect that

ultraweak operator topology on B(H) is the initial topology on B(H) with
respect to the family of linear functionals B(H) → C, A 7→ tr(AB) where
B ∈ B1(H).

Next result was proved in [14, Proposition I.7].

Proposition 2.13. The triple

(W,W ♯, C) = (Herm(H),Herm1(H),Herm+(H))

satisfies the conditions of Definition 2.9. The dual cone is C∗ = Herm+
1 (H).

Measures of interest in this context are Herm+(H)-valued measures with
range data (W,W ♯, C) = (Herm(H),Herm1(H),Herm+(H)), i.e., σ-additive
functions:

µ : Σ → hom( Herm+
1 (H), [0,∞]),

such that µ(∅) = 0.
The measure µ is finite if µ(X) ∈ hom(Herm+

1 (H), [0,∞⟩) ∼ Herm+(H) where
the homeomorphism ’∼’ is induced by

k : Herm+(H) → hom(Herm+
1 (H), [0,∞⟩), A 7→ (B 7→ tr(BA)).

For the range data (W,W ♯, C) = (R,R, [0,∞⟩), a C-valued measure µ corre-
sponds to a standard positive measure µ : Σ → [0,∞].
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2.3. Laplace transform of cone-valued measures.

Definition 2.14. If V is a real vector space and x ∈ V , we define
ex : V

∗ → R by ex(λ) = eλ(x) for all λ ∈ V ∗. The algebraic dual V ∗ is
equipped with the weak-∗ topology.

Definition 2.15. Let V be a real vector space and let E be a vector
subspace of V ∗. Define Σ(E) as the smallest σ-algebra on E making all eval-
uations evx : E → R, λ 7→ λ(x) measurable for every x ∈ V . A σ-algebra Σ
on E is said to be admissible if Σ(E) ⊆ Σ.

The proof of the following lemma can be found in [11, Lemma 14.3].

Lemma 2.16. Let V be a real vector space and let B(V ∗) denote the Borel
σ-algebra on V ∗. Then B(V ∗) is admissible, and Σ(V ∗) = B(V ∗) if and only if
dimV ≤ ℵ0 (countable dimension). In the latter case, every σ-finite measure
µ on (V ∗,B(V ∗)), which is finite on compacts, is a Radon measure.

Definition 2.17. Let V be a real vector space, Σ an admissible σ-algebra
on V ∗, and µ a C-valued measure on (V ∗,Σ) with range data (W,W ♯, C).
The Laplace transform of measure µ is defined as:

L(µ) : V → C∞, x 7→
∫

V ∗
ex dµ =

∫

V ∗
eλ(x) dµ(λ).

We call D(µ) ..= {x ∈ V : L(µ)(x) ∈ C} the domain of L(µ) and say that µ
is admissible if D(µ) ̸= ∅.

Nussbaum-type theorems are always based on a generalized Laplace trans-
form. Glöckner developed a version of such a theorem tailored to his partic-
ularly general conditions, utilizing results from the theory of C∗-algebras.
In contrast, we rely on the well-known Berg-Maserick theorem, published in
[5], which is derived from the integral version of the Krein-Milman theorem.
This theorem was proven for commutative semigroups with involution (S, ◦, ∗)
that possess a neutral element. The notation M+(Ŝ) denotes the set of non-

negative Borel measures on Ŝ, the set of all characters on S. We conclude
this subsection with a statement of that theorem.

Theorem 2.18 (Berg and Maserick).
If ϕ : S → C is a positive definite and α-bounded function, then there exists a

unique Radon measure µ ∈ M+(Ŝ) such that

ϕ(s) =

∫

Ŝ

ξ(s) dµ(ξ), ∀ s ∈ S.

Furthermore, the measure µ is concentrated on Ŝα, the compact set of α-
bounded characters of S.



10 D. HUNJAK

3. Lattice-structured Banach spaces

3.1. Definitions and properties. A lattice-structured Banach space, is a real
ordered Banach space (B, ∥ · ∥,≤) that is also a vector lattice. An ordered
Banach space is a Banach space that is also an ordered vector space and the
positive cone B+ = {x ∈ B : x ≥ 0} is closed in the norm topology. More
precisely, partial order ’≤ ’ is transitive, reflexive, antisymmetric relation and
it satisfies the following compatibility conditions with algebraic operations:

(i) x ≤ y =⇒ x+ z ≤ y + z for all x, y, z ∈ B
(ii) x ≤ y =⇒ λx ≤ λy for all x, y, z ∈ B, λ ≥ 0.

Assertion x < y indicates that x ≤ y and x ̸= y, and x ≥ y is equivalent to
y ≤ x.

In addition to its algebraic and order structure, B is a vector lattice (or
Riesz space), meaning that for any pair of elements x, y ∈ B the supremum
x∨ y and infimum x∧ y exist in B. The lattice operations enable the decom-
position of x as

x = x+ − x−, |x| = x+ + x−,

where
x+ ..= x ∨ 0 and x− ..= −x ∨ 0.

Here, |x| denotes the absolute value of x, and the cone B+ is generating
because B = B+ −B+.

Remark 3.1. A lattice-structured Banach space (B, ∥ · ∥,≤) is not nec-
essarily a Banach lattice. In Banach lattices, the norm satisfies an additional
monotonicity condition:

|x| ≤ |y| ⇒ ∥x∥ ≤ ∥y∥ for all x, y ∈ B.

This property does not hold in general lattice-structured Banach spaces, such
as certain Sobolev spaces.

In Banach lattices, the positive cone is closed since the mappings x 7→ x+,
x 7→ x− and x 7→ x ∨ y are uniformly continuous. Properties regarding
partially ordered sets and vector lattices, can be found in [2, 3, 18].

3.2. Order units and order dual. The following definitions and results high-
light the interplay between the topological and order structures of lattice-
structured Banach spaces, showcasing their rich mathematical properties.

A subset A ⊆ X of an ordered vector space X is called order bounded if
there exist elements u, v ∈ X such that u ≤ a ≤ v for all a ∈ A; in other
words, A is bounded from above and below. An order interval is any set of
the form [x, y] = {z : x ≤ z ≤ y}. If x and y are incomparable, then [x, y] = ∅.
Notice that a set is order bounded if and only if it fits within an order interval.
If X is an ordered Banach space, every order interval is a closed set, as it can
be expressed as [a, b] = (a+X+) ∩ (b−X+). In Banach lattices, the notions
of order boundedness and norm boundedness are equivalent.
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An order unit is a particularly important element in such spaces. An
element u ∈ X+ in an ordered vector space X is an order unit if, for every
x ∈ X, there exists a scalar λ > 0 such that x ≤ λu. Observe that an order
unit is not unique, as u+X+ and λu are also order units for any given order
unit u and λ > 0. In a vector lattice, the inequality x ≤ λu is equivalent to
|x| ≤ λu.

The existence of an order unit implies that the positive coneX+ has a non-
empty interior relative to the topology of X. This property not only ensures
that X+ is generating but also facilitates the approximation of elements of
X using elements of X+. The following lemma formalizes this statement and
can be found in [3] or [2].

Lemma 3.2. Let X be an ordered Banach space, u ∈ X+, and B0
..= {x ∈

X : ∥x∥ ≤ 1} the unit ball in X. The following statements are equivalent:

(a) u is an order unit
(b) u ∈ IntX+

(c) λB0 ⊆ [−u, u] for some λ > 0.

Consequently, if an ordered vector space X does not have an order unit,
then its positive cone X+ has an empty interior in any vector topology. Prop-
erty (c) implies that the order interval [−u, u] is a neighborhood of zero,
meaning IntX+ ̸= ∅ if and only if every norm bounded interval is order
bounded.

Let (B,B+, ∥·∥) be a lattice-structured Banach space. A linear functional
f : B → R is positive if f(x) ≥ 0 for all x ∈ B+. Note that every positive linear
functional on B is continuous, as guaranteed by Lemma 2.8. The topological
dual of B, denoted by B′, is an ordered Banach space with the operator norm
and the ordering induced by the dual cone of B+:

B′
+

..= {f ∈ B′ : f(x) ≥ 0, ∀x ∈ B+}.
Therefore, B′

+ is a positive cone in B′ which consists exactly of positive linear
functionals and it is closed in the weak-∗ topology on B′. Since B+ is closed,
it follows that

(B′
+)

′ = {x ∈ B : f(x) ≥ 0, ∀ f ∈ B′
+} = B+.

A linear functional f on an ordered vector space X is order bounded if
f
(
[x, y]

)
is a bounded subset of R for every order interval [x, y]. For any

positive linear functional f , the inequality x−y ≥ 0 implies f(x−y) ≥ 0, i.e.,
x ≥ y ⇒ f(x) ≥ f(y). Thus, every positive linear functional is both monotone
and order bounded. It follows that in the space B, every positive linear
functional is both norm and order bounded. The set of all order bounded
linear functionals on X forms a vector space, denoted by X∼, called the
order dual of X. Riesz demonstrated that the order dual of a vector lattice
is itself a vector lattice, with the order f ≤ g if f(x) ≤ g(x), ∀x ∈ X+.
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For lattice-structured Banach spaces (B,B+, ∥ · ∥), it holds that B∼ ≤ B′

and B∼ = B′
+ − B′

+ ([3, Corollary 2.50]). In Banach lattices, these notions
coincide, so B′ = B∼.

3.3. Examples. Examples of lattice-structured Banach spaces include:

1. Finite-dimensional spaces: R and Rn with Euclidean norm where x ≤ y
if xi ≤ yi for each i = 1, . . . , n and lattice operations are given by:

x ∨ y = (max{x1, y1}, . . . ,max{xn, yn}),
x ∧ y = (min{x1, y1}, . . . ,min{xn, yn}).

Order units are elements 1 and (1, . . . , 1).
2. Function spaces: Space of continuous real functions C(K) on compact

topological space K is a Banach lattice with pointwise ordering and
lattice operations:

(f ∨ g)(x) = max{f(x), g(x)},
(f ∧ g)(x) = min{f(x), g(x)}.

In this scenario, any strictly positive function serves as a strong order
unit. Furthermore, every lattice-structured Banach space (B, ∥ · ∥,≤)
with IntB+ ̸= ∅ is topologically isomorphic to (C(K), C(K)+, ∥ · ∥∞)
for some compact Hausdorff space K [7].

Spaces L
∞

are also Banach lattices with a constant function 1

as an order unit and almost everywhere pointwise ordering. Lattice
operations are given as in the example of C(K). In a sequence space
ℓ
∞

an order unit is every sequence (un) for which
i∈N
inf{ui} > 0. Banach

lattices ℓp and Lp for 1 ≤ p < ∞ as well as c0 and M(X) (space of
finite real measures) do not have an order unit.

3. Sobolev spaces: Certain Sobolev spaces, such as W
1,p

(Ω),Ω ⊆ Rn, are
vector lattices under the almost everywhere pointwise ordering inher-
ited from Lp(Ω) spaces, but fail to satisfy the monotonicity condition
for Banach lattices. All Sobolev spaces W

m,p
(Ω) are ordered Banach

spaces with closed positive cone in (m, p)-norm, but only W
1,p

(Ω) are
vector lattices (more precisely, sublattices of Lp(Ω)). As an example
let f ∈ W 1,1([0, 1]), f(x) = x, x ∈ [0, 1]. It follows that 0 ≤ f ≤ 1, but
∥f∥ > ∥1∥, 1 denoting constant function x 7→ 1, ∀x ∈ [0, 1]. Sobolev
spaces have non-empty interior if p ≥ n. More information on Sobolev
spaces can be found in [1] and [10].

4. Main results

This entire section is devoted to the proof of Theorem 1.1. All proposi-
tions and lemmas presented here serve as auxiliary results that support the
proof.
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Let (B,B+, ∥ · ∥) be a lattice-structured Banach space, B′ its topolog-
ical dual space, and B+ a positive cone in B. Let Σ be an admissible σ-
algebra on B′, i.e., Σ ⊇ Σ(B′). Let µ be a Herm+(H)-valued measure on
(B′,Σ) with range data (Herm(H),Herm1(H),Herm+(H)). Since we identify

Herm1(H) ∼= Herm(H)
′
, the dual cone of Herm+(H) is Herm+

1 (H). Following
notation from Definition 2.9, by C∞ = hom( Herm+

1 (H), [0,∞]) we denote the
topological compactification of C = Herm+(H) that represents the “infinite”
values outside the cone.

The mapping ex : B
′ → R is defined as ex(λ) = eλ(x). The Laplace

transform of measure µ is defined as:

L(µ) : B → C∞, x 7→
∫

B′
ex dµ =

∫

B′
eλ(x) dµ(λ),

where D(µ) ..= {x ∈ B : L(µ)(x) ∈ C} is the domain of L(µ).

Remark 4.1. If a positive definite function ϕ : B+ → Herm+(H) can
be represented as the Laplace transform ϕ = L(µ)|B+

, then obviously B+ ⊆
D(µ) = {x ∈ B : L(µ)(x) ∈ C}. Since 0 ∈ B+, it follows that ϕ(0) =
L(µ)(0) = µ(B′) ∈ C, meaning that µ is finite.

Given that a Radon measure may not exist if the positive cone B+ has
an empty interior (or any representing measure on the topological dual), we
restrict our study to spaces B with order units, or equivalently IntB+ ̸= ∅.
Since in our setting we consider a topological dual instead of an algebraic one,
real continuity instead of continuity on line segments is achieved (in contrast
to [11]).

Lemma 4.2. The Laplace transform L(µ) of a Herm+(H)-valued measure
is a B(H)-valued positive definite function which is ultraweakly continuous for
finite measures µ.

Proof. Positive definiteness is already proved in [11, Theorem 14.12].
To prove continuity, (xn) be a sequence in B such that ∥xn − x∥ → 0. For
each A ∈ Herm+

1 (H), define a positive measure µA via µA(B) ..= µ(B)(A),
B ∈ Σ (Remark 2.11). Since the ultraweak topology coincides with a point-

wise convergence topology given the identification Herm1(H) ∼= Herm(H)
′
, it

suffices to show that L(µA)(xn) → L(µA)(x), for all A.
Let A ∈ Herm+

1 (H). For the positive measure µA, it is evident that
µA(B

′) = µ(B′)(A) < ∞. For λ ∈ B′, the function eλ is a continuous, and
thus exn

→ ex pointwise. Since λ is a continuous linear functional there
exists a neighborhood U of x on which λ is bounded, meaning eλ|U ≤ c for
some constant c > 0. Without loss of generality, we can assume the sequence
(xn) ∈ U , which ensures that

∫
exn dµA ≤ cµA(B

′) < ∞. From Lebesgue’s
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dominated convergence theorem it follows:
∫

B′
exn dµA →

∫

B′
ex dµA, ∀A ∈ Herm+

1 (H),

which shows that the Laplace transform is a continuous function in the ultra-
weak topology on B(H).

Since 1-boundedness (i.e., boundedness) is a rather restrictive condition
for a positive definite function, we consider a more general class of α-bounded
positive definite functions, where α is at least locally bounded absolute value.
In this case, linear functionals that induce α-bounded characters of the ex-
ponential type are continuous, making it natural to observe measures defined
on B′ rather than on the entire algebraic dual B∗.

Let Cα denote the set of linear functionals that induce α-bounded char-
acters:

Cα
..= {λ ∈ B∗ : eλ(x) ≤ α(x),∀x ∈ B+},

where Cα is equipped with a weak-∗ topology, and α is a locally bounded
absolute value. The set Cα is a closed subset of B∗, and, as shown in the
proof of the following lemma, Cα ⊆ B′. Therefore, Cα consists of continuous
linear functionals λ such that λ(x) ≤ ln(α(x)) for each x ∈ B+.

Lemma 4.3. Let ξ : B+ → [0,∞⟩ be a character of B+, with IntB+ ̸=
∅, and let α be a locally bounded absolute value on B+. A character ξ is
continuous if and only if ξ > 0 and ξ is α-bounded. In that case, there exists
a unique linear functional λ ∈ B′ such that ξ(x) = eλ(x), ∀x ∈ B+.

Proof. Let ξ be a continuous character of B+. We first show that ξ > 0.
Assume ξ(x0) = 0 for some x0 ≥ 0, and let x ∈ IntB+. Then there exists
n ∈ N such that z ..= nx − x0 ≥ 0. Using the properties of characters, we
have:

ξ(nx) = ξ(x)n = ξ(z)ξ(x0) = 0.

Thus, ξ(x) = 0. If ξ had a zero point on B+, this would imply ξ|IntB+
= 0.

By continuity, ξ would then be identically zero on all of B+, contradicting the
definition of a character. Therefore, it must hold that ξ > 0.

Since ξ is a non-negative, submultiplicative function, every character of
B+ is also an absolute value on B+. By continuity, ξ is locally bounded, so
we set α ..= ξ. Applying [11, Lemma 13.2] to this setting, we conclude that
ξ(s) = eλ(s) for some λ ∈ B′.

Conversely, suppose ξ > 0 and ξ is α bounded. By the same lemma, we
have ξ(s) = eλ(s) for some λ ∈ B∗. The condition ξ ≤ α implies λ ∈ Cα, i.e.,
λ(x) ≤ ln(α(x)) so λ is locally bounded on B+. Since 0 ∈ B+, there exists a
neighborhood U of zero such that λ is bounded on U ∩ B+. It follows that
λ is also bounded on (U ∩B+)− (U ∩B+), which is itself a neighborhood of
zero.
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Thus, for locally bounded α, Cα ⊆ B′ holds. We have shown that ξ(s) =
eλ(s) for some λ ∈ B′, thereby proving that ξ is continuous.

Remark 4.4. It is evident from the proof that, instead of requiring ξ > 0,
it suffices to assume ξ(u) > 0 for some order unit u. This implies that if a
character ξ has a zero point, then ξ must vanish on the entire interior of B+.

Corollary 4.5. Let B̂+ be the topological semigroup of characters of

B+, equipped with the topology of pointwise convergence, and let B̂c
+ denote

the subgroup of continuous characters of B+. Let the topology on B′ be a weak-

∗ topology. The mapping β : B′ → B̂c
+, λ 7→ exp ◦ λ|B+

is a homeomorphism.

Moreover, the set of discontinuous characters B̂+ \ B̂c
+ is nonempty.

Proof. A continuous functional λ ∈ B′ clearly induces the continuous
character ξ = exp◦λ|B+

. Conversely, by the previous lemma, every continuous

character arises in this manner, establishing a bijection between B′ and B̂c
+.

Note that each λ ∈ B′ is determined by its definition on the generating cone
B+, as λ(x) = λ(x+) − λ(x−). Therefore, the weak-∗ topology on B′ is
the coarsest topology that makes point evaluations on B+ continuous. The

topology on B̂c
+ is the relative topology induced by the pointwise convergence

topology on B̂+. Hence, the two topologies coincide.
The positive cone B+ contains the neutral element 0, allowing us to define

a discontinuous character ξ ..= 1{0}.

Remark 4.6. Let (B̂+)
α,c denote the set of α-bounded continuous char-

acters of B+, where α is a locally bounded absolute value on B+. From

the previous corollary and Lemma 4.3, it follows that β(Cα) = (B̂+)
α,c, and

therefore:

(B̂+)
α,c ∼ Cα ⊆ B′.

Notice that for α ≡ 1, we have:

C1 = {λ ∈ B∗ : eλ(x) ≤ 1,∀x ∈ B+} = −(B′
+).

In this case, the relation becomes:

(B̂+)
1,c ∼ C1 = −(B′

+) ⊆ B∼ ⊆ B′.

The assertion that the dual cone of a generating, closed convex cone in a
Banach space consists of continuous linear functionals is a result in its own
right (Lemma 2.8).

Proposition 4.7. Let (B, ∥ · ∥,≤) be a lattice-structured Banach space
with an order unit, and let α be a locally bounded absolute value on B+. Let
ϕ : B+ → Herm+(H) be an α-bounded positive definite function. Then the
following conditions are equivalent:

(i) ϕ is ultraweakly continuous,
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(ii) there exists an order unit u and a sequence of positive real numbers
(rn) converging to zero such that lim

n→∞
ϕ(rnu) = ϕ(0) in the ultraweak

topology.

Proof. If ϕ is continuous on B+, then it is also continuous on the ray
through u ∈ IntB+, satisfying condition (ii). We now show that the converse
is true.

Let u be an order unit, and let (rn) be a sequence of positive real numbers
converging to zero such that lim

n→∞
ϕ(rnu) = ϕ(0), in the ultraweak topology.

Let (xn) be a sequence in B+ with xn → x. Then ϕ(xn) → ϕ(x) ultraweakly if
and only if ϕA(xn) → ϕA(x) for all A ∈ Herm+

1 (H), where ϕA(x) = tr(Aϕ(x)).
Therefore, without loss of generality, we can assume H = C.

By the Berg-Maserick theorem, there exists a unique positive Radon mea-

sure µ on B̂+ such that ϕ(rnu) =
∫
(B̂+)α

ξ(rnu) dµ(ξ). From Remark 4.4, it

holds that (B̂+)
α,c = {ξ ∈ (B̂+)

α : ξ(u) > 0}, and this set is Borel measurable
since it is open. Observe that ϕ can be written as:

ϕ(rnu) =

∫

(B̂+)α,c

ξ(rnu) dµ(ξ) +

∫

(B̂+)α\(B̂+)α,c

ξ(rnu) dµ(ξ).

Since (B̂+)
α\(B̂+)

α,c = (B̂+)
α\(B̂+)

α,t and rnu ∈ IntB+, the second integral
evaluates to zero because discontinuous characters vanish on the interior of
the positive cone (Lemma 4.3, Remark 4.4). Thus we have:

ϕ(rnu) =

∫

(B̂+)α,c

ξ(rnu) dµ(ξ).

Letting n → ∞, it follows that:

ϕ(0) = lim
n→∞

∫

(B̂+)α,c

ξ(rnu) dµ(ξ).

Since ξ ∈ B̂α,c
+ is α-bounded with respect to the locally bounded α, we can

assume ξ(rnu) ≤ c for all n ∈ N and some constant c > 0. By continuity,
ξ(rnu) → ξ(0) = 1. Using the Lebesgue’s dominated convergence theorem, it
follows that:

ϕ(0) = µ((B̂+)
α,c).

On the other hand,

ϕ(0) =

∫

(B̂+)α
ξ(0) dµ(ξ) = µ((B̂+)

α).

Thus, µ((B̂+)
α \ (B̂α,c

+ )) = 0, and we conclude that:

ϕ(x) =

∫

(B̂+)α,c

ξ(x) dµ(ξ).
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From ∥xn − x∥ → 0, it follows that:

ϕ(xn) =

∫

(B̂+)α,c

ξ(xn) dµ(ξ) →
∫

(B̂+)α,c

ξ(x) dµ(ξ) = ϕ(x).

Finally, we present the proof of Theorem 1.1.

Proof. Define a sequence of functions ϕA : B+ → [0,∞⟩ by
ϕA(x) ..= tr(Aϕ(x)), A ∈ Herm+

1 (H).

By Remark 2.4, the functions (ϕA) form a sequence of α-bounded positive
definite functions. Therefore by the Berg-Maserick theorem, for each A ∈
Herm+

1 (H) there exists a unique positive Radon measure νA on B̂+ such that:

ϕA(x) =

∫

(B̂+)α
ξ(x) dνA(ξ), ∀x ∈ B+.

The measure νA depends additively on A, as shown below (x̂ is point evalua-
tion on the set of characters):

∫
x̂ dνA+B = ϕA+B(x) = tr((A+B)ϕ(x)) = tr(Aϕ(x)) + tr(Bϕ(x))

= ϕA(x) + ϕB(x) =

∫
x̂ dνA +

∫
x̂dνB =

∫
x̂d(νA + νB),

which implies νA+B = νA + νB . This demonstrates that the mapping A 7→
νA is a homomorphism of monoids. Therefore, a unique Herm+(H)-valued
measure ν exists such that

ν(E)(A) = νA(E), ∀A ∈ Herm+
1 (H), E ∈ B(B̂+),

as per [14, Theorem I.10]. By definition, ν is Radon measure. It follows that:

ϕA(x) =

∫
x̂dνA =

(∫
x̂dν

)
(A),

and consequently:

ϕ(x) =

∫

(B̂+)α
ξ(x) dν(ξ).

As in the proof of the previous proposition, we decompose ϕ as:

ϕ(x) =

∫

(B̂+)α,c

ξ(x) dν(ξ) +

∫

(B̂+)α\(B̂+)α,c

ξ(x) dν(ξ), x ∈ B+.

Let β be a homeomorphism from Remark 4.6:

β : Cα → (B̂+)
α,c, λ 7→ eλ|B+
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and define µ ..= β−1(ν). Then µ is a Radon measure on B′ [11, Lemma 3.3]
with support in Cα. We deduce that for each x ∈ B+:

ϕ(x) =

∫

Cα

eλ(x) dµ(ξ) +

∫

(B̂+)α\(B̂+)α,c

ξ(x) dν(ξ)

= L(µ)(x) +
∫

(B̂+)α\(B̂+)α,c

ξ(x) dν(ξ).

By the previous proposition, ϕ is ultraweakly continuous, so the function
∫

(B̂+)α\(B̂+)α,c

ξ(x) dν(ξ) = ϕ(x)− L(µ)(x)

is also ultraweakly continuous. Since the integral on the left vanishes on
IntB+, it must be identically zero on B+. Thus:

ϕ(x) = L(µ)(x), ∀x ∈ B+.
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Matematički 31(51) (1996), 151-158.

D. Hunjak

Faculty of Transport and Traffic Sciences
University of Zagreb

10 000 Zagreb

Croatia
E-mail : diana.hunjak@fpz.unizg.hr


