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LINEAR RELATIONS BETWEEN THREE ALGEBRAIC
CONJUGATES OF DEGREE TWICE A PRIME

Paulius Virbalas

Vilnius University, Lithuania

Abstract. In this paper, we show that there is no irreducible poly-

nomial f(x) of degree 2p (p ≥ 5 is a prime number) over Q whose three
distinct roots sum up to zero. This extends some earlier results on the

linear relations between three algebraic numbers. In particular, let d be

the smallest positive integer, not a multiple of 3, for which there exists an
irreducible polynomial f(x) of degree d whose three distinct roots add up

to zero. In 2015, Dubickas and Jankauskas found that 10 ≤ d ≤ 20. As a

corollary, we show that it is either d = 16 or d = 20.

1. Introduction

Let α1 := α, α2, . . . , αd be distinct algebraic conjugates of an algebraic
number α of degree d over the field K. A relation of the form

(1.1) m1α1 + . . . + mdαd ∈ K

with coefficients m1, . . . ,md ∈ K is called a linear (or additive) relation be-
tween the conjugates of α. From the properties of symmetric polynomials,
it follows that if m1 = . . . = md, a relation in (1.1) always holds (such re-
lations are called trivial). In contrast, the reasons behind non-trivial linear
relations are much less understood. As we might expect, non-trivial relations
imply special conditions on the minimal polynomial of α. For example, in [11,
Theorem 1.1] Dubickas and Jankauskas found that an irreducible polynomial
f(x) of degree d ≤ 8 over Q has three distinct roots satisfying the relation
αi = αj + αk if and only if

f(x) = x6 + 2ax4 + a2x2 + b.
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The relation αi = αj +αk is an additive version of the multiplicative relation
αi = αjαk which has been investigated earlier by Schinzel and then by Drmota
and Ska lba (see [7], [8]). Unless some special conditions are met (see, e.g., [9,
Theorem 4]) or the degree of f(x) is low, it is not known how to efficiently
decide whether a given linear relation can occur between the roots of some
polynomial f(x). The most general result in this direction can be found in
a recent paper by Ellenberg and Hardt [14], in which they prove Smyth’s
conjecture (see also [21]).

A different approach was initiated by Girstmair, who approached the topic
with an emphasis on Galois groups rather than the form of polynomials (see
[16], [17]). Among other things, he showed that there are only six primitive
groups of transitivity degree d ≤ 15 that admit non-trivial linear relations.
For example, from [16, Proposition 6] we know that a direct product S3 × S3

occurs as Galois group for some irreducible polynomial of degree 9 whose roots
satisfy

4α1 + α2 + α3 + α4 + α5 − 2(α6 + α7 + α8 + α9) = 0.

A substantial amount of research has been focused on linear relations of the
simplest form, namely, αi + αj + αk = 0 or αi = αj + αk. The conditions
for such relations to exist have been studied in the works by Baron, Drmota
and Ska lba [1], [8]; by Dixon [6]; by Dubickas and Jankauskas [11], [12]; by
Girstmair [17], [18], [19], [20]; and by Lalande [26], [27]. Most of the findings
apply to algebraic conjugates of low degree or to specific classes of Galois
groups. The main contribution of this paper is the following result.

Theorem 1.1. Let p ≥ 5 be a prime number and let f(x) be an irreducible
polynomial of degree 2p over the field K such that Q ⊆ K ⊂ C. Then

αi + αj + αk ̸= 0

for any three roots αi, αj , αk of f(x).

The simplest possible linear relation between two roots of irreducible poly-
nomial f(x) is αi + αj = 0. Such relation implies that the degree d of f(x) is
divisible by 2 (because f(x) = g(x2) for some polynomial g(x)). It is natural
to ask, does the relation αi + αj + αk = 0 imply that d is divisible by 3?
In [11], it was shown how to construct irreducible polynomial f(x) for any
degree that is a multiple of 3 such that some three distinct roots of f(x) sum
up to zero. However, there exist polynomials of degree d whose three distinct
roots add up to zero with d not necessarily divisible by 3. It is not known
what is the smallest possible degree d of such polynomial: according to [11,
Theorem 1.2] such a minimal value of d lies in the range 10 ≤ d ≤ 20. As
an implication of Theorem 1.1 together with some other auxiliary results, we
have the following corollary.
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Corollary 1.2. Let d be the smallest positive integer, not multiple of 3,
for which there exists an irreducible polynomial f(x) of degree d over Q whose
three roots add up to zero. Then either d = 16 or d = 20.

With respect to Corollary 1.2, in [10], there is an example of a polynomial
with d = 20. In particular, it was shown that the irreducible polynomial

f(x) = x20 + 4 · 59 · x10 + 16 · 515

has three distinct roots, which sum up to zero. In contrast, the case of d = 16
still remains undecided. Our proof of the case d = 2p, where p ≥ 5 is a prime
number, relied on the specific properties of transitive permutation groups of
degree 2p. Thus, the case of d = 16 requires a different approach.

In Section 2, we state some auxiliary results and analyze a few exceptional
groups via group determinant. Then, in Section 3, Theorem 1.1 together with
Corollary 1.2 are proved. Our methods rely on linear algebra, Galois theory,
and some combinatorical arguments.

2. Auxiliary results

Lemma 2.1 (cf. [25]; see also [23, Proposition 2]). Let K be a field such
that Q ⊆ K ⊂ C. The equality

m1α1 + m2α2 + . . . + mpαp = 0

with distinct conjugates α1, α2, . . . , αp of an algebraic number α of prime de-
gree p over K and m1,m2, . . . ,mp ∈ Q can hold only if m1 = m2 = . . . = mp.

Lemma 2.2 (cf. [11, Lemma 2.4]). Let K be a field such that Q ⊆ K ⊂ C.
The equality

m1α1 + m2α2 + . . . + mdαd = 0

with distinct conjugates α1, α2, . . . , αd of an algebraic number α of degree d

over K and m1,m2, . . . ,md ∈ Q satisfying
∑d

i=1 mi ̸= 0 can hold only if

Tr(α) :=
d∑

i=1

αi = 0.

Lemma 2.3 (see [13, Lemma 4]). Let p be a prime number and let ζ :=
e2πi/p be a primitive p-th root of unity. The only linear relation over Q between
the numbers 1, ζ, . . . , ζp−1 is

c · (1 + ζ + . . . + ζp−1) = 0,

where c ∈ Q \ {0}.
Lemma 2.4. Let f(x) be an irreducible polynomial over the field K such

that Q ⊆ K ⊂ C. If for some three roots αi, αj , αk of f(x) the following
relation holds

(2.2) αi + αj + αk = 0,
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then all αi, αj , αk are distinct.

Proof. Assume on the contrary, that αi = αj . If αk = αi, then (2.2)
implies that αi = 0, a contradiction. Thus, αi ̸= αk. From (2.2) it follows
that αk/αi = −2. However, this is impossible because the quotient of two
distinct conjugate algebraic numbers is rational if and only if it is a root of
unity. Whence the claim.

The key ingredient in the proof of Theorem 1.1 is a result of Potočnik and
Šajna [28], a modified version of which is presented below.

Lemma 2.5 (part of [28, Theorem 1]). Let G be a permutation group
acting transitively on a set Ω of size 2p, where p ≥ 5 is a prime number.
Suppose that G has no blocks of imprimitivity of size p but admits a system
of imprimitivity with blocks of size 2, say Ψ = {B1, . . . ,Bp}. Consider the
induced action of G on Ψ with kernel N . Then, one of the following holds.

1. For any x ∈ Ω the point stabilizer St(x) in G acts transitively on the
set Ω \ Bi of size 2p− 2, where Bi ∈ Ψ is a block containing x.

2. For any two blocks Bi,Bj ∈ Ψ there exists a permutation τ ∈ N ⊆ G
fixing Bi pointwise and Bj setwise but not pointwise.

Lemma 2.5 allows us to prove Theorem 1.1 for almost all transitive per-
mutation groups of degree 2p. The exceptional groups are treated below. We
begin with the only simply primitive (primitive but not doubly transitive)
groups of degree 2p, namely, the alternating group A5 and the symmetric
group S5. Both groups act on the 10 pairs of a 5-element set. Thus, they are
considered as transitive subgroups of S10.

Lemma 2.6. Let f(x) be an irreducible polynomial of degree 10 over the
field K such that Q ⊆ K ⊂ C. If the Galois group G of f(x) is isomorphic to
A5 or S5, then

αi + αj + αk ̸= 0

for any three roots of f(x).

Proof. First, we show that A5 does not admit the relation

(2.3) αi + αj + αk = 0.

Since S5 contains A5 as a subgroup, the same arguments also remain valid in
the case of S5. The proof goes along similar lines as the proof of Theorem 1.1
in [11]. Suppose on the contrary, that the relation in (2.3) holds. By Lemma
2.4, we can assume that all roots are distinct. Let N be the number of distinct
equalities obtained by applying all automorphisms of A5 to (2.3) and let n be
the number of times α1 occurs among those N equalities. Then

(2.4) 3N = 10n.



LINEAR RELATIONS BETWEEN THREE ALGEBRAIC CONJUGATES 5

Hence, n is divisible by 3. Note also that the intersection of two distinct sets of
indices {i, j, k} and {i′, j′, k′} satisfying αi+αj+αk = 0 and α′

i+α′
j+α′

k = 0 is
either empty or contains one element since {i, j, k}∩{i′, j′, k′} cannot consist
of exactly two indices. Moreover, Tr(α1) = 0 due to Lemma 2.2. From these
observations, it is not difficult to derive that n = 3 (as n ≥ 6 immediately
would lead to a contradiction). We have

(2.5) α1 + αn2 + αn3 = α1 + αn4 + αn5 = α1 + αn6 + αn7

for some distinct indices n2, . . . , n7 ∈ {2, . . . , 10}. Since A5 has unique (up
to conjugacy) representation as a transitive subgroup of S10, we can assume
according to the transitive group database [24], that A5 is generated by two
permutations

A5 = ((1, 9)(3, 4)(5, 10)(6, 7), (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)),

where an index i corresponds to a root αi. Let St(α1) denote the stabilizer of
α1 in A5. Then St(α1) consists of six permutations

St(α1) = { id, (2, 4, 5)(3, 6, 9)(7, 8, 10), (2, 5, 4)(3, 9, 6)(7, 10, 8)

(2, 7)(4, 10)(5, 8)(6, 9), (2, 8)(3, 6)(4, 7)(5, 10)

(2, 10)(3, 9)(4, 8)(5, 7)}
(2.6)

which act in three orbits

(2.7) O1 = {1}, O2 = {2, 4, 5, 7, 8, 10}, O3 = {3, 6, 9}.
Note that any τ ∈ St(α1) must act as a permutation on the three equalities in
(2.5), since those are the only equalities with α1. In view of (2.6) and (2.7),
it is not difficult to deduce that this is possible only if

{n2, n3, n4, n5, n6, n7} = O2 = {2, 4, 5, 7, 8, 10}.
By adding all three equalities in (2.5) and using Tr(α1) = 0 we get

(2.8) 2α1 = α3 + α6 + α9.

Next we apply appropriately selected permutations of A5, namely

(1, 3)(2, 7)(5, 6)(8, 9), (1, 6)(2, 3)(5, 7)(9, 10) and (1, 9)(3, 4)(5, 10)(6, 7)

on (2.8). They map St(α1) to St(α3), St(α6) and St(α9), respectively. This
leads to the following three equalities

(2.9) 2α3 = α1 +α5 +α8, 2α6 = α2 +α1 +α10 and 2α9 = α4 +α7 +α1.

By adding all equalities in (2.8) and (2.9) we arrive at

2(α1 + α3 + α6 + α9) = 2α1 + Tr(α1).

Therefore, α3 + α6 + α9 = 0. But from (2.8) it follows then that α1 = 0, a
contradiction. This completes the proof.
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Next we treat the only two groups of degree 2p which have order 2p,
namely, the cyclic group C2p and the dihedral group Dp. We analyze these
groups via group determinant, a method which was introduced by Smyth in
[29] and later applied by others [11], [23].

Lemma 2.7. Let p ≥ 5 be a prime number and let f(x) be an irreducible
polynomial of degree 2p over the field K such that Q ⊆ K ⊂ C. If the Galois
group G of f(x) is isomorphic to the cyclic group C2p of order 2p, then

αi + αj + αk ̸= 0

for any three roots of f(x).

Proof. Let α1, . . . , α2p be all roots of f(x). Consider the equality

(2.10) m1α1 + m2α2 + . . . + m2pα2p = 0

for some m1, . . . ,m2p ∈ Q. By applying all 2p permutations of C2p on (2.10)
we get the following system of 2p linear equations

(2.11)




m1 m2 . . . m2p

m2p m1 . . . m2p−1

...
...

...
...

m2 m3 . . . m1







α1

α2

...
α2p


 =




0
0
...
0


 .

The system of homogeneous linear equations in (2.11) has non-zero solution
only if the determinant of the corresponding efficient matrix vanishes. The
determinant in question corresponds to the group determinant detC2p which
in the case of cyclic groups is called the circulant [9, Chapter 2] (see also [23,
Proposition 2]. In particular

(2.12) detC2p =

2p−1∏

l=0

(m1 + ζlm2 + ζ2lm3 . . . + ζ(2p−1)lm2p),

where ζ := e2πi/p denotes a primitive 2p-th root of unity.
Assume on the contrary, that αi + αj + αk = 0. Due to Lemma 2.4 we

can assume that roots αi, αj , αk are distinct. After substituting mi = mj =
mk = 1 and mu = 0 for all u ∈ {1, . . . , 2p} \ {i, j, k} in (2.12), we must get
detC2p = 0. Clearly, this implies a non-trivial linear relation over Q between
three 2p-th roots of unity. Note that 2p-th roots of unity can be generated by
the primitive p-th root of unity and −1. Therefore, a non-trivial linear relation
(over Q) between three 2p-th roots of unity implies a non-trivial linear relation
(over Q) between three p-th roots of unity. However, the latter is impossible
according to Lemma 2.3. Whence the claim.

Lemma 2.8. Let p ≥ 5 be a prime number and let f(x) be an irreducible
polynomial of degree 2p over the field K such that Q ⊆ K ⊂ C. If the Galois
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group G of f(x) is isomorphic to the dihedral group Dp of order 2p, then

αi + αj + αk ̸= 0

for any three roots of f(x).

Proof. Consider the relation

(2.13) m1α1 + m2α2 + . . . + m2pα2p = 0

for some m1, . . . ,m2p ∈ Q. Analogously as in the previous lemma, from (2.13)
we construct a system of linear equations and investigate the group determi-
nant detDp. From the character table of Dp we deduce the factorization of
detDp (see [4, Theorem 4]). In particular

det(Dp) = Θ1 · Θ2 · Φ2
1 · Φ2

2 · · ·Φ2
(p−1)/2,

where Θ1,Θ2 denote linear factors and Φ1, . . . ,Φ(p−1)/2 denote quadratic fac-
tors. Let

(2.14) Dp = ⟨r, s | rp = s2 = 1, srs = rp−1⟩
be the usual presentation of Dp. The two linear representations of Dp are
given by

r 7→ 1, s 7→ 1 and r 7→ 1, s 7→ −1.

Thus, after re-indexation if necessary, the two linear factors of det(Dp) are

Θ1 = m1 + . . . + m2p and Θ2 = m1 + . . . + mp −mp+1 − . . .−m2p.

It is clear that after substituting mi = mj = mk = 1 and mu = 0 for all
u ∈ {1, . . . , 2p} \ {i, j, k} we always have Θ1 ̸= 0 and Θ2 ̸= 0. It remains to
show that all quadratic factors of det(Dp) are non-zero too.

Assume on the contrary that for some l ∈ {1, . . . , (p− 1)/2} a quadratic
factor Φl vanishes. Set Φ := Φl and let χ denote the character of the cor-
responding quadratic representation. The elements of Dp are denoted as
g1, . . . , g2p. Then by the methods described in [4, Chapter 5] we deduce that
Φ has the following form

2Φ = χ(gi)
2 + χ(gj)

2 + χ(gk)2 − χ(g2i ) − χ(g2j ) − χ(g2k)

+ 2χ(gi)χ(gj) + 2χ(gk)χ(gi) + 2χ(gj)χ(gk)

− 2χ(gigj) − 2χ(gkgi) − 2χ(gjgk).

(2.15)

Let

(2.16) Dp → GL2(C), gt 7→
(
at bt
ct dt

)
,

where t ∈ {i, j, k}. By definition, χ(gt) = Tr(gt). Thus, we can express Φ in
terms of at, bt, ct, dt. Observe that

g2i =

(
a2i + bici aibi + bidi
ciai + dici cibi + d2i

)
⇒ χ(g2i ) = Tr(g2i ) = a2i + 2bici + d2i .
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Thus

χ(gi)
2 − χ(g2i ) = (ai + di)

2 − (a2i + 2bici + d2i ) = 2aidi − 2bici.

Similarly

gigj =

(
aiaj + bicj aibj + bidj
ciaj + dicj cibj + didj

)
⇒ Tr(gigj) = aiaj + bicj + bjci + didj .

Thus

χ(gi)χ(gj) − χ(gigj) = (ai + di)(aj + dj) − (aiaj + bicj + bjci + didj)

= aidj + ajdi − bicj − bjci.

By applying the same calculations for other factors of Φ and substituting
them in (2.15) we derive that

2Φ = 2(ai + aj + ak)(di + dj + dk) − 2(bi + bj + bk)(ci + cj + ck).

Hence, Φ = 0 implies that

(2.17) (a1 + a2 + a3)(d1 + d2 + d3) = (b1 + b2 + b3)(c1 + c2 + c3).

The quadratic irreducible representations of Dp are given by

r 7→
(
ζn 0
0 ζ−n

)
and s 7→

(
0 1
1 0

)
,

where r, s were defined in (2.14), ζ = e2πi/2 is a primitive p-th root of unity,
and 1 ≤ n ≤ (p − 1)/2 (see [30, Example 3.0.3]. From this together with
(2.16) it is not difficult to derive that for any t ∈ {i, j, k} we have either

at = ζnt , dt = ζ−nt , bt = 0, ct = 0

or

at = 0, dt = 0, bt = ζnt , ct = ζ−nt

(2.18)

for some integer nt ∈ {0, . . . , p−1}. If all ai, aj , ak are non-zero (or all bi, bj , bk
are non-zero), then (2.18) implies that the equality in (2.17) becomes

(ζni + ζnj + ζnk)(ζ−ni + ζ−nj + ζ−nk) = 0

which immediately leads to a contradiction with respect to Lemma 2.3. Thus,
at least one of ai, aj , ak is non-zero. Then (2.18) implies that the equality in
(2.17) up to a permutation of i, j, k becomes

(ζni + ζnj ) · (ζ−ni + ζ−nj ) = (ζnk) · (ζ−nk)

which simplifies to

2 + ζni−nj + ζnj−ni = 1,

again a contradiction to Lemma 2.3. This completes the proof.
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3. Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Suppose on the contrary, that there exists an
irreducible polynomial f(x) of degree 2p over K whose three roots satisfy

(3.19) αi + αj + αk = 0.

Due to Lemma 2.4, we can assume that all roots in (3.19) are distinct. Let
Ω = {α1, α2, . . . , α2p} be the full set of roots of f(x). Since by assumption
p ≥ 5, the relation in (3.19) is possible only if Tr(α1) = 0 due to Lemma2.2.
Denote by L the splitting field of f(x) over K and let G be the Galois group of
L/K. For the rest of the proof we treat G as a transitive permutation group
on Ω. The next two lemmas will show that G cannot be imprimitive. First
we prove the following.

Lemma 3.1. If G is imprimitive, then it must admit blocks of size p.

Proof. Suppose on the contrary, that G is imprimitive but has no blocks
of size p. It follows that G has a system of imprimitivity with blocks of size
2, say B1, . . . ,Bp. Let Ψ = {B1, . . . ,Bp}. After re-indexation if necessary we
can assume that

(3.20) α1 + α2 + α3 = 0.

By applying Lemma 2.5 on (3.20), it is not difficult to derive that no two
of the conjugates α1, α2, α3 can belong to the same block. Thus, without
restriction of generality, we can suppose that

(3.21) B1 = {α1, α4}, B2 = {α2, α5}, B3 = {α3, α6}.
Consider the group action of G on Ψ. Let N denote the kernel of this action.
We divide the analysis into two cases according to Lemma 2.5.

Case I. The stabilizer of α1 in G, namely St(α1), acts transitively on the
set Ω \ B1 of size 2p − 2. In particular, for any i ∈ {1, . . . , 2p} \ {1, 4} there
exists σi ∈ St(α1) such that σi(α2) = αi. Consider 2p − 2 equalities of the
form

(3.22) σi(α1 + α2 + α3) = 0

for i ∈ {1, . . . , 2p}\{1, 4}. Observe that all three conjugates σi(α1), σi(α2), σi(α3)
belong to three separate blocks of Ψ. Moreover, no two distinct equalities of
the form in (3.22) can share exactly two elements. These observations imply
that by adding all 2p− 2 equalities in (3.22) we get

0 =
∑

i∈{1,...,2p}\{1,4}
σi(α1 + α2 + α3)

=(2p− 2) · α1 + 2(α2 + α3 + . . . + α2p) − 2α4

=(2p− 4) · α1 + 2 · Tr(α1) − 2α4.

(3.23)
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Since Tr(α1) = 0, the relation in (3.23) simplifies to

(2p− 4) · α1 = 2α4.

The last equality is possible only if 2p − 4 = −2. This forces p = 1, a
contradiction.

Case II. There exists σ ∈ N ⊂ G such that for any i ̸= j, an element τ
fixes Bi pointwise and Bj setwise but not pointwise. Therefore, we can choose
τ ∈ N that fixes B1 pointwise and B2 setwise but not pointwise. By applying
τ on the relation in (3.20) we get

0 = τ(α1 + α2 + α3) = α1 + α5 + τ(α3).

Since τ ∈ N , in view of (3.21) we must have τ(α3) = α3 or τ(α3) = α6. The
former leads to α2 = α5, a contradiction. Thus, τ(α3) = α6. This implies
that

(3.24) α2 + α3 = α5 + α6.

Next choose τ̂ ∈ N which fixes B3 pointwise and B2 setwise but not pointwise.
By applying τ̂ on (3.24) we get

(3.25) α5 + α3 = α2 + α6.

From (3.24) and (3.25) follows that

α5 = α2,

a contradiction. This completes the proof.

We have shown that if G is imprimitive, then it must contain a system of
imprimitivity with blocks of size p. The next lemma is sufficient to conclude
that G cannot be imprimitive.

Lemma 3.2. If G is imprimitive, then G does not admit blocks of size p.

Proof. Suppose on the contrary, that G has a system of imprimitivity
consisting of two blocks of size p, say B1,B2. After re-indexation if necessary,
we can assume that

B1 = {α1, . . . , αp} and B2 = {αp+1, . . . , α2p}.
From αi + αj + αk = 0 and Lemma 2.1 follows that all of αi, αj , αk cannot
belong to the same block. Suppose without restriction of generality that
i = 1, j = 2 and k = p + 1. Thus

(3.26) α1 + α2 + αp+1 = 0,

where α1, α2 ∈ B1 and αp+1 ∈ B2. Let H ⊂ G denote the setwise stabilizer of
B1 in G. Consider the transitive group action of H on B1. We will show that
the kernel M of this action is trivial. If it is not, then there exists τ ∈ M ⊂ H
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such that B1 is fixed pointwise and τ(αt) ̸= αt for some αt ∈ B2. Take any
σ ∈ G such that σ(αp+1) = αt. From (3.26) it follows that

(3.27) σ(α1) + σ(α2) + αt = 0

with σ(α1), σ(α2) ∈ B1. Thus

(3.28) τσ(α1) + τσ(α2) + τ(αt) = σ(α1) + σ(α2) + τ(αt) = 0.

Consequently, from (3.27) and (3.28) we get

0 = (σ(α1) + σ(α2) + αt) − (σ(α1) + σ(α2) + τ(αt)) ⇒ αt = τ(αt),

a contradiction. Thus, we have shown that H acts faithfully on B1. This
implies that H ⊂ G can be treated as a transitive permutation group of
prime degree p with respect to B1. We divide the rest of the analysis into two
cases depending on whether H is non-solvable or solvable.

Case I. Suppose H is non-solvable. The classical result of Burnside [3]
implies that H is doubly transitive on B1. Hence, for any i ∈ {2, . . . , p} there
exists ϕi ∈ H such that ϕi(α1) = α1 and ϕi(α2) = αi. By applying ϕi on
(3.26) we obtain the following p− 1 equalities

α1 + α2 + ϕ2(αp+1) = 0,

α1 + α3 + ϕ3(αp+1) = 0,

...

α1 + αp + ϕp(αp+1) = 0.

(3.29)

It is clear that σi(αp+1) ̸= σj(αp+1), whenever i ̸= j. Thus, by adding all
equalities in (3.29) we arrive at

0 =(p− 1) · α1 + (α2 + . . . + αp) + (αp+1 + . . . + α2p − αl)

=(p− 2) · α1 + Tr(α1) − αl

for some αl ∈ B2. Since Tr(α1) = 0, we obtain

(p− 2) · α1 = αl.

The last equality is possible only if p − 2 = −1. This forces p = 1, a contra-
diction.

Case II. Suppose H is solvable. From the classification of transitive
permutation groups of prime degree follows, that either H is a cyclic group of
order p or H is a Frobenius group of order ps for some non-unit divisor s of
p − 1 (see [5, Corollary 3.5B]; see also [2, Theorem 2.1]). If H is isomorphic
to the cyclic group of order p, then G has order |H| · 2 = 2p. It is well-known
that the only regular transitive groups of degree 2p are the cyclic group C2p

and the dihedral group Dp [15]. According to Lemma 2.7 and Lemma 2.8,
neither of these groups admit the relation of the form αi +αj +αk = 0. Thus,
it remains to consider the situation in which H is a Frobenius group. Since H
is of index 2 in G, it follows that it is a normal subgroup in G. Consequently,
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H acts transitively not only on B1, but on B2 also. Let St(αp+1) denote
the point stabilizer of αp+1 in G. Note that St(αp+1) coincides with the
stabilizer of αp+1 in H. From the properties of Frobenius groups of prime
degree [5, Chapter 3.4] follows that any non-identity µ ∈ St(αp+1) acts as a
product of s-cycles on B2 and has exactly one fixed point, namely αp+1. By
symmetric argument applied to the block B1, we deduce that any non-identity
µ ∈ St(αp+1) acts as a product of s-cycles on Ω = B1 ∪ B2 and has exactly
two fixed points. Consider the following two equalities

(3.30) α1 + α2 + αp+1 = 0 and µ(α1) + µ(α2) + αp+1 = 0.

Observe that the relations in (3.30) can hold simultaneously only if the sets
{α1, α2} and {µ(α1), µ(α2)} coincide or their intersection is empty. If the
latter holds, then

(3.31) µ(α1) + µ(α2) − α1 − α2 = 0.

Since µ(α1), µ(α2), α1, α2 ∈ B1, an equality in (3.31) constitutes a non-trivial
linear relation between polynomial roots of prime degree over some field K
such that Q ⊆ K ⊂ C, a contradiction to Lemma 2.1. Hence, {α1, α2} =
{µ(α1), µ(α2)}. By the same reasoning as in Lemma 2.6, we deduce the
existence of equality

(3.32) αa + αb + αp+1 = 0,

where {a, b} ≠ {1, 2}. Once again, by considering the equalities

αa + αb + αp+1 = 0 and µ(αa) + µ(αb) + αp+1 = 0

we derive that µ interchanges αa with αb. Clearly, both αa and αb belong to
the same block Bi, where i = 1 or i = 2. If i = 2, then αa, αb, αp+1 ∈ B2 and
we immediately get a contradiction via Lemma 2.1. If i = 1, then

αa + αb − α1 − α2 = 0

with αa, αb, α1, α2 ∈ B1 which again contradicts Lemma 2.1. This completes
the proof.

From Lemma 3.1 together with Lemma 3.2 follows that if some three
roots of f(x) satisfy αi + αj + αk = 0, then the Galois group G of f(x) is
primitive. Thanks to the classification of all finite simple groups, we know
that a primitive permutation group of degree 2p (p is a prime number) is
either doubly transitive or has degree 10 and is isomorphic to A5 or S5 (both
acting on the set of pairs of a 5-element set) [22, Section 4]. However, due
to Lemma 2.6, neither A5 nor S5 admit the relation αi + αj + αk = 0. On
the other hand, doubly transitive groups do not admit any non-trivial linear
relations at all [7]. Therefore, we have reached a contradiction to the initial
assumption in (3.19). This completes the proof.
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Proof of Corollary 1.2. In [11], it was established that 10 ≤ d ≤ 20.
Since by assumption, d is not a multiple of 3, it follows that

d ∈ {10, 11, 13, 14, 16, 17, 19, 20}.
From Lemma 2.1 follows that d cannot be equal to a prime number; this
eliminates values equal to 11, 13, 17, 19. Theorem 1.1 implies that d is not
equal twice a prime; this eliminates values equal to 10 and 14. Consequently,
d = 16 or d = 20.
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