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GENERIC IRREDUCIBILITY OF PARABOLIC INDUCTION
FOR REAL REDUCTIVE GROUPS

David Renard

Ecole Polytechnique, France

Abstract. Let G be a real reductive linear group in the Harish-

Chandra class. Suppose that P is a parabolic subgroup of G with Lang-
lands decomposition P =MAN . Let π be an irreducible representation of

the Levi factor L =MA. We give sufficient conditions on the infinitesimal

character of π for the induced representation iGP (π) to be irreducible. In
particular, we prove that if πM is an irreducible representation of M , then

for a generic character χν of A, the induced representation iGP (πM ⊠ χν)

is irreducible. Here the parameter ν is in a∗ = (Lie(A)⊗R C)∗ and generic
means outside a countable, locally finite union of hyperplanes which de-

pends only on the infinitesimal character of π. Notice that there is no other

assumption on π or πM than being irreducible, so the result is not limited
to generalised principal series or standard representations, for which the

result is already well known.

1. Introduction

Let G be a real reductive group. We assume that there is a connected
algebraic reductive group G defined over R and that G has finite index in
G(R). Let P be a parabolic subgroup of G, with Langlands decomposition
P =MAN , let πM be an irreducible representation of M , and χ a character
of A. Consider the induced representation τ = iGP (πM ⊗ χ) where iGP is the
functor of (normalized) parabolic induction.

Theorem 1.1. For generic χ, the representation τ = iGP (πM ⊗ χ) is
irreducible.
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More precisely, since A = exp a0 where a0 is a real abelian Lie algebra,
characters of A are of the form

(1.1) χν : exp(X) 7→ exp(ν(X)), (X ∈ a0)

for some ν ∈ a∗. “Generic” in the Theorem means “for χ = χν with ν outside
a countable, locally finite union of hyperplanes in a∗”. See Hypotheses 4.2 for
the precise conditions when the infinitesimal character of πM is non singular
and Hypotheses 5.1 when infinitesimal character of πM is singular. For a
different perspective on potential applications, notice that Hypotheses 4.2
and 5.1 give in fact sufficient conditions on the infinitesimal character of an
irreducible representation π of L =MA for the induced representation iGP (π)
to be irreducible (Theorems 4.4 and 5.4).

The result may seem obvious to experts, and I was surprised not being
able to find a reference in the literature. For p-adic groups, a proof of the
analog result is given by F. Sauvageot in [10], and a totally different one by
J-F. Dat in [2]. Both proofs seem difficult to adapt to the real case, however.
I propose here a very simple argument, based on a very sophisticated theory,
namely the Kazhdan-Lusztig-Vogan theory of character multiplicities that I
will try to describe (partly) below. The motivation for writing this note came
from a question of Nadir Matringe, who asked for a reference for the result in
Theorem 1.1, since it is used in his work with O. Offen and C. Yang [6].

After the first version of the paper was written, David Vogan informed
me that he knew the argument given here. This was not a surprise since
the proof consists mainly in giving references to his work. He also sketched
a more elementary one (in the sense that it uses less sophisticated results,
on Lie algebra cohomology), but probably not shorter to expose from the
published results. I also became aware that the idea of using the Kazhdan-
Lusztig-Vogan (KLV for short from now on) algorithm to prove irreducibility
of parabolically induced representations has been used before in published
works, notably Matumoto [7] and Gan-Ichino [3]. I had also thought about
using this argument in our work with Colette Moeglin on Arthur packets for
real classical groups [8]. Indeed, the last step is the construction of arbitrary
packets from packets of “good parity” on a maximal Levi subgroup, by par-
abolic induction. In ibid, Thm 4.4, it is stated that this induction preserves
irreducibility, and I had the vague impression that it could be a consequence
of the ideas explained in the paper. Eventually, we didn’t use that strategy
and another quite difficult and circumvoluted argument is given [9], Thm.
5.4. These works prompt me to phrase the main result of the present paper in
Corollary 3.7, following the idea of [7] and [3]. In the final section, I go back
to [9], Thm. 5.4, and explain how the results here provide some shortcuts in
the proof (and even a complete argument in most cases, but not more than
that, some difficulties remain in some degenerate cases).
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Let me now describe more precisely the content of the paper. Let L be
a real reductive group, with Lie algebra l0 and let K be maximal compact
subgroup. Let l be the complexified Lie algebra of l0. By “representations of
L”, we mean finite length Harish-Chandra modules for the pair (l,K). Fix
an infinitesimal character χ for L and denote by HC(l,K)χ, or simply HCχ,
the category of representations of L with infinitesimal character χ, and by
KZHC(l,K)χ, or simply KZHCχ, its Grothendieck group with coefficients in
Z. If π is a representation in HCχ, denote by [π] its image in KZHCχ.

A result of Harish-Chandra asserts that the number of equivalence classes
of irreducible representations with fixed infinitesimal character is finite and
Langlands classification for irreducible representations, as reformulated by Vo-
gan (see [11], [13]), gives us a set PL

χ = Pχ which parametrizes the equivalence
classes of irreducible representations in HCχ (in fact, it is the set Pχ/∼K of

K-conjugacy classes in Pχ which is in one-to-one correspondence with equiv-
alence classes of irreducible representations). I will be more precise later,
but for the moment, I will just say that a parameter γ in Pχ is roughly a
character of a Cartan subgroup of L with some additional data, from which
one can construct a “standard” representation std(γ) in HCχ (parabolically
induced from a limit of discrete series modulo the center of the corresponding
Levi subgroup). The standard representation std(γ) has a Langlands quotient
irr(γ) which is irreducible, and appears with multiplicity one in std(γ). Thus,
([irr(γ)])γ∈Pχ/∼K

is a basis of the Grothendieck group KZHCχ. Therefore, in
the Grothendieck group, one can write for all δ ∈ Pχ,

(1.2) [std(δ)] =
∑

γ∈Pχ/∼K

m(γ, δ) [irr(γ)]

for some non negative integers m(γ, δ) (the multiplicity of irr(γ) in std(δ)).
It is known from properties of the Langlands classification relative to

“exponents” that one can invert the linear system (1.2). Since we will not use
exponents in this paper, we explain this using the length function lI on Pχ

introduced by Vogan ([11], 8.1.4). Indeed, if m(γ, δ) ̸= 0, then lI(γ) < lI(δ),
or γ = δ, and furthermore m(γ, γ) = 1. Therefore we can write

(1.3) [irr(δ)] =
∑

γ∈Pχ/∼K

M(γ, δ) [std(γ)]

for some integers M(γ, δ). The Kazhdan-Lusztig-Vogan theory gives an al-
gorithm to compute these integers M(γ, δ) (or equivalently the m(γ, δ)). We
give details about the KLV algorithm in Section 3.

Let us apply this to the problem of determining when a representation
τ = iGP (π) is irreducible, for π an irreducible representation of L = MA,
the Levi factor of P , as in the beginning of this introduction. Applying
the statements in the previous paragraph to L = L and to the infinitesimal
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character χ of π, we can write π = irr(δ) for some parameter δ ∈ PL
χ and

write

[π] = [irr(δ)] =
∑

γ∈PL
χ /∼KL

ML(γ, δ) [std(γ)].

By the exactness of the functor iGP , we get,

[τ ] = [iGP (π)] = [iGP (irr(δ))] =
∑

γ∈PL
χ /∼KL

ML(γ, δ) [iGP (std(γ))].

Now, the infinitesimal character χ for L determines an infinitesimal character
for G that we can still denote by χ. Let us assume first that the infinitesimal
character χ of π is non singular. Then, a parameter γ ∈ PL

χ can be extended

to a parameter γG ∈ PG
χ , giving a correspondence

(1.4) γ 7→ γG, PL
χ −→ PG

χ ,

so that

(1.5) iGP (std(γ)) = std(γG).

Thus we get

(1.6) [τ ] =
∑

γ∈PL
χ /∼KL

ML(γ, δ) [std(γG)]

We can compare this to

(1.7) [irr(δG)] =
∑

η∈PG
χ /∼K

MG(η, δG) [std(η)]

to conclude that τ = irr(δG) if the following conditions are satisfied :

a) The correspondence (1.4) is injective.
b) ML(γ, δ) =MG(γG, δG) for any γ, δ ∈ PL

χ .

c) MG(η, δG) = 0 if η is not in the image of (1.4).

We will give sufficient conditions for this to hold (Hypotheses 4.2). When the
infinitesimal character χ of π is singular, we give conditions in Hypotheses
5.1 so that the correspondence (1.4) is still well-defined and a), b), c) still
hold. The corresponding irreducibility results are Theorems 4.4 and 5.4, and
Theorem 1.1 is obtained as a corollary.

The multiplicities M(γ, δ) are computed by the KLV algorithm, and this
algorithm is determined by a set of data attached to the parameters. Under
the conditions we give on the infinitesimal character, this set of data is pre-
served under the one-to-one correspondence γ 7→ γG. To see this, and explain
how the KLV algorithm works, we need to introduce a lot of structure theory
and results taken from Vogan’s papers (about integral root systems, Cayley
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transforms, cross-actions, etc, in[11], [12], [13]), which makes the paper a little
bit heavy, but the proofs consist mostly in careful bookkeeping.

In Section 2 and 3 of the paper, we introduce the material to be able
to describe the KLV algorithm (in case of non singular infinitesimal charac-
ter). The algorithm itself (what the KLV polynomials are, how they give the
multiplicities M(γ, δ) and how to compute them) is explained at the end of
Section 3, and the main result for us here is that this algorithm is completely
determined by the structural data introduced in Section 2.6. In section 4,
we show that these data are “the same” for L and G, if the Hypotheses 4.2
on the infinitesimal character are satisfied. Indeed, we see first that the cor-

respondence (1.4) between the Langlands-Vogan parameters sets PL♭

χ /∼M♭
K

and PG
χ /∼K

is injective and its image is a union of blocks (this term will be

explained in §3.13), among which is the block containing δG. Then we see
that the integral root systems attached to χ are the same in L and G, and
likewise for all the data in Section 2.6. In the last section, we show how to
extend the irreducibility result to the case of singular infinitesimal character,
using the “translation data” in Chapter 16 of [1].

2. Notation, preliminaries and structural data

For any real Lie algebra b0, we denote by b its complexification. LetG be a
real reductive group as in the introduction. Let g0 be the Lie algebra of G. We
also fix a Cartan involution θ of G with associated maximal compact subgroup
K, and associated Cartan decomposition g0 = k0 ⊕ s0. We denote by σ the
complex conjugation in g relative to the real form g0. We fix a G-invariant
non-degenerate symmetric bilinear form ⟨. , .⟩ on g (and g∗), preserved by θ
and which is positive definite on s0 and definite negative on k0.

If a group G acts on a set X and if Y is a subset of X, we denote by
CentrG(Y ) or simply GY the centraliser of Y in G and by NormG(Y ) its nor-
maliser and we use analogous notation for a linear action of a Lie algebra.

2.1. Cartan subalgebras, Cartan subgroups, roots. We recall the following well-
known facts about Cartan subgroups. A Cartan subgroup H is the centraliser
in G of a Cartan subalgebra h0 of g0. If the Cartan subalgebra h0 is θ-stable
and decomposes as h0 = t0 ⊕ a0, then the Cartan subgroup H decomposes as
H = TA (direct product) with T = H∩K and A = exp a0. Let h0 be a Cartan
subalgebra of g0. Let us denote by R(g, h) the root system of h in g, byW (g, h)
the corresponding complex Weyl group, and byW (G,H) = NormG(H)/H the
real Weyl group. Depending on their values on h0, roots are classified as real,
complex or imaginary. One can furthermore distinguish between compact
imaginary and non-compact imaginary roots (see [13] p. 150). Let us denote
by

RR(g, h), RiR(g, h), RiR,c(g, h), RiR,nc(g, h), RC(g, h)
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the subsets of R(g, h) consisting of the real, imaginary, imaginary compact,
imaginary non compact, and complex roots respectively. Denote by α̌ =
2 α
⟨α,α⟩ ∈ h∗ the coroot associated to a root α ∈ R(g, h) and by sα the reflection

in W (g, h) associated to α.

Via Harish-Chandra isomorphisms, any element λ in the dual h∗ of any
Cartan subalgebra h determines a character χλ of Z(g), the center of the
enveloping algebra of g (i.e. an infinitesimal character). Both λ and χλ are
said to be non singular when ⟨α, λ⟩ ̸= 0 for all α ∈ R(g, h). If a positive
root system R+(g, h) is given, λ is said to be dominant if −⟨α̌, λ⟩ /∈ N for all
α ∈ R+(g, h).

For λ ∈ h∗, set R(λ) = {α ∈ R(g, h) | ⟨α̌, λ⟩ ∈ Z}, the set of integral roots
(for λ) and let W (λ) =W (R(λ)) be the Weyl group of the root system R(λ).
If λ is non singular, then put

R+(λ) = {α ∈ R(λ) | ⟨α̌, λ⟩ > 0}
and let Π(λ) and S(λ) be respectively the set of simple roots in R+(λ) and
the set of simple reflections in W (λ).

In order to be able to compare roots and Weyl groups on different Cartan
subalgebras, we will use the abstract Cartan subalgebra ha of g (see [13],
Section 2). We fix a positive root system R+(g, ha) in R(g, ha) and a non
singular dominant weight λa ∈ h∗a. This defines an infinitesimal character
χλa

. We also define Ra = R(λa), R
a,+, W a, Πa, Sa to be respectively the

abstract integral root system, the abstract integral positive root system, the
abstract integral Weyl group, the abstract set of simple roots, and the abstract
set of simple reflections.

If h is any Cartan subalgebra of g and λ ∈ h∗ is such that χλ = χλa
, there

is an isomorphism iλ : h∗a → h∗ sending λa to λ which induces isomorphisms
Ra → R(λ), W a →W (λ), and so forth.

2.2. Parabolic subgroups. Let P be a parabolic subgroup of G with Langlands
decomposition P =MAN and Levi factor L =MA (direct product). Denote
by p0, m0, a0, n0 and l0 the respective Lie algebras of P , M , A, N and
L. We also introduce the opposite parabolic P− and its Lie algebra p−0 .
Conjugating with an element of G, we may assume that l0 is θ-stable and
MK := L ∩K = M ∩K is a maximal compact subgroup of L and M . Both
L and M are in the class of groups defined in the introduction.

Let h0 be a θ-stable Cartan subalgebra of l0. It decomposes as

h0 = hM,0 ⊕ a0 = t0 ⊕ aM,0 ⊕ a0.

Let R(n, h) be the set of roots in R(g, h) such that the corresponding root
space is in n. Then

R(g, h) = R(l, h)
∐

R(n, h)
∐

(−R(n, h)).



GENERIC IRREDUCIBILITY FOR REAL REDUCTIVE GROUPS 7

The roots α ∈ R(n, h) are either real, or complex with σ(α) = −θ(α) also
in R(n, h). Let us choose a positive root system R+(l, h) and set R+(g, h) =
R+(l, h)

∐
R(n, h). By [5], Lemma 11.13 and (11.12) there is an element

hδ(n) ∈ a0 such that l0 = g
hδ(n)

0 . Therefore, as a0 is central in l0, we have
l0 = ga0

0 .
Since L = MA it is clear that L ⊂ Ga0 = GA. If g ∈ Ga0 = GA,

it preserves l0, n0 and n−0 which are stable under the adjoint action of a0.
Therefore, since L = NormG(p) ∩NormG(p

−), we get

(2.8) L = GA = Ga0 .

Similar consideration apply to the complex connected group G(C), and there
we have

(2.9) L(C) := NormG(C)(p) ∩NormG(C)(p
−) = G(C)a = G(C)A.

Some parabolic subgroups called cuspidal are attached to Cartan sub-
groups : let H = TA be a θ-stable Cartan subgroup. Set L = GA Then
L is a Levi factor of parabolic subgroups P = LN of G, with Langlands
decomposition L =MA, and T is a compact Cartan subgroup of M .

2.3. Cayley transforms. For the results in this section, we refer to [11], §8.3.
Suppose that H = TA is a θ-stable Cartan subgroup of G, and let α ∈ R(g, h)
be a real root. Then the root vectors for α generate a subalgebra of g0
isomorphic to sl(2,R) and we get a Lie algebra morphism

ϕα : sl(2,R) −→ g0

satisfying ϕα(−tX) = θ(X). We choose ϕα so that

Zα := ϕα

(
1 0
0 −1

)
∈ a0 ⊂ h0 and ϕα

(
0 1
0 0

)
∈ gα0 .

Set

Z̃α := ϕα

(
0 1
−1 0

)
∈ k0.

Since G is linear, this map exponentiate to a group morphism :

(2.10) Φα : SL(2,R) −→ G.

Put

σα = Φα

(
0 1
−1 0

)
, mα = σ2

α.

Then mα ∈ T and σα ∈ K. If α is real, then σα normalizes H and represents
sα ∈W (G,H).

Define hα0 = tα0 ⊕ aα0 by setting aα0 = {X ∈ a0 |α(X) = 0} and tα0 =

t0 ⊕ RZ̃α. The corresponding Cartan subgroup will be denoted cα(H) =
Hα = TαAα. Notice that σα ∈ Tα and mα ∈ Tα ∩ T .
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Let α̃ = cα(α) be the non compact imaginary root of hα in g supported

on Z̃α (the Cayley transform of α).

If H1 = T1A1 is a θ-stable Cartan subgroup of G, and β ∈ R(g, h) is a
non-compact imaginary root, one can also define a Lie algebra morphism

ϕβ : sl(2,R) −→ g0

which exponentiate to a group morphism

(2.11) Φβ : SL(2,R) −→ G,

another Cartan subgroup cβ(H1) = Hβ
1 = T β

1 A
β
1 and a real root β̃ = cβ(β) ∈

R(g, hβ1 ). The two constructions are inverse of each other : if H = TA is a
θ-stable Cartan subgroup of G, and α ∈ R(g, h) is a real root then Φα = Φα̃,
cα̃(cα(H)) = H and cα̃(α̃) = α. If H1 = T1A1 is a θ-stable Cartan subgroup
of G, and β ∈ R(g, h1) is a non compact imaginary root then Φβ = Φβ̃ ,

cβ̃(c
β(H1)) = H1 and cβ̃(β̃) = β.

The following equivalent conditions define type I roots (for a real root α
or the corresponding non compact imaginary root α̃) :

a) the reflection sα̃ does not belong to W (G,Hα),
b) Tα ∩ T = T ,
c) α : T → {±1} is not onto.

The following equivalent conditions define type II roots :

a) the reflection sα̃ belongs to W (G,Hα),
b) Tα ∩ T has index 2 in T and sα̃ has a representative in T \ Tα,
c) α : T → {±1} is onto.

2.4. Parameters for Langlands classification. We start by fixing an infinites-
imal character χ = χξa by picking an element ξa ∈ a∗a. We assume that ξa is
non singular. Abstract integral roots, etc, defined in §2.1 with respect to an
element λa ∈ h∗a are now defined with respect to this element ξa.

We recall the set of parameters PG
χ /∼K

for the Langlands classification

of irreducible representations of G with infinitesimal character ξa (see [11] ,
[13]).

Definition 2.1. A parameter γ is a multiplet

γ = (H = TA,Γ, γ̄)

where H = TA is a θ-stable Cartan subgroup of G, Γ is a character of H,
and γ̄ ∈ h∗, satisfying the following conditions a), b), c):

a) γ̄|t ∈ it∗0, and ⟨α, γ̄⟩ ≠ 0, (∀α ∈ RiR(g, h)).
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Set

R+
iR = R+

iR(g, h) = {α ∈ RiR(g, h)| ⟨α, γ̄⟩ > 0}, R+
iR,c = R+

iR ∩RiR,c(g, h),

ρ(R+
iR) =

1

2

∑

α∈R+
iR

α, ρ(R+
iR,c) =

1

2

∑

α∈R+
iR,c

α.

b) dΓ = γ̄ + ρ(R+
iR)− 2ρ(R+

iR,c).
c) The infinitesimal character χγ̄ equals χ.

Attached to a parameter γ = (H = TA,Γ, γ̄) as above, there is a stan-
dard representation std(γ) (see [11] or [13]); it may be defined by parabolic
induction from a discrete series representation on a cuspidal parabolic sub-
group P =MAN attached to the Cartan subgroup H = TA. The group N is
chosen so that the Langlands subquotients appear as quotients of std(γ). For
non singular infinitesimal character, this quotient is irreducible and is denoted
by irr(γ).

Let us denote by PG
χ the set of parameter γ as above, and by PG

χ /∼K

the set of K-conjugacy classes in PG
χ . The Langlands classification for non

singular infinitesimal character χ is the following theorem (see [13], Thm. 2.13
and the references given there).

Theorem 2.2. Suppose that π is an irreducible representation of G with
non singular infinitesimal character χ. Then there is a parameter γ ∈ PG

χ such
that π = irr(γ). If two parameters γ1 and γ2 satisfy π = irr(γ1) = irr(γ2),
then γ1 and γ2 are K-conjugate.

We will constantly abuse notation by denoting theK-conjugacy class of an
element γ ∈ PG

χ also by γ, and conversely, for a conjugacy class γ ∈ PG
χ /∼K

,

we denote again by γ the choice of a representative in PG
χ . Usually, this should

not lead to any confusion.

2.5. Cayley transforms and cross-action on parameters. For any γ = (H =
TA,Γ, γ̄) ∈ PG

χ and for any w ∈W (γ̄), a new element w× γ in PG
χ , with first

component H = TA is defined in [11], §8.3. When α ∈ R+(γ̄) is a simple root,
the other components of sα×γ are given explicitly in ibib. Lemma 8.3.2. One
can use the isomorphisms iγ̄ of §2.1 to transport this to an action of W a on
PG
χ and PG

χ /∼K
(see [13], Section 2).

In Section 2.3, the Cayley transform of a θ-stable Cartan subgroup H =
TA with respect to a real root α has been recalled. In ibib. §8.3 this definition
is extended to Langlands parameters.

We recall first the parity conditions on real integral roots. If γ = (H =
TA,Γ, γ̄) ∈ PG

χ and if α ∈ R(γ̄) is a real root, we say that α satisfies the
parity condition with respect to γ if

(2.12) Γ(mα) = ϵGα (−1)⟨α̌,γ̄⟩.
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Here ϵGα ∈ {±} is defined in [11], Def. 8.3.11.
If α is a real integral root satisfying the parity condition, then the Cayley

transform cα(γ) is defined as a subset of PG
χ . It is a singleton if α is type

II, and we set cα(γ) = {γα}, and if α is type I, then cα(γ) = {γ+α , γ−α }, with
sα̃ × γ±α = γ∓α . The first component of γα or γ±α is Hα = cα(H).

In the other direction, one can define also Cayley transform of a parameter
γ = (H = TA,Γ, γ̄) ∈ PG

χ with respect to a non compact imaginary integral

root β. The Cayley transform cβ(γ) is a singleton if α is type I, and we set

cβ(γ) = {γβ}, and if β is type II, then cβ(γ) = {γβ+, γβ−}, with sβ̃ × γβ± = γβ∓.

The first component of γβ or γβ± is Hβ = cβ(H).

2.6. Data associated to a Langlands parameter. We associate to any γ = (H =
TA,Γ, γ̄) ∈ PG

χ the following set of data :

(1) R(γ̄), the integral root system defined by γ̄ and R+(γ̄), the set of
integral positive roots.

(2) R+
iR(γ̄) = R+(γ̄)∩R+

iR(g, h), the set of integral imaginary positive roots.

(3) R+
iR,c(γ̄) = R+(γ̄) ∩ RiR,c(g, h), the set of integral imaginary compact

positive roots and R+
iR,nc(γ̄) = R+(γ̄)∩RiR,nc(g, h), the set of integral

imaginary non compact positive roots.

(4) R+,I
iR,nc(γ̄) the set of integral imaginary non compact positive roots of

type I and R+,II
iR,nc(γ̄) the set of integral imaginary non compact positive

roots of type II.
(5) RR(γ̄) = R(γ̄) ∩ RR(g, h), the set of integral real roots and R+

R (γ̄) =
R+(γ̄) ∩RR(g, h), the set of integral real positive roots.

(6) RR,0(γ̄), the set of integral real roots not satisfying the parity condition
for γ and RR,1(γ̄) is the set of integral real roots satisfying the parity
condition for γ.

(7) RI
R,1(γ̄), the set of integral real roots satisfying the parity condition

for γ of type I and RII
R,1(γ̄) the set of integral real roots satisfying the

parity condition for γ of type II.
(8) R+

C,1(γ̄), the set of integral complex positive roots such that θ(α) ∈
R+

C (γ̄) and R
+
C,0(γ̄), the set of integral positive roots such that θ(α) /∈

R+
C (γ̄).

Remarks 2.3. a) The integral root system R(γ̄) is θ-stable ([11],
Lemma 8.2.5).

b) A parameter γ ∈ PG
χ is said to be minimal if RR,1(γ̄) and R

+
C,0(γ̄) are

empty. It is equivalent to the fact that for any non real simple root
in R+(γ̄), θ(α) ∈ R+(γ̄) and no real simple root in R+(γ̄) satisfies the
parity condition (see [11], Def. 8.6.5). The standard representation
std(γ) is irreducible if and only if γ is minimal ([11], Thm. 8.6.6).
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c) As we will see in the next section, the data above for all γ ∈ PG
χ /∼K

(a

finite set) is sufficient to determine the multiplicitiesM(γ, δ) orm(γ, δ)
for any γ, δ ∈ PG

χ /∼K
via the KLV algorithm.

3. The KLV-algorithm

We follow here [13], Section 12.

3.1. Blocks. To describe (part of) the KLV-algorithm, we first introduce the
notion of block in PG

χ /∼K
. Blocks are equivalence classes on PG

χ /∼K
for the

equivalence relation generated by

γ1 ∼ γ2 if m(γ1, γ2) ̸= 0,

i.e. irr(γ1) occurs as a subquotient in std(γ2). This is also the equivalence
relation generated by the weaker condition that γ1 ∼ γ2 if irr(γ1) and irr(γ2)
both occur as some subquotient of the same standard representation std(δ).
Another characterisation is given in [11], Thm 9.2.11. Block equivalence is
generated by the following relations : if γ ∈ PG

χ and β is a simple non-compact

imaginary root in R+(γ̄), then γ ∼ γ′ for any γ′ ∈ cβ(γ), and if α is a simple
complex root in R+(γ̄), then γ ∼ sα × γ.

Via the Langlands-Vogan parametrisation (Thm. 2.2), block equivalence
gives an equivalence relation on equivalence classes of irreducible represen-
tations which can be characterized in terms of Ext groups, namely, it is the
equivalence relation generated by π1 ∼ π2 if Ext1(π1, π2) ̸= {0} (see [11], Def.
9.2.1 and Prop. 9.2.10). A result of Casselman (see [11], Cor. 9.2.24) states
that if two irreducible representations π1 and π2 of G are in different blocks,
then Ext∗(π1, π2) = 0. Therefore the set of parameters PG

χ admits a partition
in blocks

(3.13) PG
χ /∼K

=
∐

i

Bi.

If two parameters γ, δ ∈ PG
χ are in different blocks, then M(γ, δ) = 0.

Let us fix a block B in the partition above.

Definition 3.1. The integral length of a parameter γ = (H = TA,Γ, γ̄) ∈
PG
χ is

lI(γ) =
1

2

∣∣{α ∈ R+(γ̄)| θ(α) /∈ R+(γ̄)}
∣∣+ 1

2
dimA− cG0

Remark 3.2. The constant cG0 may be chosen so that lI(γ) ∈ N, for
all γ ∈ B, but the choice of cG0 is irrelevant for the KLV algorithm since
it is always the difference lI(γ1) − lI(γ2) between the integral length of two
parameters γ1, γ2 ∈ PG

χ which matters.
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The Hecke algebra H = H(W a) = H(W (ξa)) of the abstract Weyl group

W a is defined in [13], Def. 12.4. This is an algebra over Z[u 1
2 , u−

1
2 ] generated

by elements Tw, w ∈W a with the relations given in ibid.
The Hecke module of B is the free module over Z[u 1

2 , u−
1
2 ] with basis

{γ ∈ B}. Let us denote this module by M(B). The action of H on M(B)
is given also in ibid. More precisely, what is given are formulas for Tsγ when
γ ∈ B and s ∈ Sa is a simple reflection. This simple reflection corresponds
to a simple root α ∈ R+(γ̄) via the isomorphisms iγ̄ and the formula depends
on α. For instance, if α is type II real satisfying the parity condition, then

Tsγ = (u− 1)γ − sα × γ + (u− 1)cα(γ).

Let s be a simple reflection in Sa. For any γ1, γ2 ∈ B, write γ1
s→ γ2 if

α1, the corresponding simple root in R+(γ̄1) is
• either complex with θα1 /∈ R+(γ̄1) and γ2 = s× γ1
• or real, satisfying the parity condition with respect to γ1 and γ2 ∈

cα1(γ1).
Equivalently, if α2 is the corresponding simple root in R+(γ̄2), then α2 is

complex and θα2 /∈ R+(γ̄2) or α2 is non compact imaginary with respect to
γ2 and γ1 ∈ cα2(γ2).

If γ1
s→ γ2, then lI(γ2) = lI(γ1)− 1, and we have also

s× γ1
s→ s× γ2, γ1

s→ s× γ2, s× γ1
s→ γ2

In [13], Def. 12.12 an order relation is defined on B and denoted γ1 ≤r γ2.
Let us recall some properties of this partial order relation.

a) If γ1 ≤r γ2, then lI(γ1) ≤ lI(γ2) and if γ1 ≤r γ2, and lI(γ1) = lI(γ2)
then γ1 = γ2.

b) If m(γ1, γ2) ̸= 0, or M(γ1, γ2) ̸= 0, then γ1 ≤r γ2.

The next lemma is [13], Lemma 12.18. It is used to set up the induction
step for computing KLV polynomials.

Lemma 3.3. Suppose that γ, δ ∈ B and m(γ, δ) ̸= 0. Then we can find

δ′ ∈ B and a simple reflection s ∈ W a such that δ
s→ δ′, and for any such s,

one of the following conditions is satisfied

(i) m(γ, δ′) ̸= 0.

(ii) There exists γ′ ∈ B such that γ
s→ γ′ and m(γ′, δ′) ̸= 0.

(iii) Let α be the simple root in R+(δ̄) corresponding to s. Then α is real,
satisfying the parity condition with respect to δ and (i) or (ii) holds
with s× δ′ replacing δ′.

The next ingredient in the KLV algorithm is the duality map D on M(B)
([13], Lemma 12.14).
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Lemma 3.4. There is a unique Z linear map D : M(B) → M(B) with
the following properties. For any γ ∈ B, write

Dγ = u−lI(γ)
∑

ϕ∈B

(−1)lI(γ)−lI(ϕ)Rϕγ ϕ

for some polynomials Rϕγ ∈ Z[u 1
2 , u−

1
2 ]. Then

a) D(um) = u−1D(m), (∀m ∈ M(B)).
b) D((Ts + 1)m) = u−1(Ts + 1)D(m), (∀m ∈ M(B), ∀s ∈ Sa).
c) Rγγ = 1, (∀γ ∈ B).
d) Rϕγ ̸= 0 =⇒ ϕ ≤r γ, (∀γ ∈ B).

The map D has the following extra properties

e) Rϕγ is a polynomial in u of degree ≤ lI(γ)− lI(ϕ).
f) D2 = IdM(B).
g) The specialisation of D at u = 1 is the identity.

We can finally define the KLV polynomials. This is [13], Lemma 12.15.

Lemma 3.5. For any γ ∈ B, there is a unique element Cγ =
∑

ϕ∈B Pϕγϕ ∈
M(B) (with coefficients Pϕγ in Z[u 1

2 , u−
1
2 ]) such that D(Cγ) = u−lI(γ)Cγ ,

Pγγ = 1, Pϕγ ̸= 0 only if ϕ ≤r γ and if ϕ ̸= γ, then Pϕγ is a polynomial in u
of degree ≤ 1

2 (lI(γ)− lI(ϕ)− 1).

The next result proves the Kazhdan-Lusztig-Vogan conjecture on multi-
plicities.

Theorem 3.6. The integers M(γ, δ), γ, δ ∈ B are given by

M(γ, δ) = (−1)lI(δ)−lI(γ)Pγδ(1).

It is proved by Vogan, Lusztig-Vogan if the infinitesimal character is inte-
gral, and an argument by Bernstein settle the non integral case. See [13] and
[1] for a discussion of this fundamental result and references to the original
papers.

Finally, there is an algorithm which computes the KLV polynomials Pγ,δ.
It is described in Prop. 6.14 of [12]. It starts with the fact that Pδ,δ = 1 for
any δ ∈ PG

ξ /∼K
and that Pγδ = 0 if γ ≰r δ in PG

ξ /∼K
. If Pγ′,δ′ is known

whenever lI(δ
′) < lI(δ) or lI(δ

′) = lI(δ) and lI(γ
′) > lI(γ), then there are

formulae for computing Pγδ.
To summarise, the KLV polynomials (and therefore the multiplicities

M(γ, δ)) are completely determined by the H(W (ξa))-module structure of
M(B), and this structure is in turn completely determined by the data asso-
ciated to all γ ∈ B in Section 2.6.

The following corollary was stated and used in [7] and [3].
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Corollary 3.7. Suppose we have two reductive groups G and G′ in
the class of groups we consider, two blocks B and B′ of Langlands-Vogan
parameters with non singular infinitesimal characters, respectively for G and
G′, and a bijection

ι : B −→ B′

which respects the data associated to any γ ∈ B (resp. γ′ ∈ B′) in Section
2.6. Then

MG(γ, δ) =MG′
(ι(γ), ι(δ)), (γ, δ ∈ B).

4. Data in G versus data in L♭

Let us fix now a parabolic subgroup P ♭ = M ♭A♭N ♭ of G with θ-stable
Levi factor L♭ = M ♭A♭. We also fix a fundamental θ-stable Catan subgroup
H♭ of L. Such a Cartan subgroup has a decomposition H♭ = T ♭AM♭A♭. Of
course there are similar decompositions for the Cartan subalgebras.

All the notation and results in Section 2 apply to the group L♭ instead of
G. When needed, we will add a superscript G or L♭ to distinguish between
objects defined with respect to G or L♭.

Cartan subalgebras of l♭0 are Cartan subalgebras of g0 and Cartan sub-
groups of L♭ are Cartan subgroups of G. This is particular the case for h♭0
and H♭ = T ♭A♭

M♭A
♭.

In general, a Cartan subgroup H in L♭ decomposes as H = HM♭A♭ with
HM♭ a Cartan subgroup of M ♭. If H is θ-stable, one can further decompose
HM♭ as HM♭ = TAM♭ and H as H = TAM♭A♭. For such a Cartan subgroup,
we have as in Section 2.2

(4.14) R(g, h) = R(l♭, h)
∐

R(n♭, h)
∐

(−R(n♭, h))

The roots α ∈ R(n♭, h) are either real, or complex with σ(α) = −θ(α) also in
R(n♭, h). Therefore

RiR(g, h) = RiR(l
♭, h), RiR,c(g, h) = RiR,c(l

♭, h)

We can therefore simply write RiR and RiR,c for these systems of imaginary
roots.

For the definition of the Hirai order used in the next proposition, see [4].

Proposition 4.1. The following conjugacy classes of Cartan subgroups
are in natural one-to-one correspondences.

a) G-conjugacy classes of Cartan subgroups of G containing a G-conjugate
of A♭.

b) K-conjugacy classes of θ-stable Cartan subgroups of G containing a
G-conjugate of A♭.

The following conjugacy classes of Cartan subgroups are in natural one-
to-one correspondences.
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c) L♭-conjugacy classes of Cartan subgroups of L♭.
d) M ♭

K-conjugacy classes of θ-stable Cartan subgroups of L♭.

e) M ♭-conjugacy classes of Cartan subgroups of M ♭.
f) M ♭

K-conjugacy classes of θ-stable Cartan subgroups of M ♭.

Furthermore, the natural map from the set of conjugacy classes in c) to the
set of conjugacy classes in a) is surjective. The G-conjugacy classes in a)
are exactly the ones which are greater than H♭ in the Hirai order for G.
In particular, it contains the maximally split G-conjugacy class of Cartan
subgroups of G.

Proof. The equivalence of a) and b) is in [11], Lemma 0.1.6. Of course, it
gives also the equivalence between e) and f) and c) and d). The equivalence
of c) and e) is clear since A♭ is central in L♭. A Cartan subgroup containing

A♭ is contained in GA♭

= L♭ since Cartan subgroups are abelian for linear
groups, proving that the natural map from the set of conjugacy classes in
c) to the set of conjugacy classes in a) is surjective. This map respects the
Hirai order (for L♭ and G respectively), and from this we get that the set of
conjugacy classes in a) are greater than the one of H♭ in the Hirai order for
G. Conversely, a Cartan subgroup of G with G-conjugacy class greater than
the one of H♭ in the Hirai order for G has a G-conjugate containing A♭. If two
Cartan subgroups of L♭ are L♭-conjugate, they are G-conjugate. In general,
two G-conjugate Cartan subgroups of L♭ are not L♭-conjugate, unless they
are maximally compact or split in L♭.

We now fix an infinitesimal character χ = χξ, both for G and L♭, by

choosing ξ ∈ (h♭)∗. We decompose ξ as ξ = ξM♭ + ν, according to the
decomposition (h♭)∗ = (h♭

M♭)
∗ ⊕ (a♭)∗.

Hypotheses 4.2. Consider the following conditions on ξ = ξM♭ + ν ∈
(h♭)∗,

A. ξ is non-singular for L♭, or equivalently, ξM♭ is non-singular forM ♭ i.e.

⟨ξM♭ , α̌⟩ ≠ 0 for all α ∈ R(l♭, h♭).

B. For all α ∈ R(n♭, h♭),

⟨α̌, ξ⟩ = ⟨α̌, ξM♭ + ν⟩ /∈ Z.

Remark 4.3. If ξ satisfies Hypothesis 4.2, B., then

(4.15) RG(ξ) = RG(ξM♭ + ν) = RL♭

(ξM♭ + ν) = RM♭

(ξ).

Furthermore if ξ also satisfies Hypothesis 4.2, A., then ξ is non singular also
for G.

Our main result is
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Theorem 4.4. Suppose ξ = ξM♭ + ν ∈ (h♭)∗ satisfies Hypotheses 4.2, A.
and B. Let π be an irreducible representation of L♭ of the form π = πM♭ ⊠χν

with infinitesimal character χξ . Then the induced representation iG
P ♭(π) =

iG
P ♭(πM♭ ⊠ χν) is irreducible.

Remark 4.5. We see that under hypothesis A., Theorem 1.1 is a corollary
of the result above, since condition B. is generic in ν, i.e it holds for ν ∈ (a♭)∗

outside a locally finite, countable number of affine hyperplanes.

We will prove this theorem following the ideas given in the introduction
(see Corollary 3.7). We start by comparing the parameters for irreducible
representations with infinitesimal character χ = χξ, for G and L♭. To be
coherent with our preceding notation, we also fix a dominant ξa in the dual
of the abstract Cartan subalgebra ha such that χξa = χξ = χ.

Consider a parameter γL
♭

= (H = TA,Γ, γ̄) ∈ PLb

χ as in Section 2.4 (but

for L♭). Since imaginary roots are the same for l♭ and g, it is clear that it is
also a parameter in PG

χ (see (2) and (3) below) and conversely if H is greater

than H♭ in the Hirai order. So the identity map

PL♭

χ −→ PG
χ , γL 7→ γG,

induces a map

(4.16) PL♭

χ /∼M♭
K

−→ PG
χ /∼K

, γL 7→ γG,

with image the set of parameters η = (H = TA,Γ, γ̄) ∈ PG
χ with H greater

than H♭ in the Hirai order.

Proposition 4.6. Under Hypotheses 4.2, A. and B. the map (4.16) is
injective.

Proof. We have to show that if two parameters γ1 = (H1 = T1A1,Γ1, γ̄1)

and γ2 = (H2 = T2A2,Γ2, γ̄2) ∈ PLb

χ are G-conjugate, then they are L♭-
conjugate. Since γ̄1 and γ̄2 define the same infinitesimal character as ξ, there
are elements l1 and l2 in the complex group L♭(C) such that l1 · γ̄1 = ξ = l2 · γ̄2
and l1 · h1 = h♭ = l2 · h2. Since γ1 and γ2 are G-conjugate, there is an
element g ∈ G such that g · h1 = h2 and g · γ̄1 = γ̄2. Therefore, setting
n = l2gl

−1
1 ∈ G(C), we get n · ξ = ξ with n ∈ NormG(C)(h

♭). Since ξ is non-

singular, we must have n ∈ CentrG(C)(h
♭) = H♭ ⊂ L♭(C) and so g ∈ L♭(C).

Thus g ∈ G ∩ L♭(C) = L♭.

We now check that the data (1) to (8) in Section 2.6 associated to pa-

rameters are preserved by the correspondence γL
♭ 7→ γG in (4.16). So, let us

fix γL
♭

= (H = TA,Γ, γ̄) ∈ PL♭

χ . We add superscript G or L♭ to the various
objects defined in Section 2.4 to distinguished the ones defined with respect
to G from the ones defined with respect to L♭.
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(1) Because of hypothesis 4.2.B on ν ∈ (h♭)∗, we have RG(ξM♭ + ν) =

RL♭

(ξM♭ + ν) and therefore RL♭

(γ̄) = RG(γ̄). Thus the integral root
systems for γ̄ are the same for L♭ and G.

(2) and (3) We have seen that roots in R(n♭, h) are either real, or complex with
σ(α) = −θ(α). Therefore, the imaginary roots for h are the same in l♭

and g, and such an imaginary root is compact in G if and only if it is
compact in L♭, and so we have

RG
iR = RL♭

iR , RG
iR,c = RL♭

iR,c RG
iR,nc = RL♭

iR,nc

RG,+
iR = RL♭,+

iR , RG,+
iR,c = RL♭,+

iR,c RG,+
iR,nc = RL♭,+

iR,nc

ρ(RG,+
iR ) = ρ(RL♭,+

iR ), ρ(RG,+
iR,c ) = ρ(RL♭,+

iR,c )

(4) The fact that a non compact imaginary root α̃ is type I or type II in
G depends only on the map Φα : SL(2,R) −→ G in (2.10) as it is clear
from the equivalent conditions defining type I or type II. Since in our
context we can choose the same map Φα : SL(2,R) −→ L♭ ⊂ G for G
and L♭, we see that a non compact imaginary root is type I in L♭ if
and only if it is type I in G.

(5) Since RG(γ̄) = RL♭

(γ̄), we have also RG
R (γ̄) = RL♭

R (γ̄) and likewise

RG,+
R (γ̄) = RL♭,+

R (γ̄).

(6) Let α ∈ RG(γ̄) = RL♭

(γ̄) be an integral real root. We want to compare
the parity condition for L♭ and G. Since mα is defined via the same

map Φα for L♭ and G, we have only to check that ϵL
♭

α = ϵGα . We do
that in the lemma below. Therefore the parity condition is the same
in L♭ and G:

RL♭

R,0(γ̄) = RL♭

R,0(γ̄) and R
L♭

R,1(γ̄) = RL♭

R,1(γ̄).

(7) As for non compact imaginary roots, real roots are of the same type
(I or II) with respect to L♭ and G.

(8) Since RG(γ̄) = RL♭

(γ̄), we have also RG
C (γ̄) = RL♭

C (γ̄) and likewise

RG,+
C (γ̄) = RL♭,+

C (γ̄), RG,+
C,0 (γ̄) = RL♭,+

C,0 (γ̄) and RG,+
C,1 (γ̄) = RL♭,+

C,1 (γ̄).

Lemma 4.7. For any integral real root α ∈ RR(γ̄), ϵL
♭

α = ϵGα .

Proof. The sign ϵGα is defined as (−1)d+1 where d is an integer given by one
of the definitions in [11], Lemma 8.3.9. For us, the most convenient is the
first one, i.e. we take d = d1 in ibid. We fix Φα : SL(2,R) → L♭ as in
Section 2.3. Thus we get mα and Hα = TαAα. Consider a cuspidal parabolic
subgroup Pα = MαAαNα attached to Hα, i.e. Lα = MαAα = GAα . Up
to conjugacy in L♭, we may assume that A♭ ⊂ Aα since Hα is a Cartan
subgroup of L♭, and therefore greater than H♭ in the Hirai order. Thus
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Mα ⊂ M ♭. Therefore the integer d1 defined in [11], Lemma 8.3.9, which is
d1 = 1

2 dim ((−1)− eigenspace of mα in mα ∩ k) equals

1

2
dim ((−1)− eigenspace of mα in mα ∩ kl♭) ,

since mα ∩ k = mα ∩m♭ ∩ k = mα ∩ kl♭ . Therefore ϵ
L♭

α = (−1)d1+1 = ϵGα .

Let us now consider the decomposition of the parameter sets PL♭

χ /∼M♭
K

and PG
χ /∼K

into blocks as in (3.13). From the characterization of blocks in

terms of Cayley transforms and cross-action, we see that the injective corre-

spondence γL
♭ 7→ γG respects blocks.

Lemma 4.8. Let us consider a block BG in PG
χ /∼K

. Then all elements

in BG are in the image of (4.16), or none of them are. Therefore, (4.16)
induces a bijection between corresponding blocks.

Proof. This is clear from the characterisation of blocks given in §3.13. Indeed,
suppose that in BG, there is a parameter η = (H = TA, ...) which is in the
image of (4.16) and one η′ = (H ′ = T ′A′, ...) which is not. Then H is greater
or equal to H♭ in the Hirai order, and H ′ is not. Furthermore, there would
be a sequence of parameters η0 = η, η1, ..., ηr = η′ in BG such that ηi+1 is
obtained from ηi either by the cross-action with respect to a Cayley transform
associated to a real or non compact imaginary simple integral root or by the
cross-action of a complex simple integral root. Since cross-action doesn’t
change the conjugacy class of the associated Cartan subgroup, there is an
index i such that ηi is in the image of (4.16), ηi+1 is not, and furthermore
ηi and ηi+1 are related by a Cayley transform associated to a real or non
compact imaginary simple integral root. Our problem is reduced to the case
η = ηi and η

′ = ηi+1. But then η
′ would also be in the image of (4.16).

Given a block BL♭

in PL♭

χ /∼M♭
K

, we see that the integral length (Def.

3.1) is the same for BL♭

and the corresponding block BG, if we choose the

constants cG0 and cL
♭

0 to be equal.

5. The case of singular infinitesimal character

We turn now to the case of possibly singular infinitesimal character χ = χξ

with ξ ∈ h♭
∗
. The relevant discussion may be found in [1], Chapter 11 and

[14]. First, the parameters have to be enriched by an extra piece of data, so
a parameter is now a multiplet

γ = (H = TA,Γ, γ̄, R+
iR),

where (H = TA,Γ, γ̄) is as before and R+
iR is a system of positive imaginary

roots of h in g. The conditions imposed on γ are the following a), b), c), d)
and e) :
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a) ⟨α, γ̄⟩ ≥ 0, (∀α ∈ R+
iR).

With R+
iR,c, ρ(R

+
iR) and ρ(R

+
iR,c) as above, conditions b) and c) are the same

as in Definition 2.1.

d) Suppose α is a simple root in R+
iR such that ⟨α, γ̄⟩ = 0. Then α is non

compact.
e) Suppose α is a real root in R(g, h) such that ⟨α, γ̄⟩ = 0. Then α does

not satisfy the parity condition, i.e. Γ(mα) = −ϵGα .

Hypotheses 5.1. Consider the following conditions on ξ = ξM♭ + ν ∈
(h♭)∗,

B. For all α ∈ R(n♭, h♭),

⟨α̌, ξ⟩ = ⟨α̌, ξM♭ + ν⟩ /∈ Z.

C1. For any w ∈W (g, h♭) such that ξM♭−w ·ξM♭ is non-zero, ν is not in the
strict affine subspace in (a♭)∗ of solutions of w · ν − ν = ξM♭ −w · ξM♭ .

C2. For all α ∈ R(n♭, h♭), ⟨α̌, ν⟩ ≠ 0.
D. For any w ∈W (g, h♭), w · ξ = ξ implies w ∈W (l♭, h♭).

Remark 5.2. Condition B. is the same as in Hypotheses 4.2, and we re-
place condition A. there, which is the assumption of non singular infinitesimal
character, by either condition C. (meaning C1. and C2.) or condition D.

We start with the analog of Prop 4.6.

Proposition 5.3. Under Hypotheses 5.1, C1. and C2., or Hypothesis
5.1, D. the map (4.16) is well-defined and injective.

Proof. We first have to check that the extra conditions d) and e) in the
definition of the parameters are preserved, but this is straightforward. (See
Lemma 4.7 for condition e)). Starting the proof for injectivity as in the proof
of Proposition 4.6, with l1 · h1 = h♭, l1 · γ̄1 = ξ, l2 · h2 = h♭, l2 · γ̄2 = ξ, and
g ·h1 = h2, g · γ̄1 = γ̄2, we get n ·ξ = ξ with n ∈ NormG(C)(h

♭) and we conclude
under Hypothesis 5.1, D. as in the proof of Prop 4.6. If we assume instead
Hypothesis 5.1, C. we rewrite n · ξ = ξ as ξM♭ − n · ξM♭ = n · ν − ν. So if the
linear map

ϕn : (a♭)∗ −→ (h♭)∗, ν 7→ n · ν − ν

is non zero, its kernel is a strict subspace of (a♭)∗ and the set of solutions in
(a♭)∗ of n·ν−ν = ξM♭−n·ξM♭ is strict affine subspace. Since ξM♭−n·ξM♭ takes
only a finite number of non-zero values for n ∈ NormG(C)(h

♭), we see that for ν

outside a finite number of strict affine subspaces in (a♭)∗, ξM♭−n·ξM♭ = n·ν−ν
implies n · ν = ν. Since Hypothesis 5.1, C2. implies that gν = l and since
L♭(C) is connected G(C)ν = L♭(C). We can then conclude as in the proof of
Prop 4.6 that g ∈ L♭.
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We now use the results of [1], Chapter 16, using what is called there a
translation datum to reduce the problem to the case of non singular infinites-
imal character. The translation datum consists of our singular infinitesimal
character ξ, a weight µ for H♭ ∩M ♭ = T ♭AM♭ satisfying ξ′ = ξ + µ such that

a) ξ′ is non-singular for l♭

b) If ⟨α̌, ξ⟩ is a positive integer for α ∈ R(g, h♭), then ⟨α̌, ξ′⟩ is a positive
integer.

Set χ = χξ, χ
′ = χξ′ . Then by ibid, (16.5)(a) and (16.5)(d), there is a

injection ιL
♭

ξ,ξ′ : PL♭

χ → PL♭

χ′ respecting KM -conjugacy classes such that for

γL
♭

, δL
♭ ∈ PL♭

χ :

ML♭

(γL
♭

, δL
♭

) =ML♭

(ιl
♭

ξ,ξ′(γ
L♭

), ιl
♭

ξ,ξ′(δ
L♭

)).

We can use the same translation datum, but this time for G, and we
get a injection ιGξ,ξ′ : PG

ξ → PG
ξ′ respecting K-conjugacy classes such that for

γG, δG ∈ PG
ξ :

MG(γG, δG) =MG(ιGξ,ξ′(γ
G), ιξ,ξ′(δ

G)).

By the result for non singular infinitesimal character proved in the previ-
ous section, we have that

ML♭

(ιL
♭

ξ,ξ′(γ
L♭

), ιl
♭

ξ,ξ′(δ
L♭

)) =MG(ιGξ,ξ′(γ
G), ιξ,ξ′(δ

G)).

Since

PL♭

χ /∼K
M♭

Iξ

��

ιL
♭

ξ,ξ′ // PL♭

χ′
/∼K

M♭

Iξ′

��
PG
χ /∼K

ιG
ξ,ξ′ // PG

χ′
/∼K

is a commutative diagram, where the vertical maps are the injective maps
previously defined in (4.16) and denoted here Iξ and Iξ′ , we get :

(5.17) ML♭

(γL
♭

, δL
♭

) =MG(γG, δG).

We also need to prove that MG(η, δG) = 0 if η is not in the image of Iξ.
Since we don’t have the results on blocks we need readily available when
the infinitesimal character is singular, we cannot apply Lemma 4.8 directly.

Assume MG(η, δG) ̸= 0 and write η′ = ιGξ,ξ′(η), δ
′G = ιGξ,ξ′(δ

G). Therefore

MG(η′, δ′G)) ̸= 0, and η′, δ′G are in the same block. The map Iξ′ is surjective
on the block which contains both η′ and δ′G by Lemma 4.8, thus there exists

ω′, δ′ ∈ PL♭

χ′
/∼K

M♭
with, Iξ′(ω′) = η′, Iξ′(δ′) = δ′G, and ML♭

(ω′, δ′) ̸= 0 by

the results of the previous section. In [1], Chapter 16, the maps ιξ,ξ′ (called
ϕT there) are defined as the inverse of partially defined bijective maps ψT ,
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the domain of this map being given by the condition that ψT (std(σ)) ̸= 0
where ψT is here the Zuckerman translation functor from ξ′ to ξ. From [1],
Propositions 11.16 and 11.18, we see that this condition can be checked on
the data associated to the parameter σ in Section 2.6. Therefore, the domain

of ψL♭

T is the inverse image of the domain of ψG
T by Iξ′ since the map Iξ′

preserves these data. We deduce that ω′, and δ′G are in the image of ιL
♭

ξ,ξ′ ,
let’s say from ω and δ respectively. Now, by the commutativity of the diagram

and the injectivity of the maps, we must have δ = δL
♭

and Iξ(ω) = η. Thus
η is in the image of Iξ.

From this we deduce as before the following

Theorem 5.4. Suppose ξ = ξM♭ + ν ∈ (h♭)∗ satisfies either Hypotheses
5.1, B. and C., or Hypotheses 5.1, B. and D. Let π be an irreducible repre-
sentation of L♭ of the form π = πM♭ ⊠ χν with infinitesimal character χξ .
Then the induced representation iG

P ♭(π) = iG
P ♭(πM♭ ⊠ χν) is irreducible.

Remark 5.5. We see that under hypothesis B and C., Theorem 1.1 is a
corollary of the result above, since conditions C1. and C2. are generic in ν,
i.e it holds for ν ∈ (a♭)∗ outside a locally finite, countable number of strict
affine subspaces.

6. An application

We explain how the results above lead to simplifications in the proof of
[9], Theorems 5.3 and 5.4. For background on Arthur packets, we refer to [8],
specially in the context of classical real groups.

Suppose that G is a classical group (symplectic or special orthogonal,
the case of unitary groups is similar but requires some adaptation in the
formulation of some definitions and statements below) over R, of rank N.
Let us denote by StdG the standard representation of the L-group of G in
GLN (C) (see [8], §3.1), for instance if G = Sp2n(R), LG = SO2n+1(C)×WR
and StdG is given by the inclusion of SO2n+1(C) in GL2n+1(C).

Let ψG : WR × SL2(C) → LG be an Arthur parameter for G, and set
ψ = StdG ◦ ψG, that we see ψ as a completely reducible representation of
WR × SL2(C). In [8], §4.1, we give an explicit decomposition of ψ into a
direct sum of irreducible representations and we define good (and bad) parity
for these. The parameter ψ is then written as ψ = ψgp ⊕ ψbp where ψgp

(resp. ψbp) is the part of good (resp. bad) parity of ψ.1 The bad parity
part ψbp can be further decomposed as ψbp = ρ⊕ ρ∗ for some representation
ρ of WR × SL2(C) in GLNρ(C), and ρ∗ is the contragredient of ρ. By the
Arthur-Langlands correspondence for GLNρ , ρ is the Arthur parameter of a
representation, denoted again by ρ, of GLNρ

(R). The good parity part ψgp

1In [8] and [9], written in french, ψbp is the “bonne parité” part and ψmp is the

“mauvaise parité” .
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is an Arthur parameter for a group G′ of the same type as G, but of rank
N−Nρ. Furthermore G′×GLNρ(R) is the Levi factor of a maximal parabolic
subgroup P of G.

Representations in the Arthur packet for G with parameter ψ are ob-
tained from irreducible representations πG′ in the Arthur packet for G′ with
parameter ψgp, as induced representations iGP (πG′ ⊠ρ). Theorems 5.3 and 5.4.
of [9] state that these representations are indeed irreducible. In fact, as the
main results of this paper show, we get irreducibility of iGP (πG′ ⊠ ρ) for any
representation πG′ of G′ and for any representation ρ of GLNρ

(R), if their
infinitesimal characters are the ones determined by ψ, under some assumption
on the infinitesimal character of ρ.

Let us explain this for G = Sp2N , the other cases being similar. In the
usual coordinates, the infinitesimal character for a parameter of good parity
for G = Sp2(N−Nρ) consists in N −Nρ integers (up to the Weyl group action

by permutation and sign changes), while the infinitesimal character corre-
sponding to ρ, which comes from the bad parity part, consists in Nρ complex
numbers which are not integers. It is then obvious that the Hypotheses 5.1
B. is satisfied, and for D., unfortunately, our hypothesis only implies that the
element w is in the product of the Weyl groups for Sp2(N−Nρ) and Sp2Nρ

,
rather than in the Weyl group of Sp2(N−Nρ) ×GL2Nρ

. If the coordinates of

the infinitesimal character of ρ don’t contain pairs of the form (a,−a) (which
is a condition easy to check starting from ψ), then Hypothesis D is satisfied
and we get the irreducibility of iGP (πG′ ⊠ ρ).

In general, we can do the following (see [7] and [3] for similar strategy):
we apply Corollary 3.7 for the relevant blocks in the groups Sp2(N−Nρ)(R)×
Sp2Nρ

(R) and Sp2N (R) rather than Sp2(N−Nρ)(R)×GLNρ
(R) and Sp2N (R),

so that this time Hypothesis D is satisfied. Then, the problem is to show that
the representation parabolically induced from ρ to Sp2Nρ

(R) (using the Siegel

parabolic subgroup of Sp2Nρ
(R)) is irreducible. This is a particular case of our

original problem, but the arguments in the proof in [9] are then technically
easier. Other approaches to this problem may work, for instance ρ being
unitary, one may start by using Tadic’s classification of the unitary dual of
general linear groups to write it in terms of Speh representations (which can be
done directly from ψbp) and then try to use the independence of “polarization
results” of [5], Chapter XI, to reduce further the problem.
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