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Abstract. Let d be a square-free integer and Z[
√
d] a quadratic ring

of integers. For a given n ∈ Z[
√
d], a set of m non-zero distinct elements in

Z[
√
d] is called a Diophantine D(n)-m-tuple (or simply D(n)-m-tuple) in

Z[
√
d] if product of any two of them plus n is a square in Z[

√
d]. Assume

that d ≡ 2 (mod 4) is a positive integer such that x2 − dy2 = −1 and

x2 − dy2 = 6 are solvable in integers. In this paper, we prove the existence

of infinitely many D(n)-quadruples in Z[
√
d] for n = 4m + 4k

√
d with

m, k ∈ Z satisfying m ̸≡ 5 (mod 6) and k ̸≡ 3 (mod 6). Moreover, we

prove the same for n = (4m + 2) + 4k
√
d when either m ̸≡ 9 (mod 12)

and k ̸≡ 3 (mod 6), or m ̸≡ 0 (mod 12) and k ̸≡ 0 (mod 6). At the end,

some examples supporting the existence of quadruples in Z[
√
d] with the

property D(n) for the above exceptional n’s are provided for d = 10.

1. Introduction

A set {a1, a2, . . . , am} of m distinct positive integers is called a Diophan-
tine m-tuple with the property D(n) (or simply D(n)-m-tuple) for a given
non-zero integer n, if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. For
n = 1, such an m-tuple is called Diophantine m-tuple instead of Diophantine
m-tuple with the property D(1). The question of constructing such tuples was
first studied by Diophantus of Alexandria, who found a Diophantine quadru-
ple of rationals {1/16, 33/16, 17/4, 105/16} with the property D(1). How-
ever, it was Fermat who first found a Diophantine quadruple {1, 3, 8, 120}
in integers. Later, Baker and Davenport [3] proved that Fermat’s quadruple
can not be extended to Diophantine quintuple. Dujella [12] proved the non-
existence of Diophantine sextuple and that there are at most finitely many
integer Diophantine quintuples. Recently, He, Togbé and Ziegler [24] proved
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the non-existence of integer Diophantine quintuples, and in this way, they
solved a long-standing open problem. On the other hand, Bonciocat, Cipu
and Mignotte [5] proved a conjecture of Dujella [9], which states that there
are no D(−1)-quadruples. It is also known due to Trebješanin and Filipin [4]
that there do not exist D(4)-quintuples. A brief survey on this topic can be
found in [15]. We also refer [6, 8, 13, 14, 16] to the reader for more information
about D(n)-m-tuples.

Let R be a commutative ring with unity. For a given n ∈ R, a set
{a1, a2, . . . , am} ⊂ R \ {0} is called a Diophantine m-tuple with the property
D(n) in R (or simply D(n)-m-tuple in R), if aiaj + n is a perfect square in
R for all 1 ≤ i < j ≤ m. Let K be an imaginary quadratic number field
and OK be its ring of integers. In 2019, Adžaga [2] proved that there are no
D(1)-m-tuples in OK when m ≥ 42. Recently, Gupta [23] proved that there
do not exist D(−1)-m-tuple for m ≥ 37. It is interesting to note that D(n)-
quadruples are related to the representations of n by the binary quadratic
form x2 − y2. In particular, Dujella [9] proved that a D(n)-quadruple in
integers exists if and only if n can be written as a difference of two squares,
up to finitely many exceptions. Later, Dujella [11] proved the above fact in
Gaussian integers. Further, the above fact also holds for the ring of integers of
Q(

√
d) for certain d ∈ Z (see, [17, 18, 19, 21, 1, 26]). These results motivated

Franušić and Jadrijević to post the following conjecture:

Conjecture 1.1 ([22, Conjecture 1]). Let R be a commutative ring with
unity 1 and n ∈ R \ {0}. Then a D(n)-quadruple exists if and only if n can
be written as a difference of two squares in R, up to finitely many exceptions
of n.

This conjecture was verified for rings of integers of certain number fields
(cf. [17, 18, 19, 20, 22, 21, 25, 1, 26]).

The following notations will be followed throughout the paper.

• (a, b) = a+ b
√
d,

• k(a, b) = (ka, kb) for k ∈ Z,
• Let α = (a, b). The norm Nm of α is given by

Nm(α) := (a, b)(a,−b),

• (x, y) ≡ (a, b) (mod (c, e)) means that x ≡ a (mod c) and y ≡ b
(mod e).

In the rest of paper, we fix d ≡ 2 (mod 4) to be a square-free positive integer.

We set S and T in Z[
√
d] as follows:

S :={(4m, 4k + 1), (4m, 4k + 2), (4m, 4k + 3), (4m+ 1, 4k + 1), (4m+ 1, 4k + 3),

(4m+ 2, 4k + 1), (4m+ 2, 4k + 3), (4m+ 3, 4k + 1), (4m+ 3, 4k + 3)},
T :={(4m, 4k), (4m+ 1, 4k), (4m+ 1, 4k + 2), (4m+ 2, 4k), (4m+ 2, 4k + 2),

(4m+ 3, 4k), (4m+ 3, 4k + 2)},
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where m, k ∈ Z. It is easy to check that if n ∈ Z[
√
d] then n ∈ S ∪ T . In

[17], Franušić proved that there does not exist any D(n)-quadruple in Z[
√
d]

for n ∈ S.
Thus, it is natural to ask ‘whether there exists any Diophantine quadruple

in Z[
√
d] for n ∈ T ’. Very recently, in [7] the present authors answered this

question for n ∈ T \ {(4m, 4k), (4m + 2, 4k)}. More precisely, the authors
proved the following result:

Theorem A ([7, Theorem 1.1]). Assume that d ≡ 2 (mod 4) is a square-
free positive integer and the equations (1.1) and (1.2) are solvable. Then

there exist infinity many quadruples in Z[
√
d] with the property D(n) when

n ∈ {(4m+ 1) + 4k
√
d, (4m+ 1) + (4k + 2)

√
d, (4m+ 3) + 4k

√
d, (4m+ 3) +

(4k + 2)
√
d, (4m+ 2) + (4k + 2)

√
d} with m, k ∈ Z.

As a consequence of Theorem A, we were able to construct some counter
examples of Conjecture 1.1. Namely, if d = 10 and n = 26 + 6

√
10 or d = 58

and n = 18 + 2
√
58, one can easily see that n can not be represented as

a difference of two squares in Z[
√
d], but there exists a D(n)-quadruple in

Z[
√
d].
In this paper, we consider the above mentioned problem for the remaining

values of n. Let d ≡ 2 (mod 4) be a square-free positive integer such that

(1.1) x2 − dy2 = −1

and

(1.2) x2 − dy2 = 6

are solvable in integers. We prove the following results:

Theorem 1.1. Let d ≡ 2 (mod 4) be a square-free positive integer such
that (1.1) and (1.2) are solvable in integers. Let n = (4m, 4k) with m, k ∈ Z
such that (m, k) ̸≡ (5, 3) (mod (6, 6)). Then there exist infinitely many D(n)-

quadruples in Z[
√
d].

Theorem 1.2. Let d be as in Theorem 1.1. Then for n = (4m + 2, 4k)

with m, k ∈ Z, there exist infinitely many D(n)-quadruples in Z[
√
d] such that

(m, k) ̸≡ (9, 3), (0, 0) (mod (12, 6)).

In 1996, Dujella [10] obtained several two-parameter polynomial fami-
lies for quadruples with the property D(n). Our proofs use the technique
presented in [10].

2. Preliminaries

We begin this section with the following lemma that follows from the
definition of D(n)-quadruples in Z[

√
d].
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Lemma 2.1. Let {a1, a2, a3, a4} be a D(n)-quadruple. Then for any non-

zero w ∈ Z[
√
d], with a square-free integer d, the set {wa1, wa2, wa3, wa4} is

a D(w2n)-quadruple in Z[
√
d].

The next lemma helps us to find the conditions under which the set
{a, b, a+b+2r, a+4b+4r} forms aD(n)-quadruple in Z[

√
d] for any n ∈ Z[

√
d].

Lemma 2.2 ([7, Lemma 2.5]). The set {a, b, a+b+2r, a+4b+4r} of non-

zero and distinct elements is a D(n)-quadruple in Z[
√
d] for any n ∈ Z[

√
d],

if ab+ n = r2 and 3n = α1α2 with α1 = a+ 2r + α and α2 = a+ 2r − α, for
some a, b, r, α ∈ Z[

√
d].

The next two lemmas help us to apply Lemma 2.2 in the proofs of The-
orems 1.1 and 1.2. Lemma 2.3 is useful for the factorization of 3n in Z[

√
d],

while Lemma 2.4 is useful to verify that the elements thus found are distinct
and non-zero.

Lemma 2.3 ([7, Lemma 3.1]). Let d ≡ 2 (mod 4) be a square-free integer

such that (1.1) and (1.2) are solvable in integers. Then in Z[
√
d], the following

statements hold:

(i) elements of norm 1 have the form (6a1±1, 6b1) and there are infinitely
many of them;

(ii) elements of norm −1 have the form (6a1 ± 3, 6b1 ± 1) and there are
infinitely many such elements;

(iii) d ≡ 10 (mod 48);
(iv) elements of norm 6 have the form (12M ± 4, 6N ± 1) and there are

infinitely many such elements;
(v) elements of norm −6 have the form (12M ± 2, 6N ± 1) and there are

infinitely many such elements;

where a1, b1,M and N ∈ Z.

Lemma 2.4 ([7, Lemma 2.4]). Assume that a1, a2, b1, b2, c1, c2, d1, d2, e1 ∈
Z with a1, a2, b1 ̸= 0. Then the following system of simultaneous equations

{
a1x

2 + b1y
2 + c1x+ d1y + e1 = 0,

a2xy + b2x+ c2y + d2 = 0
(2.1)

has only finitely many solutions in integers.

3. Proof of Theorem 1.1

We first factorize 3n by using Lemmas 2.2 and 2.3. We then use this
factorization together with Lemma 2.2 to construct Diophantine quadruples
of certain forms with the property D(n) under the condition of non-zero and
distinctness. Finally these conditions are verified by using Lemma 2.4.
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Here, n = (4m, 4k) with m, k ∈ Z. Thus 3n = 3(4m, 4k) = 6(2m, 2k)
and we choose α1 = 6 and α2 = (2m, 2k) (α1 and α2 as in Lemma 2.2). Now
Lemma 2.2 entails,

(3.1) a+ 2r = (m+ 3, k).

We divide the proof into four cases based on the parity of m and k.

Case I: Both m and k are even. Let a = (6a1 + 1, 6b1) with a1, b1 ∈ Z such
that Nm(a) = 1. Then by (i) of Lemma 2.3, there exist infinitely many such
a’s, and (3.1) can be written as

r = (m/2 + 1− 3a1, k/2− 3b1).

As both m and k are even, so r ∈ Z[
√
d]. We employ these a and r in the

equation ab+ n = r2 (as in Lemma 2.2) to get:

b =((m/2 + 1− 3a1)
2 + d(k/2− 3b1)

2 − 4m, 2(m/2 + 1− 3a1)(k/2− 3b1)− 4k)

× (6a1 + 1,−6b1).

These choices of a, b and r give us infinitely many D(n)-quadruples {a, b, a+
b+2r, a+4b+4r} in Z[

√
d]. Non-zero and distinctness of these elements can

easily be verified by Lemma 2.4.

Case II: m is odd and k is even. As in Case I, we choose a = 2(6a1 + 1, 6b1)
with a1, b1 ∈ Z and Nm(a) = 4. Then (3.1) gives,

2r = (m+ 1− 12a1, k − 12b1).

We write m = 2m1 + 1 and k = 2k1 for some m1, k1 ∈ Z. Then

r = (m1 + 1− 6a1, k1 − 6b1),

which gives

b =
1

2

(
(m1 + 1− 6a1)

2 + d(k1 − 6b1)
2 − 4m, 2(m1 + 1− 6a1)(k1 − 6b1)− 4k

)

× (6a1 + 1,−6b1).

We are looking for b satisfying b ∈ Z[
√
d], so that m1 should be odd and k1

should be even. These choices of a, b and r provide infinitely many D(n)-

quadruples of the form {a, b, a+ b+ 2r, a+ 4b+ 4r} in Z[
√
d].

On the other hand for even m1, we choose a = 4(6a1 + 1, 6b1) with
a1, b1 ∈ Z and Nm(a) = 16. Then as before we get

r = (m1 − 12a1, k1 − 12b1),

which provides

b =
1

4

(
(m1 − 12a1)

2 + d(k1 − 12b1)
2 − 4m, 2(m1 − 12a1)(k1 − 12b1)− 4k

)

× (6a1 + 1,−6b1).
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Clearly b ∈ Z[
√
d] when k1 is even. These give the required elements a, b and

r. Utilizing Lemma 2.2, this implies that the set A = {a, b, a + b + 2r, a +

4b + 4r} forms a Diophantine quadruple in Z[
√
d] with the property D(n),

under the condition that all the elements of A must be non-zero and distinct
from each other. These conditions can be verified by using Lemma 2.4, except
a+ 4b+ 4r ̸= 0 and a+ 2r ̸= 0. We handle these exceptions separately since
they do not fit into Lemma 2.4. We first consider a + 2r = 0. This gives
m1 = −2 and k1 = 0. This gives n = −12. Now if a + 4b + 4r = 0, then
(m1, k1) = (0, 0) or (m1, k1) = (4, 0). This gives n = 1, 36, which are already
known.

The case n = −12 gives 3n = −18 × 2. We now choose α1 = −18
and α2 = 2. As before, we choose a = 4(6a1 + 1, 6b1) with a1, b1 ∈ Z and
Nm(a) = 16, and thus r = (−2− 12a1,−12b1). This gives

b = ((1 + 6a1, 6b1)
2 + 3)(6a1 + 1,−6b1).

Owing to the guaranteed existence of infinitely many a’s, there exist infinitely
many D(n)-quadruples.

The possibility of m1 even and k1 odd needs to be examined. In this
case n = (16m + 4, 16k + 8) = 22(4m + 1, 4k + 2), and thus the existence of

infinitely many D(n)-quadruples in Z[
√
d] is guaranteed by [7, Theorem 1.1]

and Lemma 2.1.

Case III: m is even and k is odd. In this case, we consider a = (6a1+3, 6b1+1)
with a1, b1 ∈ Z and Nm(a) = −1. This provides us

b =((m/2− 3a1)
2 + d((k − 1)/2− 3b1)

2 − 4m, 2(m/2− 3a1)((k − 1)/2− 3b1)− 4k)

× (−6a1 − 3, 6b1 + 1),

(for the value of r we use (3.1)). As dealt with in the previous cases, these

values of a, b, r will guarantee infinitely many D(n)- quadruples in Z[
√
d].

Case IV: Both m and k are odd. This case is bit more involved. Clearly n
can be expressed as n = (8m1 + 4, 8k1 + 4) for some m1, k1 ∈ Z. Then

3n = 6(4m1 + 2, 4k1 + 2).

Let α1 = 6 and α2 = (4m1 + 2, 4k1 + 2). That would imply (by Lemma 2.2)

(3.2) a+ 2r = (2m1 + 4, 2k1 + 1).

In what follows we will apply Lemma 2.3 (iv), (v), with M,N ∈ Z. First, set
a = (12M + 4, 6N + 1), with Nm(a) = 6. Thus (3.2) implies that

r = (m1 − 6M,k1 − 3N).
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Employing ab+n = r2 and d ≡ 10 (mod 48) (see, (iii) of Lemma 2.3), we get

b =
1

6

(
(m1 − 6M)2 + d(k1 − 3N)2 − 8m1 − 4, 2(m1 − 6M)(k1 − 3N)− 8k1 − 4

)

× (12M + 4,−6N − 1).

To ensure the existence of b in Z[
√
d], we must have,

(m1, k1) ≡ (0, 0), (0, 1), (2, 0), (2, 2), (4, 1), (4, 2) (mod (6, 3)).

As before, we assume a = (12M + 4, 6N − 1), with Nm(a) = 6. Then we
arrive at

b =
1

6
× ((m1 − 6M)2 + d(k1 − 3N + 1)2 − 8m1 − 4, 2(m1 − 6M)(k1 − 3N + 1)

− 8k1 − 4)× (12M + 4,−6N + 1).

As b ∈ Z[
√
d], so that we have additional cases of (m1, k1), where

(m1, k1) ≡ (0, 2), (4, 0) (mod (6, 3)).

Similarly, we set a = (12M + 2, 6N + 1) with Nm(a) = −6 to get

b =
−1

6
× ((m1 + 1− 6M)2 + d(k1 − 3N)2 − 8m1 − 4, 2(m1 + 1− 6M)(k1 − 3N)

− 8k1 − 4)× (12M + 2,−6N − 1).

For b to be in Z[
√
d],

(m1, k1) ≡ (1, 0), (1, 1), (3, 2), (5, 0), (5, 2) (mod (6, 3)).

Again we choose a = (12M + 2, 6N − 1), with Nm(a) = −6, which gives

b =
1

−6
× ((m1 − 6M + 1)2 + d(k1 − 3N + 1)2 − 8m1 − 4, 2(m1 − 6M + 1)

× (k1 − 3N + 1)− 8k1 − 4)(12M + 2,−6N + 1).

Thus for b ∈ Z[
√
d],

(m1, k1) ≡ (1, 2), (3, 0), (3, 1) (mod (6, 3)).

Finally for a = (12M − 2, 6N − 1) one gets the same values for (m1, k1)
as in the case a = (12M + 2, 6N + 1). This completes the proof of Theorem
1.1.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 goes along the lines of that of Theorem 1.1,
except the factorization of 3n. However, we provide the outlines of the proof
for convenience to the readers. The notations α1 and α2 are as in §3. Assume
that n = (4m+ 2, 4k), where m, k ∈ Z.
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Case I: Both m and k are even. Let M,N ∈ Z, and let

3n = 6(2m+ 1, 2k)

= (12M + 4,−6N − 1)(12M + 4, 6N + 1)(2m+ 1, 2k) (Using Lemma 2.3(iv))

= α1α2,
(4.1)

where{
α1 = (12M + 4,−6N − 1),

α2 = (24Mm+ 12M + 8m+ 4 + d(12Nk + 2k), 24Mk + 8k + 12Nm+ 2m+ 6N + 1).

Now, a = 4(6a1 + 1, 6b1) with a1, b1 ∈ Z and Nm(a) = 16, which gives

r = (6Mm+6M+2m+(d/2)(6Nk+k)−12a1, 6Mk+2k+3Nm+(m/2)−12b1)

and

b =
1

4

{
(6Mm+ 6M + 2m+ (d/2)(6Nk + k)− 12a1)

2 + d(6Mk + 2k + 3Nm+ (m/2)−

12b1)
2 − 4m− 2, 2(6Mm+ 6M + 2m+ (d/2)(6Nk + k)− 12a1)(6Mk + 2k + 3Nm+

(m/2)− 12b1)− 4k)× (6a1 + 1,−6b1)
}
.

Now for r, b ∈ Z[
√
d], since d ≡ 2 (mod 4), we must have m ≡ 2 (mod 4).

Assume that

(α, β) = (6Mm+ 6M + 2m+ (d/2)(6Nk + k), 6Mk + 2k + 3Nm+m/2).

Then r = (α− 12a1, β − 12b1).
Now if a+ 4b+ 4r = 0, then

4 + α2 + dβ2 − 4m− 2 + 4α = 0,

2αβ − 4k + 4β = 0.

By Lemma 2.4, we conclude that there exist only finitely many α and β which
satisfy the above system of equations. We now rewrite α and β as follows,

α = 6M(m+ 1) +N(3dk) + 2m+ (d/2)k

β = 6Mk + 3Nm+ (m/2) + 2k.

These can be written as(
α− 2m− (d/2)k
β − (m/2)− 2k

)
=

(
6(m+ 1) 3dk

6k 3m

)(
M
N

)
.

Since m ≡ 2 (mod 4), k is even, and d ≡ 2 (mod 4), so that the determinant
of (

6(m+ 1) 3dk
6k 3m

)

is non-zero. As we have infinitely many choices for M and N , so that there
exist infinitely many α and β for which a + 4b + 4r ̸= 0. Hence we can
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take such M and N for which a + 4b + 4r ̸= 0. Using these values of a, b
and r, we can get infinitely many quadruples with the property D(n) from
Lemma 2.2, since we have infinitely many choices of a, by using Lemma 2.3
(i) and for checking the condition of non-zero and distinct elements of the set
{a, b, a+ b+ 2r, a+ 4b+ 4r} (given in Lemma 2.2), we use Lemma 2.4.

In the case m ≡ 0 (mod 4), we replace n by n = (16m1+2, 8k1) and then
consider (4.1) with

α1 =(−12M − 2, 6N + 1),

α2 =(96Mm1 + 12M + 16m1 + 2 + d(24Nk1 + 4k1), 48Mk1 + 8k1 + 48Nm1

+ 8m1 + 6N + 1),

wherem1, k1 ∈ Z. This gives by utilizing a = (12a1+4, 6b1+1) with a1, b1 ∈ Z
and Nm(a) = 6,

r = (24Mm1+4m1+d(6Nk1+k1)−6a1−2, 12Mk1+2k1+12Nm1+2m1+3N−3b1)

and

b =
1

6

{
((24Mm1 + 4m1 + d(6Nk1 + k1)− 6a1 − 2)2 + d(12Mk1 + 2k1 + 12Nm1+

2m1 + 3N − 3b1)
2 − 16m1 − 2, 2(24Mm1 + 4m1 + d(6Nk1 + k1)− 6a1 − 2)(12Mk1+

2k1 + 12Nm1 + 2m1 + 3N − 3b1)− 8k1)× (12a1 + 4,−6b1 − 1)
}
.

Using d ≡ 10 (mod 48) (from Lemma 2.3(iii)), these further imply that

(m1, k1) ≡ (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 2) (mod (3, 3)).

Similarly, for a = (12a1 − 4, 6b1 + 1) with a1, b1 ∈ Z and Nm(a) = 6, we
have

r = (24Mm1+4m1+d(6Nk1+k1)−6a1+2, 12Mk1+2k1+12Nm1+2m1+3N−3b1)

and

b =
1

6

{
((24Mm1 + 4m1 + d(6Nk1 + k1)− 6a1 + 2)2 + d(12Mk1 + 2k1 + 12Nm1 + 2m1+

3N − 3b1)
2 − 16m1 − 2, 2(24Mm1 + 4m1 + d(6Nk1 + k1)− 6a1 + 2)(12Mk1+

2k1 + 12Nm1 + 2m1 + 3N − 3b1)− 8k1)
}
×

(
12a1 − 4,−6b1 − 1

)
.

For b to be in Z[
√
d],

(m1, k1) ≡ (1, 2) (mod (3, 3)).

The factorization (4.1) with




α1 = (12M + 2, 6N + 1),

α2 = (−96Mm1 − 12M − 16m1 − 2 + d(24Nk1 + 4k1),−48Mk1 − 8k1 + 48m1N+

8m1 + 6N + 1),
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as well as a = (12a1 + 4, 6b1 − 1) with a1, b1 ∈ Z and Nm(a) = 6 provides

r = (−24Mm1−4m1+d(6Nk1+k1)−6a1−2,−12Mk1−2k1+12m1N+2m1+3N+1−3b1)

and

b =
1

6

{
(−24Mm1 − 4m1 + d(6Nk1 + k1)− 6a1 − 2)2 + d(−12Mk1 − 2k1 + 12m1N + 2m1 + 3N + 1

− 3b1)
2 − 16m1 − 2, 2(−24Mm1 − 4m1 + d(6Nk1 + k1)− 6a1 − 2)(−12Mk1 − 2k1 + 12m1N

+ 2m1 + 3N + 1− 3b1)− 8k1

}
×
(
12a1 + 4,−6b1 + 1

)
.

For b ∈ Z[
√
d],

(m1, k1) ≡ (2, 1) (mod (3, 3)).

Finally, owing to Lemma 2.3, there are infinitely many choices of M and N ,
and hence there are infinitely many choices for such a, b and r.

To conclude this case, we have covered all possibilities for (m1, k1), except
(m1, k1) ̸≡ (0, 0) (mod (3, 3)). Hence, there exist infinitely many Diophantine

quadruples in Z[
√
d] with the property D(16m1 + 2, 8k1), where (m1, k1) ̸≡

(0, 0) (mod (3, 3)).

Case II: m is even and k is odd. In this case too we work with the factorization
(4.1). We use
{
α1 = (12M + 4,−6N − 1),

α2 = (24Mm+ 12M + 8m+ 4 + d(12Nk + 2k), 24Mk + 8k + 12Nm+ 2m+ 6N + 1)

and a = 2(6a1 + 1, 6b1) with a1, b1 ∈ Z and Nm(a) = 4. These provide
us,

r = (6Mm+6M+2m+2+(d/2)(6Nk+k)−6a1−1, 6Mk+2k+3Nm+(m/2)−6b1)

and

b =
1

2

{
(6Mm+ 6M + 2m+ 2 + (d/2)(6Nk + k)− 6a1 − 1)2 + d(6Mk + 2k + 3Nm+

(m/2)− 6b1)
2 − 4m− 2, 2(6Mm+ 6M + 2m+ 2 + (d/2)(6Nk + k)− 6a1 − 1)(6Mk+

2k + 3Nm+ (m/2)− 6b1)− 4k
}
×

(
6a1 + 1,−6b1

)
.

Case III: m is odd and k is even. Here, we use (4.1) with

α1 = (−12M − 2, 6N + 1),

α2 = (24Mm+ 12M + 4m+ 2 + d(12Nk + 2k), 24Mk + 4k + 12Nm+ 2m+ 6N + 1).

Then, a = 2(6a1 + 1, 6b1) with a1, b1 ∈ Z and Nm(a) = 4 gives

r = (12Mm+ 2m+ d(6Nk + k), 12Mk + 2k + 6Nm+m+ 6N + 1)
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and

b =
1

2

{
(12Mm+ 2m+ d(6Nk + k))2 + d(12Mk + 2k + 6Nm+m+ 6N + 1)2 − 4m−

2, 2(12Mm+ 2m+ d(6Nk + k))(12Mk + 2k + 6Nm+m+ 6N + 1)− 4k
}
×

(
6a1 + 1,−6b1

)
.

Case IV: Both m and k are odd. The choices of α1 and α2 as in Case III work
in this case too. We set a = 4(6a1 + 1, 6b1) with a1, b1 ∈ Z and Nm(a) = 16
to get

r = (6Mm+m+(d/2)(6Nk+k)−12a1−2, 6Mk+k+3Nm+(m+1)/2+3N−12b1)

and

b =
1

4

{
((6Mm+m+ (d/2)(6Nk + k)− 12a1 − 2)2 + d(6Mk + k + 3Nm+ (m+ 1)/2+

3N − 12b1)
2 − 4m− 2, 2(6Mm+m+ (d/2)(6Nk + k)− 12a1 − 2)(6Mk + k + 3Nm

+ (m+ 1)/2 + 3N − 12b1)− 4k)(6a1 + 1,−6b1)
}
.

These would imply m ≡ 3 (mod 4) whenever r, b ∈ Z[
√
d]. The existence of

infinitely many quadruples can be seen by similar argument of n = (4m+2, 4k)
in Case I with m ≡ 2 (mod 4) and even k.

The next case is m ≡ 1 (mod 4) and here n can be replaced by n =
(16m1 + 6, 8k1 + 4) with m1, k1 ∈ Z. The factorization uses in this case is:

(4.2) 3n = α1α2,

where,

α1 =(12M + 4,−6N − 1),

α2 =(96Mm1 + 36M + 32m1 + 12 + d(24Nk1 + 12N + 4k1 + 2), 48Mk1 + 24M + 16k1

+ 11 + 48Nm1 + 18N + 8m1).

We set a = (12a1 + 2, 6b1 + 1) with a1, b1 ∈ Z and Nm(a) = −6, which gives

r =(24Mm1 + 12M + 8m1 + 4 + (d/2)(12Nk1 + 6N + 2k1 + 1)− 6a1 − 1, 12Mk1+

6M + 4k1 − 3a1 + 2 + 12Nm1 + 3N + 2m1)

and

b =
1

−6

{
(24Mm1 + 12M + 8m1 + 4 + (d/2)(12Nk1 + 6N + 2k1 + 1)− 6a1 − 1)2+

d(12Mk1 + 6M + 4k1 − 3a1 + 2 + 12Nm1 + 3N + 2m1)
2 − 16m1 − 6, 2(24Mm1+

12M + 8m1 + 4 + (d/2)(12Nk1 + 6N + 2k1 + 1)− 6a1 − 1)(12Mk1 + 6M + 4k1−

3a1 + 2 + 12Nm1 + 3N + 2m1)− 8k1 − 4
}
×

(
12a1 + 2,−6b1 − 1

)
.
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Now, using d ≡ 10 (mod 48) (from Lemma 2.3(iii)),

(m1, k1) ≡ (0, 0), (0, 1), (1, 1), (2, 0), (2, 2) (mod (3, 3)),

for b ∈ Z[
√
d].

Similarly, a = (12a1−2, 6b1+1) with a1, b1 ∈ Z and Nm(a) = −6 provides

r =(24Mm1 + 12M + 8m1 + 5 + (d/2)(12Nk1 + 6N + 2k1 + 1)− 6a1, 12Mk1 + 6M+

4k1 + 2 + 12Nm1 + 3N + 2m1 − 3b1)

and

b =
1

−6

{
(24Mm1 + 12M + 8m1 + 5 + (d/2)(12Nk1 + 6N + 2k1 + 1)− 6a1)

2+

d(12Mk1 + 6M + 4k1 + 2 + 12Nm1 + 3N + 2m1 − 3b1)
2 − 16m1 − 6, 2(24Mm1+

12M + 8m1 + 5 + (d/2)(12Nk1 + 6N + 2k1 + 1)− 6a1)(12Mk1 + 6M + 4k1 + 2+

12Nm1 + 3N + 2m1 − 3b1)− 8k1 − 4
}
×
(
12a1 − 2,−6b1 − 1

)
.

For b ∈ Z[
√
d],

(m1, k1) ≡ (0, 2) (mod (3, 3)).

Again, we use (4.2) by taking

α1 =(12M + 4, 6N + 1),

α2 =(96Mm1 + 36M + 32m1 + 12 + d(−24Nk1 − 12N − 4k1 − 2), 48Mk1 + 24M+

16k1 + 8− 48Nm1 − 18N − 8m1 − 3).

Then we choose a = (12a1 + 2, 6b1 − 1) with a1, b1 ∈ Z and Nm(a) = −6,
which gives

r =(24Mm1 + 12M + 8m1 + 3 + (d/2)(−12Nk1 − 6N − 2k1 − 1)− 6a1, 12Mk1 + 6M + 4k1 + 2−
12Nm1 − 3N − 2m1 − 3b1)

and

b =
1

−6

{
(24Mm1 + 12M + 8m1 + 3 + (d/2)(−12Nk1 − 6N − 2k1 − 1)− 6a1)

2 + d(12Mk1+

6M + 4k1 + 2− 12Nm1 − 3N − 2m1 − 3b1)
2 − 16m1 − 6, 2(24Mm1 + 12M + 8m1 + 3+

(d/2)(−12Nk1 − 6N − 2k1 − 1)− 6a1)(12Mk1 + 6M + 4k1 + 2− 12Nm1 − 3N − 2m1−

3b1)− 8k1 − 4
}
×
(
12a1 + 2,−6b1 + 1

)
.

For b ∈ Z[
√
d],

(m1, k1) ≡ (1, 0) (mod (3, 3)).

The existence of infinitely many D(n)-quadruples in Z[
√
d] is guaranteed by

the above choices of a, b and r in each case.
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To conclude this case, we have covered all possibilities for (m1, k1) except
(m1, k1) ̸≡ (2, 1) (mod (3, 3)). Therefore, there exist infinitely many Dio-

phantine quadruples in Z[
√
d] with the property D(16m1 +6, 8k1 +4), where

(m1, k1) ̸≡ (2, 1) (mod (3, 3)).

5. Concluding Remarks

Given a square-free integer d ≡ 2 (mod 4), the existence ofD(n)-quadruples

in the ring Z[
√
d] for some n ∈ Z[

√
d] has been investigated in [7, 17]. We

investigate this problem for the remaining values of n. However, our method
does not work for a few values of n, i.e., n ∈ {4(12r+5, 6s+3), 4(12r+11, 6s+
3), (48r + 38, 24s+ 12), (48r + 2, 24s)} with r, s ∈ Z.

We discuss some examples for the existence of D(n)-quadruples in Z[
√
d]

for these exceptions. We first shorten these exceptions with the help of [7,
Theorem 1.1], and then we provide some examples for the remaining cases.

Let d = 2N such that (1.1) and (1.2) are solvable in integers, where N ∈
N. Assume that n = 4(12m+5, 6k+3) with m = αN +β and k = α1N +β1,
where α, β, α1, β1 ∈ Z. Then n = 4(12αN+12β+5, 6α1N+6β1+3). Utilizing
(iii) of Lemma 2.3, we get 2, 3 ∤ N and thus we can choose β, β1 such that
12β + 5 and 6β1 + 3 are of the form Nγ and Nγ1, respectively with odd
integers γ and γ1. Thus n = 2N(24α + 2γ, 12α1 + 2γ1), since 2γ, 2γ1 ≡ 2
(mod 4), so that 24α + 2γ and 12α1 + 2γ1 are of the form 4t1 + 2 for some
integer t1 ≥ 1.

Again 2N is square in Z[
√
d], and thus [7, Theorem 1.1] and Lemma

2.1 together show that there exist infinitely many D(n)-quadruples in Z[
√
d].

Analogously, we can draw a similar conclusion for n = 4(12m + 11, 6k + 3).
We now consider n = (4(12m + 9) + 2, 4(6k + 3)). As in the above, n =
2(24Nα+24β +19, 12Nα1 +12β1 +6). Since 2, 3 ∤ N , so that we can choose
β, β1 such that 24β+19 and 12β1+6 are of the form Nγ and Nγ1, respectively.
Using (iii) of Lemma 2.3, we get N ≡ 1 (mod 4), and thus γ ≡ 3 (mod 4) and
γ1 ≡ 2 (mod 4). Finally we use [7, Theorem 1.1] and Lemma 2.1 to conclude

that there exist infinitely many D(n)-quadruples in Z[
√
d]. Analogously we

can establish the same for n = (4(12m) + 2, 4(6k)).
We now provide some examples supporting the existence ofD(n)-quadruple

in Z[
√
10] for the exceptional values of n.

Example 1. We consider d = 10 and n = 4(12m+5, 6k+3) with m, k ∈ Z. Let
m = 5M and k = 5K+2, whereM,K ∈ Z. Then n = 4(5(12M+1), 30K+15),
which can be written as n = 10(24M + 2, 12K + 6). Thus n is of the form
10(4m′ + 2, 4k′ + 2) with m′, k′ ∈ Z. Therefore using [7, Theorem 1.1] and
Lemma 2.1, we conclude that there exist infinitely many D(n)-quadruples in

Z[
√
10]. Analogously, we can show the same for n = 4(12m + 11, 6k + 3) by

putting m = 5M + 2 and k = 5K + 2.
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Example 2. Suppose d = 10 and n = (4(12m+ 9) + 2, 4(6k + 3)) = 2(24m+
19, 12k+6). Letm = 5M+4 and k = 5K+2. Then n = 10(24M+23, 12k+6).
Since 24M + 23 ≡ 3 (mod 4) and 12K + 6 ≡ 2 (mod 4), so that by [7,
Theorem 1.1] and Lemma 2.1, we can conclude that there exist infinitely

many D(n)-quadruples in Z[
√
10]. Similar conclusion can be drawn for n =

(4(12m) + 2, 4(6k)) by taking m ≡ 1 (mod 5) and k ≡ 0 (mod 5).

Example 3. Assume that d = 10 and n = 4(12m + 5, 6k + 3) with m ≡ 2, 3
(mod 5). We factorize 3n as follows:

3n = 12(12m+ 5, 6k + 3)

= (−18, 6)(3, 1)(24m+ 10, 12k + 6)

= (−18, 6)(120k + 72m+ 90, 36k + 24m+ 28).

We take α1 and α2 to be the first and the second factor of the above equation,
respectively. Further utilizing Lemma 2.2 we get

a+ 2r = (60k + 36m+ 36, 18k + 12m+ 17).

We choose a = (19, 6)t(0, 1) with Nm(a) = −10, where t ∈ N. This implies
that there exist α, β ∈ Z such that a = (20α, 10β − 1), and thus r = (30k +
18m− 10α+ 18, 9k + 6m+ 9− 5β). Further ab+ n = r2 implies

b =
(r2 − n)(20α,−10β + 1)

−10
.

Sincem ≡ 2, or 3 (mod 5), b ∈ Z[
√
10] and we have infinitely many a’s, there-

fore by using Lemmas 2.2 and 2.4, we get infinitely many D(n)-quadruples

in Z[
√
10]. Analogously, we can show the existence of infinitely many D(n)-

quadruples in Z[
√
10] for n = 4(12m+11, 6k+3) when m ≡ 0, or 4 (mod 5).

Example 4. Suppose that d = 10 and n = (4(12m + 9) + 2, 4(6k + 3)) with
m ≡ 1, or 2 (mod 5). We factorize

3n = (4, 1)(4,−1)(2(12m+ 9) + 1, 2(6k + 3))

= (4, 1)(−120k + 96m+ 16, 48k − 24m+ 5).

We choose α1 and α2 to be the first and the second factor of the last equation,
respectively. We use Lemma 2.2 to get a + 2r = (−60k + 48m + 10, 24k −
12m+ 3). Let a = (19, 6)t(10, 3) with Nm(a) = 10, where t ∈ N. Thus there
exist α, β ∈ Z such that a = (20α+ 10, 10β + 3) and thus r = (24m− 30k −
10α,−6m+ 12k − 5β). Therefore Lemma 2.2 gives

b =
r2 − n

a
.

Since m ≡ 1, or 2 (mod 5), so that b ∈ Z[
√
10]. Hence there exist infin-

itely many D(n)-quadruples in Z[
√
10]. Analogously, we can construct D(n)-

quadruples for n = (4(12m) + 2, 4(6k)) when m ≡ 3, or 4 (mod 5).
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The problem of existence of infinitely many D(n)-quadruples in Z[
√
10]

for n ∈ Z[
√
10] is solved, except for n ∈ S0 := S1 ∪ S2 ∪ S3 ∪ S4, where

S1 ={4(12m+ 5, 6k + 3) : (m, k) ≡ (0, 0), (0, 1), (0, 3), (0, 4) (mod (5, 5)) or

m ≡ 1, 4 (mod 5)},
S2 ={4(12m+ 11, 6k + 3) : (m, k) ≡ (2, 0), (2, 1), (2, 3), (2, 4) (mod (5, 5)) or

m ≡ 1, 3 (mod 5)},
S3 ={(4(12m+ 9) + 2, 4(6k + 3)) : (m, k) ≡ (4, 0), (4, 1), (4, 3), (4, 4) (mod (5, 5))

or m ≡ 0, 3 (mod 5)}, and

S4 ={48m+ 2, 36k) : (m, k) ≡ (1, 1), (1, 2), (1, 3), (1, 4) (mod (5, 5)) or m ≡ 0,

2 (mod 5)}.
Finally, we put the following question for n ∈ S0.

Question 5.1. Do there exist infinitely many D(n)-quadruples in Z[
√
10]

when n ∈ S0?
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[22] Z. Franušić and B. Jadrijević, D(n)-quadruples in the ring of integers of Q(
√
2,

√
3),

Math. Slovaca 69 (2019), 1263–1278.

[23] S. Gupta, D(−1) tuples in imaginary quadratic fields, Acta Math. Hungar. 164 (2021),

556–569.
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