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The limiting case in the Sobolev embedding theorem and

radial-symmetric functions

Peter Grandits

TU Wien, Austria

Abstract

Denoting by Br0 the open ball with radius r0, centered at the origin, we consider the so called

“limiting case” in the Sobolev embedding theorem, W j+m,p(Br0)→W j,q(Br0), namely the case

mp = n, 1 < p ≤ q, where the embedding for q = ∞ does not hold. We show that in the case

j = 1, contrary to the case j = 0, radial-symmetric counterexamples, that is radial-symmetric

functions in Wm+1,p(Br0)\W 1,∞(Br0) do not exist, if one assumes C2-regularity away from the

origin. Moreover, we characterize in dimension n = 2 the set Wm+1,p(Br0) \W 1,∞(Br0), i.e.

W 2,2(Br0) \W 1,∞(Br0) within a reasonable large class of functions.

1 Introduction

The famous Soboloev embedding theorem describes the continuous embedding of Sobolev spaces

into spaces of (Hölder) continuous functions on the one hand side, and the embedding of certain

Sobolev spaces into other Sobolev spaces with different indices, see, for example, [1], Theorem 4.12.

More precisely, we have in the latter case, if mp > n or m = n and p = 1, the continuous embedding

W j+m,p(Ω)→W j,q(Ω),

for p ≤ q ≤ ∞, where Ω is a domain satisfying a cone condition. Moreover, there is the so called

“limiting case”, mp = n, p > 1, where we only have

W j+m,p(Ω)→W j,q(Ω), (1)

for p ≤ q <∞, which means, for example, that functions in Wm,p(Ω), with mp = n, p > 1, are not

necessarily bounded.

This limiting case found some interest in the literature. For example, Trudinger showed in [9]

that Wm,p(Ω) can be embedded in an Orlicz space with a defining function of exponential type, see

also [1], Theorem 8.27.

Moreover, both, the classical Sobolev embedding and the “Trudinger embedding”, can be gen-

eralized, using more complicated spaces like Lorentz spaces, resp. even more complicated spaces,

described in [4]; see also [7].

Now, the failure of the embedding Wm,p(Ω) → L∞(Ω), with mp = n, p > 1 is illustrated by a

radial symmetric function in Example 4.43 of [1]. Moreover, it is claimed that this example multiplied
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by the distance to the origin r can serve as radial-symmetric counterexample for q =∞ in the case

j = 1 in (1) above, see Example 4.44 there. Unfortunately, this seems to be not correct. Roughly

speaking, the reason, why it doesn’t work is the following: The final “deciding radial integral” for

membership in Wm,p of Example 4.43 has an integrand of the form 1
r (− ln r)−p, such that the radial

integral in the vicinity of zero is clearly finite. On the other hand, the corresponding integrand of

Example 4.44 has the form 1
r (ln(− ln r))p, which leads clearly to an infinite integral, see section 2

below.

For convenience, we shall restrict our considerations to the case Ω = Br0 . Motivated by the

failure of the mentioned example, one can pose the question, whether there are radial-symmetric

counterexamples in the case j = 1 at all. It turns out that this is note the case, if we assume

C2-regularity away from the origin.

Furthermore, we can characterize the set of possible counterexamples within a reasonable large

set of functions in the two-dimensional case.

The schedule of our paper is the following. We give details to the calculation of Example 4.44 of

[1] in section 2. In section 3 we solely consider the two-dimensional situation. In the first subsec-

tion we show that radial-symmetric counterexamples are not possible at all (under the mentioned

regularity assumption), whereas in the second one we give the characterization of counterexamples

mentioned above. Finally, we show in section 4 that, also for general dimension n, radial-symmetric

counterexamples are not possible for functions C2 away from the origin.

It would be an interesting question, whether similar characterization as in subsection 3.2 can be

given for general dimension n and/or values of j ≥ 2.

2 A radial-symmetric example

We have already mentioned Example 4.44 of [1] in the Introduction. It is claimed in [1] that the

function v(x) := |x| ln (ln (4R/|x|)), with x = (x1, x2, ..., xn) ∈ Rn, is an element of Wm,p(BR), but

not an element of W 1,∞(BR) = C0,1(BR). Here (m− 1)p = n and p > 1 have to hold, BR is a ball

with radius R, centered at the origin. The aim of this section is, to show that this assertion is not

true. As this example was the starting point for our consideration in the subsequent sections, we

provide details of the calculations.

More precisely, we claim

Lemma 2.1 Let v(x) := r ln (ln (1/r)), r =
√
x1

1 + x2
2 + ...+ x2

n. Then we have for (m − 1)p =

n, p > 1, that v /∈Wm,p(Br0), for arbitrary small radius r0.

Proof. Set ṽ = ln (ln (1/r)). Leibniz’ rule implies, using the notation ṽ(k) := ∂kṽ
∂xk1

,

v(m) =
m∑

k=0

(
m

k

)
r(k)ṽ(m−k), for r > 0. (2)

Note that, if v would be an element of Wm,p(Br0), by the definition of Sobolev spaces, see for

example [1], Definition 3.2b, its distributional derivatives up to order m have to be in Lp(Br0). Since

our candidate function v is smooth away from the origin (which has Lebesgue measure zero), the

classical derivatives of v, away from zero, would have to be in Lp(Br0). Hence, we need Leibniz’ rule

only for r 6= 0, and we shall prove finally, that these classical derivatives are not in Lp(Br0).

By induction one finds

r(k) =
Qk(x1, x2, ...xn)

r2k−1
,

where Qk denotes a homogeneous polynomial of order k in x, that is Qk(λx) = λkQk(x), for all

x ∈ Rn and λ ∈ R. For example Q3(x1, x2, ..., xn) = −3x1(x2
2 + ...+ x2

n).
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In Example 4.43 of [1] one finds

ṽ(m−k) =

m−k∑

j=1

Pm−k,j(x)r−2(m−k)

(
ln(

1

r
)

)−j
, k < m,

where the Pm−k,j are homogeneous polynomials of degree m − k in x. Hence, for r < r0, r0 > 0

small, we have, denoting a generic constant depending on m, which may vary from place to place by

Cm
∣∣∣∣∣
m−1∑

k=0

(
m

k

)
r(k)ṽ(m−k)

∣∣∣∣∣ ≤ Cm

m−1∑

k=0

∣∣∣r(k)
∣∣∣
∣∣∣ṽ(m−k)

∣∣∣

= Cm

m−1∑

k=0

|Qk(x)|
r2k−1

m−k∑

j=1

|Pm−k,j(x)| r−2(m−k)

(
ln(

1

r
)

)−j

≤ Cm

(
ln(

1

r
)

)−1 m−1∑

k=0

|Qk(x)|
r2k−1

r−2(m−k)
m−k∑

j=1

|Pm−k,j(x)|

≤ Cm

(
ln(

1

r
)

)−1 m−1∑

k=0

rk

r2k−1
r−2(m−k)rm−k = Cm

(
ln

(
1

r

))−1
1

rm−1
. (3)

On the other hand, one has

r(m)ṽ =
Qm(x1, x2, ..., xn)

r2m−1
ln

(
ln

(
1

r

))
. (4)

As Qm is clearly not identically zero, we choose a vector x̄ := (x̄1, ..., x̄n), such that |Qm(x̄)|
r̄m ≥ c > 0

holds. Here c denotes some positive constant, and r̄ denotes the length of the vector x̄. In the

following c will denote some generic positive constant, which may vary from place to place.

Since the fraction |Qm(x1,x2,...,xn)|
rm depends only on the direction of the vector (x1, x2, ..., xn), for

example, ∣∣∣∣
Q3(x1, x2, ..., xn)

r3

∣∣∣∣ =

∣∣∣∣−3
x1

r
(
x2

2

r2
+ ...+

x2
n

r2
)

∣∣∣∣ ,

we can write |Qm(x)|
rm = f(e1, e2, ..., en), where ei = xi

r , for all i = 1, 2, ..., n with a clearly continuous

function f . Hence, we can find a vicinity of ē := (ē1, ē2, ..., ēn), say U(ē) of unit vectors, say ẽ, such

that we have

f(ẽ) ≥ c > 0,

for all ẽ ∈ U(ē). Therefore we can find a spherical cone, say S, with center vector x̄, such that
|Qm(x)|
rm ≥ c > 0 holds, for x ∈ S. By a spherical cone we understand the intersection of an infinite

cone and a ball with radius r0. This implies

∣∣∣r(m)ṽ
∣∣∣ ≥ c

rm−1
ln

(
ln

(
1

r

))
, x ∈ S (5)

By (2),(3),(5) and the triangle inequality, we get

∣∣∣v(m)
∣∣∣ =

∣∣∣∣∣r
(m)ṽ +

m−1∑

k=0

(
m

k

)
r(k)ṽ(m−k)

∣∣∣∣∣

≥
∣∣∣r(m)ṽ

∣∣∣−
∣∣∣∣∣
m−1∑

k=0

(
m

k

)
r(k)ṽ(m−k)

∣∣∣∣∣

≥ c

rm−1
ln

(
ln

(
1

r

))
− Cm

(
ln

(
1

r

))−1
1

rm−1

≥ c

rm−1
ln

(
ln

(
1

r

))
, (6)
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on S for r ≤ r0, with small r0 and a c > 0.

Finally, we find

∫

S

∣∣∣v(m)
∣∣∣
p

dx ≥
∫

S

c

r(m−1)p

(
ln

(
ln

(
1

r

)))p
dx

= cλ
(
Ŝ ∩ ∂B1

)∫ r0

0

rn−1

r(m−1)p

(
ln

(
ln

(
1

r

)))p
dr

= cλ
(
Ŝ ∩ ∂B1

)∫ r0

0

1

r

(
ln

(
ln

(
1

r

)))p
dr =∞,

where λ denotes the surface measure, and Ŝ the infinite cone corresponding to S. Hence, v(m) /∈
Lp(Br0), and therefore v /∈Wm,p(Br0). tu

3 The two dimensional case

In this section we shall only consider the two-dimensional case, that is n = 2. We shall prove two

results. On the one hand side, we show that radial-symmetric functions in Wm,p(Br0) \W 1,∞(Br0),

with (m− 1)p = n, r0 > 0, that is, since we have n = 2, radial-symmetric functions in W 2,2(Br0) \
W 1,∞(Br0) are not possible at all, if we, motivated by the examples in [1], assume that our

functions are C2 away from the origin.

On the other hand, we shall give a characterization of such functions in a set of “well-behaved”

functions.

The reader finds these results in the next two subsections, respectively.

Let us note that we shall prove in section 4 an analogue to the result in section 3.1 for general

dimension n. But as the proof in the two-dimensional setting is much easier, we found it worthwhile,

to present it.

3.1 Radial-symmetric examples don’t work

Let us define the set of radial-symmetric functions by

H := {v(x1, x2)|v(x1, x2) = f(r) ∈ C2((0, r0])}, r0 > 0,

with r =
√
x2

1 + x2
2, as usual. Then we have

Proposition 3.1 For n = 2, one has

W 2,2(Br0) ∩H ⊂W 1,∞(Br0) ∩H.

Proof. Let v(x1, x2) = f(r) ∈ W 2,2(Br0) ∩ H. We have to show that v ∈ W 1,∞(Br0), that is

f ′ ∈ L∞((0, r0)).

A simple calculation gives for the partial derivatives

vx1 = f ′(r)
x1

r
=: f ′(r) cos(φ),

as well as

vx1 x1 = f ′′(r) cos2(φ) +
f ′(r)
r

sin2(φ).

Using our assumption that v ∈ W 2,2(Br0), one finds for arbitrary l1, l2, with 0 < l1 < l2 ≤ r0, and

some positive finite C

C >

∫

Bl2\Bl1
v2
x1 x1

dx1 dx2

4



=

∫ 2π

0

dφ

∫ l2

l1

dr r

(
f ′′(r)2 cos4(φ) +

f ′(r)2

r2
sin4(φ) +

2f ′(r)f ′′(r)
r

sin2(φ) cos2(φ)

)

=
3π

4

∫ l2

l1

dr r

(
f ′′(r)2 +

f ′(r)2

r2
+

2f ′(r)f ′′(r)
3r

)

=
3π

4

∫ l2

l1

dr r

(
f ′′(r) +

f ′(r)
r

)2

− π
∫ l2

l1

dr r
f ′(r)f ′′(r)

r

≥ −π
∫ l2

l1

dr r
f ′(r)f ′′(r)

r
=
−π
2

(
f ′(l2)2 − f ′(l1)2

)
.

Note that we have used the absolute continuity of the function f ′ in the last step, which we shall

show in Remark 4.1 of section 4, for general n.

As l1 and l2 are arbitrary, this proves the proposition. tu

3.2 Characterization of functions in W 2,2(Br0) \W 1,∞(Br0)

We have seen that radial-symmetric functions in G := W 2,2(Br0)\W 1,∞(Br0) do not exist, under the

regularity assumption that we are considering only functions, which are C2 away from the origin. In

this section we shall show that, within a certain class of “well-behaved” functions, we can characterize

functions in G very precisely. We look for functions V with an isolated singularity of ∇V , situated

at the origin, and which are C2 elsewhere (as we have assumed already in section 3.1). Moreover,

we assume here that V can be written as a product of a regularly varying function, a product of a

power and a slowly varying function (like logarithms, iterated logarithms and powers of logarithms)

in the radius r and a C2-function in the angle φ. Without loss of generality we assume also V (0) = 0.

More precisely, we consider

M = {V (r, φ)|V (r, φ) = f(r)Φ(φ), f ′′ ∈ R([0, r0]) ∩ C((0, r0]), |f ′(0+)| = ∞, f(0) = 0,Φ ∈ C2[0, 2π]
}
,

(7)

where R are the regularly varying functions, which we define now (for more information on these

kind of functions, see for example [3]).

Definition 3.1 A positive or negative measurable function L(r) on [0, r0] is called slowly varying,

if we have

lim
r→0

L(λr)/L(r) = 1, for all λ > 0.

We write L ∈ L.

Furthermore, we call a function f(r) of regular variation, if we can represent it as f(r) = rρL(r),

for some ρ 6= 0 and some slowly varying function L(r).

Note that we allow also negative slowly varying functions, hence negative regularly varying function.

This is to avoid cumbersome notation as ±L. Negative representatives of these classes can therefore

written as a standard representative times (−1).

Our next theorem shows that for functions in G∩M, the function Φ has to be a linear combination

of the cos and the sin function, whereas the slowly varying ingredient of f ′′ has to fulfill a certain

equality and a certain inequality. We have

Theorem 3.1

G ∩M = K,

with

K := {V (r, φ)|V = f(r)Φ(φ),Φ(φ) = A cos(φ) +B sin(φ), f ′′(r) =
L(r)

r
},

where L is a slowly varying function in C((0, r0]), fulfilling
∣∣∣
∫ r0

0
L(r)
r dr

∣∣∣ =∞ and
∫ r0

0
L2(r)
r dr <∞,

whereas A and B are real constants.
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Proof. Let V (r, φ) = f(r)Φ(φ) ∈ G ∩M. By definition of the set M, we conclude that f ′′ is a

regularly varying function, hence, it can be written as f ′′(r) = L(r)
rα , for some slowly varying function

L and some real constant α.

Case I: α = 1, that is f ′′(r) = L(r)
r , for some slowly varying function L.

A lengthy but elementary calculation provides

Vxx(r, φ) = cos2 φVrr +
sin2 φ

r2
Vφφ −

sin 2φ

r
Vrφ +

sin2 φ

r
Vr +

sin 2φ

r2
Vφ

Vyy(r, φ) = sin2 φVrr +
cos2 φ

r2
Vφφ +

sin 2φ

r
Vrφ +

cos2 φ

r
Vr −

sin 2φ

r2
Vφ

2Vxy(r, φ) = sin 2φVrr −
sin 2φ

r2
Vφφ +

2 cos 2φ

r
Vrφ −

sin 2φ

r
Vr −

2 cos 2φ

r2
Vφ,

or, using the fact that V ∈M,

Vxx(r, φ) = cos2 φ f ′′Φ +
sin2 φ

r2
fΦ′′ − sin 2φ

r
f ′Φ′ +

sin2 φ

r
f ′Φ +

sin 2φ

r2
fΦ′

Vyy(r, φ) = sin2 φ f ′′Φ +
cos2 φ

r2
fΦ′′ +

sin 2φ

r
f ′Φ′ +

cos2 φ

r
f ′Φ− sin 2φ

r2
fΦ′

2Vxy(r, φ) = sin 2φ f ′′Φ− sin 2φ

r2
fΦ′′ +

2 cos 2φ

r
f ′Φ′ − sin 2φ

r
f ′Φ− 2 cos 2φ

r2
fΦ′.

Integrating f ′′(r) = L(r)
r , we find for 0 ≤ r ≤ r0, using the notation C1 := f ′(r0),

f ′(r) = C1 −
∫ r0

r

L(s)

s
ds =: C1 − L̃(r),

f(r) = C1r −
∫ r

0

L̃(s) ds =: C1r − rL̂(r),

where we have employed f(0) = 0. Plugging this into the formulas for the second order derivatives

above, gives, after some calculations,

Vxx(r, φ) =
L(r)

r

(
cos2 φΦ

)
+
L̂(r)

r

(
− sin2 φΦ′′ − sin 2φΦ′

)
+
L̃(r)

r

(
sin 2φΦ′ − sin2 φΦ

)

+
C1

r

(
sin2 φΦ′′ + sin2 φΦ

)

Vyy(r, φ) =
L(r)

r

(
sin2 φΦ

)
+
L̂(r)

r

(
− cos2 φΦ′′ + sin 2φΦ′

)
+
L̃(r)

r

(
− sin 2φΦ′ − cos2 φΦ

)

+
C1

r

(
cos2 φΦ′′ + cos2 φΦ

)

2Vxy(r, φ) =
L(r)

r
(sin 2φΦ) +

L̂(r)

r
(sin 2φΦ′′ + 2 cos 2φΦ′) +

L̃(r)

r
(−2 cos 2φΦ′ + sin 2φΦ)

+
C1

r
(− sin 2φΦ′′ − sin 2φΦ) . (8)

Now we want to express the fact that V /∈ W 1,∞ in terms of the slowly varying functions L̂ and L̃.

For the gradient of V we find

∇V =

(
cosφf ′Φ− sinφ

r fΦ′

sinφf ′Φ + cosφ
r fΦ′

)
=

(
cosφ(C1 − L̃)Φ− sinφ(C1 − L̂)Φ′

sinφ(C1 − L̃)Φ + cosφ(C1 − L̂)Φ′

)
. (9)

Now,

∇V /∈ L∞ ⇔
(− cosφL̃Φ + sinφL̂Φ′

− sinφL̃Φ− cosφL̂Φ′

)
/∈ L∞,

or using the Euclidean norm of the vector above

∇V /∈ L∞ ⇔ L̃2Φ2 + L̂2 (Φ′)
2
/∈ L∞.
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Now, since L and hence L̃, as well as L̂, are continuous away from the origin, the above condition is

equivalent to L̃2(0+)Φ2+L̂2(0+)(Φ′)2 /∈ L∞, with L̃(0+) = limr→0 L̃(r). As Φ ∈ C2([0, 2π]) and non

trivial, either |L̃(0+)| or |L̂(0+)| has to be equal to infinity, which is the same as L̃2(0+)+ L̂2(0+) =

∞, and we end up with

V /∈W 1,∞ ⇔ L̃2 + L̂2 /∈ L∞. (10)

Next, we analyse the asymptotic behaviour of the involved slowly varying functions L, L̃, L̂: Since L

is slowly varying, we conclude by [3], formula (1.5.8) that L̃, defined by L̃(r) =
∫ r0
r

L(s)
s ds, is also

slowly varying and satisfies

lim
r→0

∣∣∣∣∣
L̃(r)

L(r)

∣∣∣∣∣ =∞. (11)

Note that the result is formulated there for the limit r →∞, but a simple inversion of the independent

variable reveals, that it holds for r → 0 too.

Moreover, Karamatas Theorem gives that L̂, defined by L̂(r) = 1
r

∫ r
0
L̃(s) ds, fulfills

lim
r→0

L̂(r)

L̃(r)
= 1. (12)

We rearrange now Vxx from (8) to get

Vxx(r, φ) =
L̂(r)

r

(
− sin2 φΦ′′ − sin 2φΦ′

)
+
L̂(r)

r

(
sin 2φΦ′ − sin2 φΦ

)

− L̂(r)

r

(
sin 2φΦ′ − sin2 φΦ

)
+
L̃(r)

r

(
sin 2φΦ′ − sin2 φΦ

)
+ o(

L̂(r)

r
)

=
L̂(r)

r

(
− sin2 φ(Φ′′ + Φ)

)
+ o(

L̂(r)

r
),

where we have used (10)-(12). Hence, necessary for
∫
Br0

V 2
xx dx dy <∞ is, Φ′′(φ) + Φ(φ) = 0, or

Φ(φ) = A cosφ+B sinφ, (13)

for some real constants A and B. This implies

Vxx(r, φ) =
L(r)

r

(
cos2 φ Φ

)
+
L̂(r)− L̃(r)

r

(
− sin2 φ Φ′′ − sin 2φ Φ′

)
. (14)

Our next step is, to determine the asymptotic behaviour of L̃(r)− L̂(r).

Integration by parts yields

L̂(r) =
1

r

∫ r

0

L̃(s) ds =
1

r

(
L̃(r)r −

∫ r

0

L̃′(s)s ds

)
= L̃(r)− 1

r

∫ r

0

L̃′(s)s ds.

This provides

L̃(r)− L̂(r) =
1

r

∫ r

0

L̃′(s)s ds =
1

r

∫ r

0

s

(
−L(s)

s

)
ds = −1

r

∫ r

0

L(s) ds ∼ −L(r),

where the last asymptotic relation holds for r → 0, and is true by Karamatas Theorem. As the

φ-dependent coefficient functions of L(r)
r , respectively L̂(r)−L̃(r)

r are obviously linear independent, we

get as necessary and sufficient condition for
∫
Br0

V 2
xx dx dy <∞ the validity of (13) and

∫ r0

0

L(r)2

r
dr <∞. (15)

Because of (12), (10) is equivalent to |L̃(0+)| =∞, which by definition of L̃ is equivalent to
∣∣∣∣
∫ r0

0

L(r)

r
dr

∣∣∣∣ =∞. (16)
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(13),(15) and (16) prove the Theorem in Case I, since the argument for Vyy and 2Vxy works out in

an identical way.

Case II: α ∈ (1, 2), that is f ′′(r) = L(r)
rα , for some slowly varying function L.

Karamatas theorem gives

f ′(r)
r
∼ C1(α)

rα
L(r),

f(r)

r2
∼ C2(α)

rα
L(r),

for r → 0, with known constants Ci, depending on α. Using the expressions for the second order

derivatives above, gives, after some elementary calculations,

∆V ∼ L(r)

rα

{
α− 2

α− 1
Φ +

1

(α− 1)(α− 2)
Φ′′
}
.

If we want the Laplacean of V to be square integrable, the curly bracket has to be identically zero,

which gives

Φ′′ + (2− α)2Φ = 0, (17)

or

Φ(φ) = A cos (2− α)φ+B sin (2− α)φ, (18)

for some real constants A and B.

For 2Vxy we get analogously

2Vxy ∼
L(r)

rα

{
α

α− 1
Φ sin 2φ +

2

(2− α)
Φ′ cos 2φ +

1

(α− 1)(2− α)
Φ′′ sin 2φ

}
.

Again, the curly bracket has to vanish identically, and one shows, using (17), that this is equivalent

to (2− α)Φ + cot 2φΦ′ = 0. Solving this ODE, gives

Φ(φ) = C(cos 2φ)(2−α)/2,

with some constant C, obviously contradicting (18). Hence, Case II is impossible.

Case III: α = 2, that is f ′′(r) = L(r)
r2 , for some slowly varying function L.

We have the following expression for the Laplace operator ∆V = f ′′(r)Φ(φ)+ f ′(r)
r Φ(φ)+ f(r)

r2 Φ′′(φ).

As f ′′(r) = L(r)
r2 , we have by Karamatas theorem f ′(r) = − L̄(r)

r , with L̄(r) ∼ L(r), for r →
0. Moreover, f(r0) − f(r) = −

∫ r0
r

L̄(s)
s ds holds. Hence, we can conclude, as for (11), that

limr→0 |f(r)/L̄(r)| =∞ holds. Finally, we find

lim
r→0

∣∣∣∣
f(r)/r2

f ′(r)/r

∣∣∣∣ = lim
r→0

∣∣∣∣
f(r)

rf ′(r)

∣∣∣∣ = lim
r→0

∣∣∣∣
f(r)

L̄(r)

∣∣∣∣ =∞,

as well as

lim
r→0

∣∣∣∣
f ′(r)/r
f ′′(r)

∣∣∣∣ = lim
r→0

∣∣∣∣
L̄(r)/r2

L(r)/r2

∣∣∣∣ = 1.

The last two relations imply

∆V ∼ f

r2
Φ′′,

which gives easily that ∆V is not square integrable. Therefore, Case III is impossible too.

Case IV: α > 2, that is f ′′(r) = L(r)
rα , for some slowly varying function L.

Here we have

|∇V |2 = (f ′)2Φ2 +
f2

r2
(Φ′)2 > (f ′)2Φ2,

which shows V /∈W 1,2, hence V /∈W 2,2. Case IV is not possible too.

Case V: α < 1, that is f ′′(r) = L(r)
rα , for some slowly varying function L.
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This gives immediately that ∇V ∈ L∞(Br0) holds. Summing up, the only interesting case is case I,

which we have handled above.

Up to now we have proved that the functions in K are exactly those, fulfilling the proper inte-

grability conditions. Finally, it remains to show that the classical derivatives, which exist away from

the origin, are the correct distributional derivatives (see [1], Definition 3.2b). This means, that we

have to show, see for example [8], 6.13 (2),

∫

Br0

Vxxρ dx dy = (−1)2

∫

Br0

V ρxx dx dy, (19)

for all ρ ∈ C∞0 (Br0), the other second derivatives working out analogously. Hence, we have to show

lim
ε→0+

∫

B(r0,ε)

Vxxρ dx dy =

∫

Br0

V ρxx dx dy,

where B(r0,ε) := Br0 \Bε holds. We use now the divergence theorem, see for example [5], chapter 0,

equation (1.1), ∫

Ω

div ~F =

∫

∂Ω

~F ~n dS,

with Ω := B(r0,ε),
~F := (ρ Vx, 0) and ~n denoting the exterior normal unit vector to the boundary

∂Ω. This gives

lim
ε→0+

∫

B(r0,ε)

Vxxρ dx dy = − lim
ε→0+

∫

B(r0,ε)

Vxρx dx dy + lim
ε→0

∫

∂Ω

ρ Vx n1 dS,

where n1 denotes the first component of the vector ~n. Using on the one hand side the explicit form

of Vx, given in (9), and on the other hand side that ρ ∈ C∞0 (Br0) holds, shows that the last limit

vanishes. Indeed,

∣∣∣∣
∫

∂Ω

ρVxn1 dS

∣∣∣∣ ≤
∫

∂Br0

|ρVxn1| dS +

∫

∂Bε

|ρVxn1| dS =

∫

∂Bε

|ρVxn1| dS

≤ ||ρ||L∞
∫

∂Bε

(
D1 +D2|L̃|+D3|L̂|

)
dS

= ||ρ||L∞
(
D1 +D2| ˜L(ε)|+D3| ˆL(ε)|

)
λ(ε),

where the Di depend on the constant C1 of (9) and the C1-norm of Φ, and λ denotes the surface

measure of ∂Bε. As λ(ε) = 2επ, and L̃(ε), respectively L̂(ε), are slowly varying, which means that

they grow slower than any power, the last expression tends to zero for ε→ 0+.

This provides

lim
ε→0+

∫

B(r0,ε)

Vxxρ dx dy = − lim
ε→0+

∫

B(r0,ε)

Vxρx dx dy.

Using the divergence theorem once again, shows

lim
ε→0+

∫

B(r0,ε)

Vxxρ dx dy = lim
ε→0+

∫

B(r0,ε)

V ρxx dx dy =

∫

Br0

V ρxx dx dy,

concluding our proof. tu
We construct now an example of a function in W 2,2(Br0) \W 1,∞(Br0).

Example 3.1 We set in Theorem 3.1, B = 0, A = 1, L(r) = 1/(− ln r) and r0 = 1/2, that is

f ′′(r) = 1
r(− ln r) . Integrating twice and using f(0) = 0, provides

f(r) = Dr + r ln(− ln r) + Ei1(− ln r),

9



Figure 1: a spherical cone in 3 dimensions with central vector (1, 0, 0)

for some constant D, and Ei1 denoting the exponential integral, defined by Ei1(z) :=
∫∞

1
e−kz

k dk,

see, for example, [2]. Hence,

V (r, φ) = cosφ (Dr + r ln(− ln r) + Ei1(− ln r)) .

4 The n− dimensional case

In this section we show an analogue to Proposition 3.1 in n dimensions, that is, we claim, using

H := {V (x1, x2, ..., xn)|V (x1, x2, ..., xn) = f(r) ∈ C2((0, r0])},

Theorem 4.1 For (m− 1)p = n, we have

Wm,p(Br0) ∩H ⊂W 1,∞(Br0) ∩H.

Proof.

Case 1: m = 2, p = n. We start the proof in this case with the following

Remark 4.1 For a function V ∈ W 2,p(Br0), one has ∇V ∈ W 1,p(Br0). Hence, if V is radial-

symmetric, one has f ′(r)xir ∈W 1,p(Br0) for all i = 1, 2, ...n, hence f ′(r) ∈W 1,p([l1, l2]), or f ′(r)p ∈
W 1,1([l1, l2]) for arbitrary 0 < l1 < l2 ≤ r0.

We can now apply [10], Theorem 2.1.4, to get an absolutely continuous version of f ′(r) on [l1, l2],

which we shall use in the sequel.
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Let V (x1, x2, ..., xn) ∈W 2,n(Br0) ∩H and we continue with the calculation of

Vx1x1
= f ′′(r)

x2
1

r2
+
f ′(r)
r

r2

r2
=: f ′′(r) cos2 φ1 +

f ′(r)
r

sin2 φ1,

where we have used r2 := x2
2 + ...+ x2

n.

Consider now (n + 1) disjunct, congruent, truncated n−dimensional spherical cones Si, i =

1, 2, ..., n + 1. By a truncated spherical cone we mean the difference of two spherical cones, with

identical central vector and radius l2, resp. l1, with 0 < l1 < l2 ≤ r0. Moreover, we denote the first

component of the unit central vectors by 0 ≤ an+1 < an < ... < a1 ≤ 1. Finally, we denote the

surface measure of the spherical part of our spherical cones with radius equal to one, by δn−1, where

δ is small. More precisely: Let Ŝi be the spherical cone with radius equal to one, corresponding to

Si. δ is a small quantity, chosen in a way such that the surface measure of the spherical part of Ŝi,

that is Ŝi ∩B1 =: Fi, is equal to δn−1. The reader finds a picture of a spherical cone in 3 dimensions

with central vector (1, 0, 0) in Figure 1 above (a truncated spherical cone being just the difference of

2 such objects with identical central vector). Moreover, we provide in Figure 2 below a plot of the

set F1, for the same central vector. Note that we have used [6] to generate the figures. Let C > 0

be some positive constant. Then we calculate, using the well known volume element in spherical

coordinates,

C >

∫

Si

|Vx1x1
|n dx1 · · · dxn ≥

∫

Si

V nx1x1
dx1 · · · dxn =

∫ l2

l1

rn−1 dr

∫

ρi

sinn−2 φ1 sinn−3 φ2 · · sinφn−2

(
f ′′(r) cos2 φ1 +

f ′(r)
r

sin2 φ1

)n
dφ1 · ·dφn−1 > −C,

where φn−1 ∈ [0, 2π], and φi ∈ [0, π], i = 1, ..., n − 2 holds, and ρi denotes the area, where the

angles vary to produce the sets Fi, defined above. We give a description of the set ρ1 in spherical

coordinates in 3 dimensions in the remark after the proof, assuming that the central vector is given

by (1, 0, 0) as above.

Now, the last but one term in the previous chain of inequalities, can be written as

δn−1
n∑

k=0

∫ l2

l1

dr rn−1

(
n

k

)
f ′′(r)kcki

f ′(r)n−k

rn−k
sn−ki =: λi(δ). (20)

Indeed, we have

∫ l2

l1

rn−1 dr

∫

ρi

sinn−2 φ1 sinn−3 φ2 · · sinφn−2

(
f ′′(r) cos2 φ1 +

f ′(r)
r

sin2 φ1

)n
dφ1 · ·dφn−1 =

n∑

k=0

∫ l2

l1

rn−1 dr

∫

ρi

sinn−2 φ1 · · sinφn−2

(
n

k

)
f ′′(r)k cos2k φ1

f ′(r)n−k

rn−k
sin2(n−k) φ1 dφ1 · ·dφn−1 =

n∑

k=0

∫ l2

l1

rn−1

(
n

k

)
f ′′(r)k

f ′(r)n−k

rn−k
dr

∫

ρi

sinn−2 φ1 · · sinφn−2 cos2k φ1 sin2(n−k) φ1 dφ1 · ·dφn−1 =

n∑

k=0

∫ l2

l1

rn−1

(
n

k

)
f ′′(r)k

f ′(r)n−k

rn−k
cki s

n−k
i dr

∫

ρi

sinn−2 φ1 · · sinφn−2 dφ1 · ·dφn−1 =

n∑

k=0

∫ l2

l1

rn−1

(
n

k

)
f ′′(r)k

f ′(r)n−k

rn−k
cki s

n−k
i dr δn−1,

where we have used in the last but one equality the mean value theorem. Since the cones become

narrower and narrower with decreasing δ, ci converges for δ → 0 to a2
i =: bi ∈ [0, 1], which was

defined above. Analogously, si → 1− a2
i = 1− bi holds, for δ → 0.

Moreover, we have

|λi(δ)| ≤ C,
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uniformly in δ and the li. Now, (20) can be written as

n∑

k=0

(
n

k

)
cki s

n−k
i γk =

λi(δ)

δn−1
, i = 1, ..., n+ 1, (21)

with γk =
∫ l2
l1
rk−1f ′′(r)kf ′(r)n−k dr. So this is a linear system for the γk, with a coefficient matrix,

which converges for δ → 0 to



b01(1− b1)n
(
n
0

)
b11(1− b1)n−1

(
n
1

)
... bn1 (1− b1)0

(
n
n

)

b02(1− b2)n
(
n
0

)
b12(1− b2)n−1

(
n
1

)
... bn2 (1− b2)0

(
n
n

)

... ... ... ...

b0n+1(1− bn+1)n
(
n
0

)
b1n+1(1− bn+1)n−1

(
n
1

)
... bnn+1(1− bn+1)0

(
n
n

)


 .

Elementary linear algebra shows that the determinant of this matrix is given by

Dn

∣∣∣∣∣∣∣∣∣

1 b1 ... bn1
1 b2 ... bn2
... ... ... ...

1 bn+1 ... bnn+1

∣∣∣∣∣∣∣∣∣
,

with Dn :=
(
n
0

)(
n
1

)
···
(
n
n

)
. Now, the last determinant is the Van der Monde determinant, which is well

known. Summarizing, we get as value for the determinant of our coefficient matrixDnΠ1≤i<j≤n+1(bj−
bi) 6= 0.

Hence, for δ sufficiently small, say equal to δ0, the determinant is still different from zero. So we

can solve our system and get a finite solution for our γk, in particular we get, uniformly in the li,

|γ1| ≤ C, for some generic positive constant C(depending on δ0), that is
∣∣∣∣∣

∫ l2

l1

f ′′(r)f ′(r)n−1 dr

∣∣∣∣∣ < C,

uniformly in the li. By Remark 4.1, f ′ is absolutely continuous, hence, we get

|(f ′)n(l2)− (f ′)n(l2)| < C,

for arbitrary li. We conclude ∇V ∈ L∞(Br0), hence V ∈W 1,∞(Br0), finishing our proof for case 1.

Case 2 - the general case: (m− 1)p = n,m > 2. We apply [1], Theorem 4.12, Case C, (4): This

yields, denoting the values there by jA, and so on, and setting jA = m− 1,mA = 1, pA = p,

Wm,p(Br0) ⊂Wm−1,p∗= np
n−p (Br0).

One easily calculates that (m− 2)p∗ = n holds, such that the new indices (m− 1, p∗) also satisfy the

defining relation for the critical case. By induction one gets

Wm,p(Br0) ⊂W 2,n(Br0).

This finally shows

Wm,p(Br0) ∩H ⊂W 2,n(Br0) ∩H ⊂W 1,∞(Br0) ∩H,
where the latter inclusion holds by Case 1, concluding our proof. tu

Remark 4.2 As announced above, we provide here a description of the set ρ1 in 3 dimensions for

the central vector (1, 0, 0) in polar coordinates, which are defined as

x1 = r cosφ1,

x2 = r sinφ1 cosφ2,

x3 = r sinφ1 sinφ2,
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Figure 2: a plot of the set F1 (white color), for the central vector (1, 0, 0).

where φ1 ∈ [0, π] and φ2 ∈ [0, 2π] hold. The set ρ1 is defined as ρ1 := {(φ1, φ2)|φ1 ∈ [0, ν], φ2 ∈
[0, 2π]}, for a small quantity ν.

Finally, the connection between ν, defined here, and δ, defined in the proof above, can easily be

calculated, using the equation ∫ ν

0

∫ 2π

0

sinφ1 dφ1dφ2 = δ2,

providing δ =
√

2π(1− cos ν) ∼ √πν, where the last asymptotics holds for ν → 0+.
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