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LEFT-INVARIANT HERMITIAN CONNECTIONS ON LIE
GROUPS WITH ALMOST HERMITIAN STRUCTURES
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Abstract. Left-invariant Hermitian and Gauduchon connections
are studied on an arbitrary Lie group G equipped with an arbitrary left-

invariant almost Hermitian structure (〈·, ·〉, J). The space of left-invariant

Hermitian connections is shown to be in one-to-one correspondence with
the space ∧(1,1)g∗ ⊗ g of left-invariant 2-forms of type (1,1) (with respect

to J) with values in g := Lie(G). Explicit formulas are obtained for the

torsion components of every Hermitian and Gauduchon connection with
respect to a convenient choice of left-invariant frame on G. The curvature

of Gauduchon connections is studied for the special case G = H×A, where
H is an arbitrary n-dimensional Lie group, A is an arbitrary n-dimensional

abelian Lie group, and the almost complex structure is totally real with

respect to h := Lie(H). When H is compact, it is shown that H × A
admits a left-invariant (strictly) almost Hermitian structure (〈·, ·〉, J) such

that the Gauduchon connection corresponding to the Strominger (or Bis-

mut) connection in the integrable case is precisely the trivial left-invariant
connection and, in addition, has totally skew-symmetric torsion. The al-

most Hermitian structure (〈·, ·〉, J) on H×A is shown to satisfy the strong

Kähler with torsion condition. Furthermore, the affine line of Gauduchon
connections on H×A with the aforementioned almost Hermitian structure

is also shown to contain a (nontrivial) flat connection.

1. Introduction

Let (M, g, J) be an almost Hermitian manifold. A Hermitian connec-
tion on (M, g, J) is a connection ∇ on M satisfying ∇g = 0 and ∇J = 0.
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The space of Hermitian connections on (M, g, J) is large; it is in one-to-one
correspondence with the space Ω(1,1)(M ;TM) (the space of real 2-forms of
type (1,1) with respect to J with values in TM). This served as motivation
for Gauduchon to introduce a distinguished class of Hermitian connections in
[12]. This distinguished class of Hermitian connections (now called Gauduchon
connections) is parameterized by t ∈ R and forms an affine line of Hermitian
connections. When J is integrable, this affine line of Hermitian connections
contains both the Chern connection [5] and the Strominger (or Bismut) con-
nection [15, 4]. As metric compatible connections, both the Chern and Stro-
minger/Bismut connections are uniquely defined by their torsion tensors. The
Chern connection can be defined as the Hermitian connection whose torsion
T ∈ Ω2(M ;TM) has vanishing (1,1)-part: T (1,1) = 0; the Strominger/Bismut
connection is characterized by the condition that its torsion T is totally skew-
symmetric, that is, g(T (X,Y ), Z) is skew-symmetric in X, Y , and Z. It is
interesting to note that the torsion condition T (1,1) = 0 can always be sat-
isfied (regardless of whether J is integrable or not) whereas the existence of
a Hermitian connection with totally skew-symmetric torsion does not hold in
general for the non-integrable case (see Appendix A for details). Historically,
the Strominger/Bismut connection was introduced first by Strominger in [15]
in the context of string theory and later, independently, by Bismut in [4] for
purely geometric reasons.

It appears that Hermitian connections and, in particular, the smaller
class of Gauduchon connections, have been studied primarily for Hermitian
manifolds, that is, in the integrable case (see e.g. [18, 16, 14, 3] and the ref-
erences therein). Motivated by this fact, the current paper studies Hermitian
and Gauduchon connections on (strictly) almost Hermitian manifolds. As Lie
groups are considerably simpler than general smooth manifolds (since they are
inherently algebraic objects by nature), Lie groups serve as an ideal setting
for exploring and testing new ideas in differential geometry. For this reason,
we focus our study of Hermitian and Gauduchon connections on Lie groups
equipped with left-invariant almost Hermitian structures.

For a Lie group G equipped with a left-invariant almost Hermitian struc-
ture (〈·, ·〉, J), the space of left-invariant Hermitian connections is shown to
be in one-to-one correspondence with the space ∧(1,1)g∗ ⊗ g of left-invariant
2-forms of type (1,1) (with respect to J) with values in g := Lie(G) (see Corol-
lary 3.14). We obtain explicit formulas for the torsion components of every
Hermitian and Gauduchon connection with respect to a convenient choice of
left-invariant frame on G (which we call a standard frame). The curvature of
a Gauduchon connection is studied for the special case G = H × A, where
H is an arbitrary n-dimensional Lie group, A is an arbitrary n-dimensional
abelian Lie group, and the almost complex structure J satisfies Jh = a (where
h := Lie(H) and a := Lie(A)). Following the terminology of [6, 7], J is said to
be (almost) totally real with respect to h. When H is compact, it is shown that
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H×A can be equipped with a left-invariant (strictly) almost Hermitian struc-
ture such that the Gauduchon connection corresponding to the Strominger (or
Bismut) connection in the integrable case is precisely the trivial left-invariant
connection and, in addition, has totally skew-symmetric torsion. The almost
Hermitian structure (〈·, ·〉, J) on H ×A is shown to satisfy the strong Kähler
with torsion condition (cf [9]). Furthermore, we show that the affine line of
Gauduchon connections on H ×A with the aforementioned almost Hermitian
structure also contains a (nontrivial) flat connection.

The rest of the paper is organized as follows. In Section 2, we give a
self-contained review of Hermitian connections where the general formula for
the torsion of a Hermitian connection is derived. In addition, notation and
conventions are established which will be used in the remainder of the pa-
per. The free parameter in the torsion formula is shown to be an element
α ∈ Ω(1,1)(M ;TM) which, in turn, establishes a one-to-one correspondence
between the space of Hermitian connections and the space Ω(1,1)(M ;TM).
We note that the formula obtained in Section 2 differs in appearance from
that obtained originally by Gauduchon in [12], but is shown to be equiva-
lent. From the general torsion formula, we obtain the torsion formula for
the Gauduchon connections by an appropriate choice of αt ∈ Ω(1,1)(M ;TM)
which is parameterized by t ∈ R. In Section 3, we turn our attention to
left-invariant Hermitian and Gauduchon connections on arbitrary Lie groups
equipped with left-invariant almost Hermitian structures. Explicit formulas
are obtained for the components of the torsion tensors relative to a so-called
“standard frame”. (As some of the formulas are on the lengthy side, we also
verified the formulas numerically using the program Octave to ensure that the
formulas worked as expected.) Lastly, in Section 4, we study the curvature of
Lie groups of the form H × A equipped with left-invariant almost Hermitian
structures where the almost complex structure is totally real with respect to
h.

2. Preliminaries

In this section, we review the relevant background and establish notation and
conventions that we will use for the rest of the paper. Let (M, g, J, ω) be an
almost Hermitian manifold where

• g is the Hermitian metric,
• J is the almost complex structure, and
• ω is the fundamental 2-form defined by ω(·, ·) := g(J ·, ·).

For a vector field X (real or complex) on M , we let X = X+ +X− denote its
decomposition into its (1,0) and (0,1) components. Explicitly,

(2.1) X+ :=
1

2
(X − iJX), X− :=

1

2
(X + iJX),
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and one easily verifies that JX+ = iX+ and JX− = −iX−. We adopt the
following convention for the Nijenhuis tensor:

(2.2) N(X,Y ) := J [JX, Y ] + J [X, JY ] + [X,Y ]− [JX, JY ].

2.1. TM -valued forms of type (1,1). Let Ω(1,1)(M ;TM) denote the space of
real (1,1)-forms with values in TM . For a 3-form ψ ∈ Ω3(M), we follow [12]
and decompose ψ as

ψ = ψ+ + ψ−,

where ψ+ denotes its (2, 1)+(1, 2)-part and ψ− denotes its (3, 0)+(0, 3)-part.
When J is integrable, we have the following result:

Proposition 2.1. If J is integrable, then (dω)+ = dω and

(2.3) dω(JX, JY, JZ) = dω(JX, Y, Z) + dω(X, JY, Z) + dω(X,Y, JZ).

Proof. Since J is integrable, the Lie bracket of two (1,0)-vector fields is
again a (1,0)-vector field and since ω is (1,1), we have

ω(X+, Y +) = ω([X+, Y +], Z+) = 0.

The invariant formula for the exterior derivative then implies dω(X+, Y +, Z+) =
0. The same argument also implies that dω(X−, Y −, Z−) = 0. Of course, the
latter can also be seen by conjugating dω(X+, Y +, Z+) = 0 (and using the
fact that ω is real). This proves that (dω)+ = dω when J is integrable. Since
dω has no (3,0) or (0,3) part and (2.3) is totally skew-symmetric on both sides
of the equation, to verify (2.3) it suffices to check that equality holds when
X = X+, Y = Y +, and Z = Z−:

dω(JX+, Y +, Z−) + dω(X+, JY +, Z−) + dω(X+, Y +, JZ−)

= idω(X+, Y +, Z−) + idω(X+, Y +, Z−)− idω(X+, Y +, Z−)

= idω(X+, Y +, Z−)

= (i)(i)(−i)dω(X+, Y +, Z−)

= dω(JX+, JY +, JZ−).

Hence, equality holds whenever the arguments consists of two (1,0)-vectors
and one (0,1)-vector. Conjugation now implies that (2.3) also holds whenever
the arguments consists of two (0,1)-vectors and one (1,0)-vector.

More generally, we have the following:

Proposition 2.2. For η ∈ Ω3(M),

η+(X,Y, Z) =
1

4
[3η(X,Y, Z) + η(JX, JY, Z) + η(JX, Y, JZ) + η(X, JY, JZ)] .

(2.4)
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Proof. This is a straightforward but somewhat tedious calculation. Ex-
panding

η+(X,Y, Z) = η(X+, Y +, Z−) + η(X+, Y −, Z+) + η(X−, Y +, Z+)

+ η(X−, Y −, Z+) + η(X−, Y +, Z−) + η(X+, Y −, Z−)

and using the fact that X± = 1
2 (X ∓ iJX) gives (2.4).

Let Ω3+(M) be the space of real valued 3-forms of type (2, 1) + (1, 2). The
next result shows that every element of Ω3+(M) is induced by an element of
Ω(1,1)(M ;TM).

Proposition 2.3. Let F : Ω(1,1)(M ;TM) → Ω3+(M), α 7→ F (α) be the
linear map defined by

F (α)(X,Y, Z) := g(α(X,Y ), Z) + g(α(Y, Z), X) + g(α(Z,X), Y ).

Then F is surjective.

Proof. Since α is skew-symmetric and (1,1), it follows immediately that
the F (α) is totally skew-symmetric and of type (2, 1) + (1, 2). To see that the
map is surjective, let η ∈ Ω3+(M). Define αη ∈ Ω(1,1)(M ;TM) via

g(αη(X,Y ), Z) =
1

4
[η(X,Y, Z) + η(JX, JY, Z)].

From the definition of αη, we have αη(JX, JY ) = α(X,Y ) which shows that
αη is (1,1). Using Proposition 2.2, one has F (αη) = η+ = η.

We define Ω
(1,1)
s (M ;TM) := ker F . Extend the metric g to the vector bundle

of real (1,1)-forms with values in TM and define Ω
(1,1)
a (M ;TM) to be the

orthogonal complement of Ω
(1,1)
s (M ;TM) with respect to g:

Ω(1,1)(M ;TM) = Ω(1,1)
s (M ;TM)⊕ Ω(1,1)

a (M ;TM).

Corollary 2.4. The linear map F : Ω(1,1)(M ;TM) → Ω3+(M) re-

stricted to Ω
(1,1)
a (M ;TM) is an isomorphism.

For convenience, we record the following fact:

Proposition 2.5. Let α ∈ Ω(1,1)(M ;TM). Then α ∈ Ω
(1,1)
s (M ;TM) if

and only if

(2.5) ω(α(X,Y ), Z) + ω(α(Y,Z), X) + ω(α(Z,X), Y ) = 0.

Proof. Using −g(·, J ·) = ω(·, ·) and the fact that α(J ·, J ·) = α(·, ·), we
have

ω(α(X,Y ), Z) + ω(α(Y,Z), X) + ω(α(Z,X), Y )

= −g(α(JX, JY ), JZ)− g(α(JY, JZ), JX)− g(α(JZ, JX), JY )

which implies the proposition.
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2.2. Metric compatibility and torsion. Recall that for a linear connection ∇
on M , the torsion of ∇ is defined by

(2.6) T∇(X,Y ) := ∇XY −∇YX − [X,Y ].

We recall the following well known fact:

Proposition 2.6. For any Riemannian manifold (M, g) and any TM -
valued 2-form T ∈ Ω2(M ;TM), there exists a unique connection ∇ satisfying
∇g = 0 and T∇ = T . Explicitly, ∇ is defined by

(2.7)

2g(∇XY, Z) =Xg(Y,Z)− Zg(X,Y ) + Y g(Z,X)

+ g([X,Y ], Z)− g([Y, Z], X)− g([X,Z], Y )

+ g(T (X,Y ), Z)− g(T (Y, Z), X)− g(T (X,Z), Y ).

2.3. Hermitian connections. In this section, we give a self-contained review
of Hermitian connections. For a more detailed account, we refer the reader to
[12].

Definition 2.7. A connection ∇ on an almost Hermitian manifold (M, g, J, ω)
is Hermitian if ∇g = 0 and ∇J = 0.

For convenience, we make the following definition:

Definition 2.8. For a TM -valued 2-form θ ∈ Ω2(M ;TM), θJ ∈ Ω2(M ;TM)
is defined as

θJ(X,Y ) := Jθ(JX, Y ) + Jθ(X, JY ) + θ(X,Y )− θ(JX, JY ).

For convenience, we record some identities related to θJ . The identities follow
by straightforward calculation.

Lemma 2.9. Let θ ∈ Ω2(M ;TM). Then

1. (θJ)J = 4θJ ,
2. θJ(X+, Y −) = 0,
3. 1

2θJ(X+, Y +) = θ(X+, Y +) + iJθ(X+, Y +),
4. JθJ(X+, Y +) = −iθJ(X+, Y +).

Lemma 2.10. If ∇ is a Hermitian connection on (M, g, J, ω), then its
torsion T satisfies

(1) TJ(X,Y ) +N(X,Y ) = 0,
(2) dω(X,Y, Z) = ω(T (X,Y ), Z) + ω(T (Y,Z), X) + ω(T (Z,X), Y ).

Proof. It follows immediately from Definition 2.7 that a connection ∇
is Hermitian if and only if ∇J = 0 and ∇ω = 0. For any vector fields X, Y ,
and Z, we have

(2.8) (∇Xω)(Y,Z) = X(ω(Y, Z))− ω(∇XY, Z)− ω(Y,∇XZ).
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Equation (2.8) together with the definition of T implies

dω(X,Y, Z) =Xω(Y,Z)− Y ω(X,Z) + Zω(X,Y )

− ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X)

=Xω(Y,Z)− Y ω(X,Z) + Zω(X,Y )

− ω(∇XY,Z) + ω(∇YX,Z) + ω(T (X,Y ), Z)

+ ω(∇XZ, Y )− ω(∇ZX,Y )− ω(T (X,Z), Y )

− ω(∇Y Z,X) + ω(∇ZY,X) + ω(T (Y, Z), X)

=(∇Xω)(Y,Z) + (∇Y ω)(Z,X) + (∇Zω)(X,Y )

+ ω(T (X,Y ), Z) + ω(T (Y, Z), X) + ω(T (Z,X), Y ).(2.9)

For any vector fields X, Y , and Z, we have ∇X(JY ) = (∇XJ)Y + J∇XY .
Since

T (X,Y ) + [X,Y ] =∇XY −∇YX,
T (JX, JY ) + [JX, JY ] =∇JX(JY )−∇JY (JX),

JT (JX, Y ) + J [JX, Y ] =J∇JXY − J∇Y (JX),

JT (X, JY ) + J [X, JY ] =J∇X(JY )− J∇JYX,

we have

TJ(X,Y ) +N(X,Y ) = J∇JXY − J∇Y (JX) + J∇X(JY )− J∇JYX
+∇XY −∇YX −∇JX(JY ) +∇JY (JX)

=−∇JX(JY ) + J∇JXY +∇JY (JX)− J∇JYX
+ J∇X(JY ) +∇XY − J∇Y (JX)−∇YX

=− (∇JXJ)Y + (∇JY J)X + J(∇XJ)Y − J(∇Y J)X.(2.10)

It follows immediately from (2.9) and (2.10) that if ∇ is Hermitian then its
torsion satisfies conditions (1) and (2) of Lemma 2.10.

Proposition 2.11. A connection ∇ on (M, g, J, ω) satisfying ∇g = 0 is
Hermitian if and only if its torsion T satisfies both conditions of Lemma 2.10.

Proof. From Lemma 2.10, it remains to show that conditions (1) and (2)
are sufficient. So suppose that ∇ is a g-compatible connection which satisfies
conditions (1) and (2) of Proposition 2.11.



8 D. PHAM AND F. YE

Using Proposition 2.6, the fact that ω is J-invariant, and g(·, ·) = ω(·, J ·),
we have

2g((∇XJ)Y,Z) = 2g(∇X(JY ), Z)− 2g(J∇XY,Z)

= 2g(∇X(JY ), Z) + 2g(∇XY, JZ)

= Xω(JY, JZ) + Zω(X,Y ) + (JY )ω(Z, JX)

+ ω([X, JY ], JZ)− ω([JY, Z], JX) + ω([X,Z], Y )

+ ω(T (X, JY ), JZ)− ω(T (JY, Z), JX) + ω(T (X,Z), Y )

−Xω(Y, Z)− (JZ)ω(X, JY ) + Y ω(JZ, JX)

− ω([X,Y ], Z)− ω([Y, JZ], JX)− ω([X, JZ], JY )

− ω(T (X,Y ), Z)− ω(T (Y, JZ), JX)− ω(T (X, JZ), JY )

= dω(X,Y, Z) + ω([Y,Z], X)− dω(X, JY, JZ)− ω([JY, JZ], X)

− ω([JY, Z], JX) + ω(T (X, JY ), JZ)− ω(T (JY, Z), JX) + ω(T (X,Z), Y )

− ω([Y, JZ], JX)− ω(T (X,Y ), Z)− ω(T (Y, JZ), JX)− ω(T (X, JZ), JY ).

The last line can be rewritten as

2g((∇XJ)Y,Z) = dω(X,Y, Z) + ω([Y,Z], X)− dω(X, JY, JZ)− ω([JY, JZ], X)

+ ω(J [JY, Z], X)− ω(JT (X, JY ), Z) + ω(JT (JY, Z), X) + ω(T (X,Z), Y )

+ ω(J [Y, JZ], X)− ω(T (X,Y ), Z) + ω(JT (Y, JZ), X) + ω(JT (X, JZ), Y )

= dω(X,Y, Z)− dω(X, JY, JZ) + ω(N(Y, Z), X) + ω(TJ(Y,Z), X)

− ω(T (Y,Z), X) + ω(T (JY, JZ), X) + ω(T (X, JY ), JZ) + ω(T (X,Z), Y )

− ω(T (X,Y ), Z)− ω(T (X, JZ), JY ).

Applying condition (1) of Proposition 2.11 yields

ω(N(Y,Z), X) + ω(TJ(Y,Z), X) = 0.

Applying condition (2) of Proposition 2.11 gives

dω(X,Y, Z)− ω(T (X,Y ), Z) + ω(T (X,Z), Y )− ω(T (Y,Z), X) = 0

and

−dω(X, JY, JZ)+ω(T (JY, JZ), X)+ω(T (X, JY ), JZ)−ω(T (X, JZ), JY ) = 0.

From this, it follows that 2g((∇XJ)Y, Z) = 0 which shows that ∇J = 0.
Hence, ∇ is Hermitian.

Remark 2.12. From Proposition 2.11, we recover the well known fact
that the Levi-Civita connection is Hermitian if and only if J is integrable
and ω is closed. In other words, the Levi-Civita connection associated to g is
Hermitian precisely when (M, g, J, ω) is Kähler.
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Lemma 2.13. A connection on (M, g, J, ω) satisfying ∇g = 0 is Hermitian
if and only if its torsion is of the form T = − 1

4N + θ where θ ∈ Ω2(M ;TM)
satisfies the following conditions:

(1) θ(X+, Y +) is (1,0) for all (1,0) vector fields X+, Y + and
(2) dω(X+, Y +, Z−)

= ω(θ(X+, Y +), Z−) +ω(θ(Y +, Z−), X+) +ω(θ(Z−, X+), Y +) for all
(1,0) vector fields X+, Y + and all (0,1) vector fields Z−.

Proof. By Proposition 2.11, a g-compatible connection is Hermitian if
and only if its torsion satisfies both conditions of Lemma 2.10. Let T ∈
Ω2(M ;TM) be any TM -valued 2-form and let θ := 1

4N + T . Then

θJ =

(
1

4
N + T

)

J

=
1

4
NJ + TJ =

1

4
(4N) + TJ = N + T.

Hence, T satisfies condition (1) of Lemma 2.10 if and only if θJ = 0. So any
T ∈ Ω2(M ;TM) which satisfies condition (1) of Lemma 2.10 is of the form
T = − 1

4N + θ where θ ∈ Ω2(M ;TM) satisfies θJ = 0. It follows from Lemma
2.9 that θJ = 0 is equivalent to the statement that θ(X+, Y +) is (1,0) for all
(1, 0)-vector fields X+, Y +.

Now suppose T ∈ Ω2(M ;TM) satisfies both conditions of Lemma 2.10.
By the above argument, T must take the form T = − 1

4N + θ for some θ ∈
Ω2(M ;TM) which satisfies condition (1) of Lemma 2.13. Expanding condition
(2) of Lemma 2.10 gives

dω(X,Y, Z) = ω(T (X,Y ), Z) + ω(T (Y,Z), X) + ω(T (Z,X), Y )

= −1

4
(ω(N(X,Y ), Z) + c.p) + (ω(θ(X,Y ), Z) + c.p)(2.11)

where “c.p” denotes cyclic permutation. Note thatN(X+, Y −) = 0, N(X+, Y +)
is (0,1), and (by conjugation) N(X−, Y −) is (1,0). Since ω is a (1,1)-form,
equation (2.11) reduces to the following when the arguments are X+, Y +, Z+:

(2.12) dω(X+, Y +, Z+) = −1

4

(
ω(N(X+, Y +), Z+) + c.p

)
.

Now, by expanding both sides of (2.12), one finds that (2.12) is actually
an identity. Hence, when the arguments are X+, Y +, Z+ (or X−, Y −, Z−),
equation (2.11) is always satisfied (provided θ satisfies condition (1) of Lemma
2.13).

When one takes skew-symmetry and conjugation into account (and as-
suming θ satisfies condition (1) of Lemma 2.13), it follows that (2.11) holds in
general if and only if it holds for X+, Y +, Z−. Substituting these arguments
into (2.11) and simplifying gives
(2.13)
dω(X+, Y +, Z−) = ω(θ(X+, Y +), Z−)+ω(θ(Y +, Z−), X+)+ω(θ(Z−, X+), Y +).
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From this, we see that condition (2) of Lemma 2.10 holds if and only if θ
satisfies (2.13) (as well as condition (1) of Lemma 2.13). This completes the
proof.

Corollary 2.14. A g-compatible connection on (M, g, J, ω) is Hermitian
if and only if its torsion is of the form T = − 1

4N+α+β where α is an arbitrary
real TM -valued 2-form of type (1,1) and β is a real TM valued 2-form of type
(2, 0) + (0, 2) which is uniquely defined by the following conditions:

(1) β(X+, Y +) is (1,0) for all (1,0)-vector fields X+, Y + and
(2) ω(β(X+, Y +), Z−)

= dω(X+, Y +, Z−)− ω(α(Y +, Z−), X+)− ω(α(Z−, X+), Y +).

Proof. From Lemma 2.13, a g-compatible connection is Hermitian if
and only if its torsion is of the form T = − 1

4N + θ where θ ∈ Ω2(M ;TM)
satisfies conditions (1) and (2) of Lemma 2.13. Decompose θ as a sum of its
(2,0), (1,1), and (0,2) parts:

θ = θ(2,0) + θ(1,1) + θ(0,2).

Since θ is real, we have θ(0,2) = θ(2,0) and θ(1,1) = θ(1,1). Let

α = θ(1,1), β = θ(2,0) + θ(0,2).

Then conditions (1) and (2) of Lemma 2.13 are precisely those of Corollary
2.14.

The next result expresses the torsion formula given by Corollary 2.14 in terms
of real vector fields.

Proposition 2.15. A g-compatible connection on (M, g, J, ω) is Hermit-
ian if and only if its torsion T is of the form

g(T (X,Y ), Z) = −1

4
g(N(X,Y ), Z)− 1

2
(dω)+(JX, JY, JZ) +

1

2
(dω)+(X,Y, JZ)

+
1

2
α+(X,Y, Z)− 1

2
α+(JX, JY, Z) + g(α(X,Y ), Z)

where α ∈ Ω(1,1)(M ;TM) is a real arbitrary TM -valued (1,1)-form and

α+(X,Y, Z) := g(α(X,Y ), Z) + cyclic.

Proof. Let T = − 1
4N+α+β as in Corollary 2.14. Expanding ω(β(X,Y ), Z)

gives

ω(β(X,Y ), Z) = ω(β(X+, Y +), Z−) + ω(β(X−, Y −), Z+)

= dω(X+, Y +, Z−)− ω(α(Y +, Z−), X+)− ω(α(Z−, X+), Y +)

+ dω(X−, Y −, Z+)− ω(α(Y −, Z+), X−)− ω(α(Z+, X−), Y −).

Let

η+(X,Y, Z) = η(X,Y, Z) := ω(α(X,Y ), Z) + ω(α(Y,Z), X) + ω(α(Z,X), Y ).
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Since ω(α(X+, Y +), Z) = ω(α(X−, Y −), Z) = 0, the above can be rewritten
as

ω(β(X,Y ), Z) = dω(X+, Y +, Z−) + dω(X−, Y −, Z+)

− η+(X+, Y +, Z−)− η+(X−, Y −, Z+).

Using the fact that X± = 1
2 (X ∓ iJX) gives

ω(β(X,Y ), Z)

=
1

4
[dω(X,Y, Z)− dω(JX, JY, Z) + dω(JX, Y, JZ) + dω(X, JY, JZ)]

− 1

4

[
η+(X,Y, Z)− η+(JX, JY, Z) + η+(JX, Y, JZ) + η+(X, JY, JZ)

]
.

Rewriting the left side as g(β(X,Y ), Z) gives

g(β(X,Y ), Z)

=
1

4
[dω(X,Y, JZ)− dω(JX, JY, JZ)− dω(JX, Y, Z)− dω(X,JY, Z)]

− 1

4

[
η+(X,Y, JZ)− η+(JX, JY, JZ)− η+(JX, Y, Z)− η+(X, JY, Z)

]
.

Using Proposition 2.2 and the fact that η = η+, the above can be rewritten
as

g(β(X,Y ), Z) = −1

2
(dω)+(JX, JY, JZ) +

1

2
(dω)+(X,Y, JZ)

+
1

2
η+(JX, JY, JZ)− 1

2
η+(X,Y, JZ).

Defining
α+(X,Y, Z) := g(α(X,Y ), Z) + cyclic

gives

g(β(X,Y ), Z) = −1

2
(dω)+(JX, JY, JZ) +

1

2
(dω)+(X,Y, JZ)

+
1

2
α+(X,Y, Z)− 1

2
α+(JX, JY, Z).

Substituting the above expression into

g(T (X,Y ), Z) = −1

4
g(N(X,Y ), Z) + g(β(X,Y ), Z) + g(α(X,Y ), Z)

gives the desired form.

Remark 2.16. The general torsion formula for Hermitian connections
given in [12] consists of two free quantities: a real TM -valued (1,1)-form

Bs ∈ Ω
(1,1)
s (M ;TM) and a real valued 3-form ψ+ of type (2,1)+(1,2) where

we recall that Bs satisfies the cyclic condition

g(Bs(X,Y ), Z) + cyclic = 0.



12 D. PHAM AND F. YE

From Corollary 2.4 the space of real valued 3-forms of type (2, 1)+(1, 2) is iso-

morphic to the space Ω
(1,1)
a (M ;TM). Since Ω(1,1)(M ;TM) = Ω

(1,1)
s (M ;TM)⊕

Ω
(1,1)
a (M ;TM), we see that the two free quantities in the formula of [12] is

equivalent to a TM -valued (1,1)-form as given by Proposition 2.15. Given

Bs ∈ Ω
(1,1)
s (M ;TM) and ψ+, we can recover Gauduchon’s exact formula by

defining α ∈ Ω(1,1)(M ;TM) in Proposition 2.15 by

g(α(X,Y ), Z) =
1

8

[
(dω)+(JX, JY, JZ) + (dω)+(X,Y, JZ)

]

+
3

8

[
ψ+(X,Y, Z) + ψ+(JX, JY, Z)

]
+ g(Bs(X,Y ), Z).

Corollary 2.17. There is a one-to-one correspondence between the space
of Hermitian connections on (M, g, J, ω) and Ω(1,1)(M ;TM).

Proof. For α ∈ Ω(1,1)(M ;TM), let Tα ∈ Ω2(M ;TM) be given by the

formula in Proposition 2.15. We show that Tα = Tα
′

implies α = α′. From
the formula in Proposition 2.15, we have

g(Tα(X+, Y −), Z)

= −1

4
g(N(X+, Y −), Z)− 1

2
(dω)+(X+, Y −, JZ) +

1

2
(dω)+(X+, Y −, JZ)

+
1

2
α+(X+, Y −, Z)− 1

2
α+(X+, Y −, Z) + g(α(X+, Y −), Z)

= g(α(X+, Y −), Z),

where we have made use of the fact that N(X+, Y −) = 0. Hence, Tα = Tα
′

implies g(α(X+, Y −), Z) = g(α′(X+, Y −), Z) which in turn implies α = α′

since α, α′ are (1,1) and g is nondegenerate. The corollary now follows from
the fact that the space of Hermitian connections on (M, g, J, ω) is in one-to-
one correspondence with the space {Tα | α ∈ Ω(1,1)(M ;TM)} which is in
one-to-one correspondence with the elements of Ω(1,1)(M ;TM) by the above
calculation.

2.4. Gauduchon connections. The Gauduchon connections is an affine line
of Hermitian connections which includes both the Chern [5] and Bismut (or
Strominger) connections [4, 15] when J is integrable.

We obtain the torsion formula for the Gauduchon connections from the
formula of Proposition 2.15 as follows. Let

η+(X,Y, Z) := (dω)+(JX, JY, JZ).

For λ ∈ R, define αλ ∈ Ω(1,1)(M ;TM) by

g(αλ(X,Y ), Z) = λη+(X,Y, Z) + λη+(JX, JY, Z)

= λ(dω)+(JX, JY, JZ) + λ(dω)+(X,Y, JZ).
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Let F : Ω(1,1)(M ;TM) → Ω3+(M) be the linear map of Proposition 2.3.
From the proof of Proposition 2.3, we have

F (αλ)(X,Y, Z) := g(αλ(X,Y ), Z) + cyclic

= 4λη+(X,Y, Z) = 4λ(dω)+(JX, JY, JZ).

Substituting αλ into Proposition 2.15 gives αλ+ := F (αλ) and

g(Tλ(X,Y ), Z)

= −1

4
g(N(X,Y ), Z)− 1

2
(dω)+(JX, JY, JZ) +

1

2
(dω)+(X,Y, JZ)

+ 2λ(dω)+(JX, JY, JZ)− 2λ(dω)+(X,Y, JZ)

+ λ(dω)+(JX, JY, JZ) + λ(dω)+(X,Y, JZ)

= −1

4
g(N(X,Y ), Z)−

(
2λ− 1

2

)
(dω)+(X,Y, JZ)

+

(
6λ− 1

2

)
(dω)+(JX, JY, JZ)

where the last equality is the family of Gauduchon connections parameterized
by λ ∈ R. For convenience, we can express the Gauduchon connections in a
more standard form by taking λ→ t/4 and defining θc, θb ∈ Ω2(M ;TM) by

g(θc(X,Y ), Z) =
1

2

[
(dω)+(X,Y, JZ)− (dω)+(JX, JY, JZ)

]
,(2.14)

g(θb(X,Y ), Z) = (dω)+(JX, JY, JZ).(2.15)

Then

g(T t(X,Y ), Z)(2.16)

= −1

4
g(N(X,Y ), Z) +

(
1− t

2

)
g(θc(X,Y ), Z) +

t

2
g(θb(X,Y ), Z).

Remark 2.18. When J is integrable, (2.16) reduces to
(2.17)

g(T t(X,Y ), Z) =

(
2− t

4

)
dω(X,Y, JZ) +

(
3t− 2

4

)
dω(JX, JY, JZ).

When t = 0, we have

g(T 0(X,Y ), Z) =
1

2
[dω(X,Y, JZ)− dω(JX, JY, JZ)]

which is the torsion formula for the Chern connection [5]. When t = 2, we
obtain the torsion formula for the Bismut or Strominger connection [4, 15]:

g(T 2(X,Y ), Z) = dω(JX, JY, JZ).

The Chern connection is the unique Hermitian connection on a Hermitian
manifold with the condition that the torsion has no (1,1)-part. For the general
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case of almost Hermitian manifolds, the condition T (1,1) = 0 corresponds
uniquely to the condition α = 0 in Proposition 2.15. The Bismut connection
is the unique Hermitian connection on a Hermitian manifold whose torsion
tensor g(T (X,Y ), Z) is totally skew-symmetric. When J is not integrable,
a Hermitian connection with totally skew-symmetric torsion is not always
possible. See Appendix A for details.

3. Left Invariant Hermitian Connections

In this section, we apply the results of Section 2 to almost Hermitian manifolds
of the form (G, g, J, ω), where G is a Lie group (with identity element denoted
as 1) and g, J , (and hence) ω are left-invariant. Hence, if X,Y are left-
invariant vector fields, g(X,Y ) is a constant and JX is left-invariant. We let
g := Lie(G) denote the Lie algebra of left-invariant vector fields on G.

We recall that a connection ∇ on G is left-invariant if ∇XY ∈ g for all
X,Y ∈ g. An immediate consequence of this definition is the following:

Corollary 3.1. Let ∇ be a left-invariant connection on G with torsion
T . Then T ∈ ∧2g∗⊗g where g∗ denotes the dual of g. (Hence, g∗ is the space
of left-invariant 1-forms on G.)

Proof. From the definition of T , we have

T (X,Y ) := ∇XY −∇YX − [X,Y ] ∈ g, ∀ X,Y ∈ g.

Remark 3.2. Note that the converse to Corollary 3.1 is not true. Indeed,
let h be any Riemannian metric on G which is not left-invariant and let Z ∈ g
be nonzero. Let F := h ⊗ Z and let ∇ be any left-invariant connection
on G with torsion T . By Corollary 3.1, we have T ∈ ∧2g∗ ⊗ g. From the
definition of F , we have F (X,Y ) = F (Y,X) for all vector fields X,Y on G.
Let ∇′ := ∇ + F and let T ′ denote the torsion of ∇′. Then ∇′ is not left-
invariant since for some X,Y ∈ g, one has F (X,Y ) = h(X,Y )Z /∈ g. At the
same time, the symmetry of F implies T ′ = T ∈ ∧2g∗ ⊗ g.

Proposition 3.3. Let ∇ be a g-compatible connection on (G, g, J, ω) with
torsion T . Then ∇ is left-invariant if and only if T ∈ ∧2g∗ ⊗ g.

Proof. This follows from Corollary 3.1 and Proposition 2.6.

For convenience, we make the following definition:

Definition 3.4. A standard frame on (G, g, J, ω) is an orthonormal frame
of left invariant vector fields

(e(1) | e(2)) = (e1, . . . , en | en+1, . . . , e2n)

such that Jei = en+i for i = 1, . . . , n.
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Remark 3.5. The existence of a standard frame follows from an induction
argument on dimG.

We recall that the Lie group of n × n complex matrices GL(n,C) can be
regarded as a subgroup of GL(2n,R) via the identification

A+ iB ∼
(
A −B
B A

)
.

Proposition 3.6. Let (e(1) | e(2)) be any standard frame on (G, g, J, ω)
and let 2n = dimG. Then the set of all standard frames is given by

{(e(1) | e(2))K | K ∈ U(n) := GL(n,C) ∩O(2n,R)}.

Proof. Express K ∈ GL(2n,R) as

K =

(
A C
B D

)
.

Then (e′(1) | e′(2)) := (e(1) | e(2))K expands as

e′j =
∑

i

(aijei + bijfi), e′n+j =
∑

i

(cijei + dijfi), j = 1, . . . , n.

(e′(1) | e′(2)) is then an orthonormal basis with respect to g if and only if

(3.18) ATA+BTB = CTC +DTD = 1n, ATC +BTD = 0

where 1n denotes the n × n identity matrix. Moreover, the condition Je′i =
e′n+i is simply the statement that the matrix representation of J with respect
to (e(1) | e(2)) and (e′(1) | e′(2)) are both

(
0 −1n
1n 0

)
.

Since K is the transition matrix between (e′(1) | e′(2)) and (e(1) | e(2)), it follows

that

(3.19)

(
A C
B D

)−1(
0 −1n
1n 0

)(
A C
B D

)
=

(
0 −1n
1n 0

)

which implies A = D and C = −B. Hence, K ∈ GL(n,C). This along with
(3.18) implies that KTK = 12n. This completes the proof.

Remark 3.7. A choice of standard frame uniquely determines the left-
invariant almost Hermitian structure on G. Moreover, any two standard
frames which are related by a unitary matrix define the same left-invariant
almost Hermitian structure on G.
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From this point forth, we fix a standard frame (e(1) | e(2)) on (G, g, J, ω). We
denote the structure constants of g as

[ei, ej ] =
∑

k

Ckijek.(3.20)

For notational convenience, we set 〈X,Y 〉 := g(X,Y ). Since a standard frame
is orthonormal, we have

Ckij = 〈[ei, ej ], ek〉.(3.21)

For T ∈ ∧2g∗ ⊗ g, we adopt the following notation for its components:

T kij := 〈T (ei, ej), ek〉.(3.22)

Lemma 3.8. Let ∇ be a left-invariant g-compatible connection on (G, g, J, ω)
with torsion T . Then

∇eiej =
∑

k

Γkijek(3.23)

where

(3.24) Γkij =
1

2

(
Ckij − Cijk − Cjik + T kij − T ijk − T jik

)
.

Proof. Using (2.7) and the left-invariance of 〈·, ·〉, we have

2Γkij = 2〈∇eiej , ek〉
= 〈[ei, ej ], ek〉 − 〈[ej , ek], ei〉 − 〈[ei, ek], ej〉
+ 〈T (ei, ej), ek〉 − 〈T (ej , ek), ei〉 − 〈T (ei, ek), ej〉
= Ckij − Cijk − Cjik + T kij − T ijk − T jik.

Lemma 3.9. The components N c
ab := 〈N(ea, eb), ec〉 of the Nijenhuis ten-

sor are given as follows: for 1 ≤ i, j, k ≤ n,
(3.25)

Nk
ij = −Cn+kn+i,j−Cn+ki,n+j+C

k
ij−Ckn+i,n+j , Nn+k

ij = Ckn+i,j+C
k
i,n+j+C

n+k
ij −Cn+kn+i,n+j ,

(3.26)

Nn+k
i,n+j = −Nk

ij , N
k
i,n+j = Nn+k

ij , Nk
n+i,n+j = −Nk

ij , N
n+k
n+i,n+j = −Nn+k

ij .

In particular, N = 0 if and only if Nk
ij = Nn+k

ij = 0 for 1 ≤ i, j, k ≤ n.
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Proof. Since J(ek) = en+k and J(en+k) = −ek, we have for 1 ≤ i, j ≤ n

N(ei, ej) = J [Jei, ej ] + J [ei, Jej ] + [ei, ej ]− [Jei, Jej ]

= J [en+i, ej ] + J [ei, en+j ] +

n∑

k=1

(Ckijek + Cn+kij en+k)− [en+i, en+j ]

= J
n∑

k=1

(Ckn+i,jek + Cn+kn+i,jen+k) + J
n∑

k=1

(Cki,n+jek + Cn+ki,n+jen+k)

+

n∑

k=1

(Ckijek + Cn+kij en+k)−
n∑

k=1

(Ckn+i,n+jek + Cn+kn+i,n+jen+k)

=
n∑

k=1

(Ckn+i,jen+k − Cn+kn+i,jek) +
n∑

k=1

(Cki,n+jen+k − Cn+ki,n+jek)

+
n∑

k=1

(Ckijek + Cn+kij en+k)−
n∑

k=1

(Ckn+i,n+jek + Cn+kn+i,n+jen+k)

=

n∑

k=1

(−Cn+kn+i,j − Cn+ki,n+j + Ckij − Ckn+i,n+j)ek

+
n∑

k=1

(Ckn+i,j + Cki,n+j + Cn+kij − Cn+kn+i,n+j)en+k

which proves (3.25). (3.26) follows from the identities

N(ei, en+j) = N(ei, Jej) = −JN(ei, ej),

N(en+i, en+j) = N(Jei, Jej) = −N(ei, ej).

From the definition of ω(·, ·) := 〈J ·, ·〉, we have

(3.27) ω(ei, ej) = ω(en+i, en+j) = 0, ω(ei, en+j) = δij .

Lemma 3.10. For 1 ≤ i, j, k ≤ n:

(1) dω(ei, ej , ek) = Cn+kij + Cn+ijk + Cn+jki ,

(2) dω(ei, ej , en+k) = −Ckij + Cn+ij,n+k + Cn+jn+k,i,

(3) dω(ei, en+j , en+k) = −Cki,n+j + Cn+in+j,n+k − C
j
n+k,i,

(4) dω(en+i, en+j , en+k) = −Ckn+i,n+j − Cin+j,n+k − Cjn+k,n+i.

Proof. Since ω is left-invariant, it follows that

dω(X,Y, Z) = −ω([X,Y ], Z)− ω([Y,Z], X)− ω([Z,X], Y ), ∀ X,Y, Z ∈ g.
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Applying this to (1) gives

dω(ei, ej , ek) = −ω([ei, ej ], ek)− ω([ej , ek], ei)− ω([ek, ei], ej)

= −
∑

l

Clijω(el, ek)−
∑

l

Cljkω(el, ei)−
∑

l

Clkiω(el, ej)

= Cn+kij + Cn+ijk + Cn+jki .

(2)-(4) are computed the same way.

Lemma 3.11. Let T ∈ ∧2g∗ ⊗ g. Then

TJ(X, JY ) = −JTJ(X,Y ), TJ(JX, JY ) = −TJ(X,Y ).

Proof. We verify the first identity:

TJ(X, JY ) := JT (JX, JY ) + JT (X,JJY ) + T (X, JY )− T (JX, JJY )

= JT (JX, JY )− JT (X,Y ) + T (X, JY ) + T (JX, Y )

= −J(−T (JX, JY ) + T (X,Y ) + JT (X,JY ) + JT (JX, Y ))

= −JTJ(X,Y ).

The second identity follows by applying the first identity.

Proposition 3.12. Let ∇ be a left-invariant g-compatible connection on
(G, g, J, ω) with torsion T . Then ∇ is Hermitian if and only if the tor-
sion components T cab := 〈T (ea, eb), ec〉 satisfy the following equations for 1 ≤
i, j, k ≤ n:

− Tn+kn+i,j − Tn+ki,n+j + T kij − T kn+i,n+j +Nk
ij = 0,(3.28)

T kn+i,j + T ki,n+j + Tn+kij − Tn+kn+i,n+j +Nn+k
ij = 0,(3.29)

and

Cn+kij + Cn+ijk + Cn+jki = −Tn+kij − Tn+ijk − Tn+jki ,(3.30)

−Ckij + Cn+ij,n+k + Cn+jn+k,i = T kij − Tn+ij,n+k − T
n+j
n+k,i,(3.31)

−Cki,n+j + Cn+in+j,n+k − C
j
n+k,i = T ki,n+j − Tn+in+j,n+k + T jn+k,i,(3.32)

−Ckn+i,n+j − Cin+j,n+k − Cjn+k,n+i = T kn+i,n+j + T in+j,n+k + T jn+k,n+i.

(3.33)

Proof. This is an application of Proposition 2.11. Since every vector
field on G can be expressed as a C∞(G)-linear combination of left-invariant
vector fields, it suffices to take X, Y , and Z in conditions (1) and (2) of Lemma
2.10 to be left-invariant vector fields. From this, it follows that condition (1)
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of Lemma 2.10 is satisfied if and only if

〈TJ(ei, ej) +N(ei, ej), ek〉 = 〈TJ(ei, ej) +N(ei, ej), en+k〉 = 0,

(3.34)

〈TJ(ei, en+j) +N(ei, en+j), ek〉 = 〈TJ(ei, en+j) +N(ei, en+j), en+k〉 = 0,

(3.35)

〈TJ(en+i, en+j) +N(en+i, en+j), ek〉
(3.36)

= 〈TJ(en+i, en+j) +N(en+i, en+j), en+k〉 = 0,

for all 1 ≤ i, j, k ≤ n. However, Lemma 3.11 implies

TJ(ei, en+j) +N(ei, en+j) = −J [TJ(ei, ej) +N(ei, ej)] ,

TJ(en+i, en+j) +N(en+i, en+j) = − [TJ(ei, ej) +N(ei, ej)] .

Hence, equations (3.34)-(3.36) hold if and only if (3.34) holds. We expand the
second half of (3.34) which will turn out to be (3.29):

〈TJ(ei, ej) +N(ei, ej), en+k〉
= 〈JT (Jei, ej), en+k〉+ 〈JT (ei, Jej), en+k〉+ 〈T (ei, ej), en+k〉
− 〈T (Jei, Jej), en+k〉+Nn+k

ij

= 〈JT (en+i, ej), en+k〉+ 〈JT (ei, en+j), en+k〉+ Tn+kij

− 〈T (en+i, en+j), en+k〉+Nn+k
ij

=

2n∑

l=1

T ln+i,j〈Jel, en+k〉+

2n∑

l=1

T li,n+j〈Jel, en+k〉+ Tn+kij − Tn+kn+i,n+j +Nn+k
ij

= T kn+i,j + T ki,n+j + Tn+kij − Tn+kn+i,n+j +Nn+k
ij .

The first part of (3.34) is handled similarly and corresponds to (3.28). Con-
dition (2) of Lemma 2.10 holds if and only if

dω(ei, ej , ek) = ω(T (ei, ej), ek) + ω(T (ej , ek), ei) + ω(T (ek, ei), ej),(3.37)

dω(ei, ej , en+k) = ω(T (ei, ej), en+k) + ω(T (ej , en+k), ei)

(3.38)

+ ω(T (en+k, ei), ej),

dω(ei, en+j , en+k) = ω(T (ei, en+j), en+k) + ω(T (en+j , en+k), ei)

(3.39)

+ ω(T (en+k, ei), en+j),

dω(en+i, en+j , en+k) = ω(T (en+i, en+j), en+k) + ω(T (en+j , en+k), en+i)

(3.40)

+ ω(T (en+k, en+i), en+j),
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for all 1 ≤ i, j, k ≤ n. Expanding equations (3.37)-(3.40) with the help of
Lemma 3.10 gives (3.30)-(3.33) respectively.

Let ∧(1,1)g∗ ⊂ ∧2g∗ denote the space of real left-invariant 2-forms of type
(1,1) with respect to the almost complex structure on (G, g, J, ω).

Proposition 3.13. A Hermitian connection on (G, g, J, ω) is left-invariant
if and only if α ∈ Ω(1,1)(G;TG) in Proposition 2.15 belongs to the space
∧(1,1)g∗ ⊗ g.

Proof. Let α ∈ Ω(1,1)(G;TG). By Proposition 2.15, α determines the
torsion T for a Hermitian connection (which in turn uniquely determines the
Hermitian connection). By Proposition 3.3, the Hermitian connection with
torsion T is left-invariant if and only if T ∈ ∧2g∗ ⊗ g.

If α ∈ ∧(1,1)g∗ ⊗ g ⊂ Ω(1,1)(G;TG), it follows immediately from the
formula in Proposition 2.15 that T ∈ ∧2g∗ ⊗ g.

Now suppose that T ∈ ∧2g∗ ⊗ g and let X, Y , and Z be left-invariant
vector fields. Substituting X+, Y −, and Z into the formula for Proposition
2.15 and simplifying gives

〈T (X+, Y −), Z〉 = 〈α(X+, Y −), Z〉.
Expanding the above equation in terms of X and Y and simplifying gives

〈T (X,Y ) + T (JX, JY ), Z〉 = 2〈α(X,Y ), Z〉
where we have made use of the fact that α is (1,1). Since the left side of the
equation is a constant for all X,Y, Z ∈ g, it follows that α(X,Y ) ∈ g for all
X,Y ∈ g. Hence, α ∈ ∧(1,1)g∗ ⊗ g.

Corollary 3.14. There is a one-to-one correspondence between the space
of left-invariant Hermitian connections on (G, 〈·, ·〉, J, ω) and the space ∧(1,1)g∗⊗
g.

Proof. This follows from Corollary 2.17 and Proposition 3.13.

Lemma 3.15. Let α ∈ ∧2g∗ ⊗ g. Then α ∈ ∧(1,1)g∗ ⊗ g if and only if
the components αcab := 〈α(ea, eb), ec〉 satisfy the following conditions for all
1 ≤ i, j ≤ n and 1 ≤ c ≤ 2n:

(a) αcij = αcn+i,n+j,
(b) αci,n+j = −αcn+i,j

where all other components are determined by skew-symmetry in the lower
indices.

Proof. The 2-form α is of type (1, 1) if and only if α(er, es) = α(Jer, Jes)
for all 1 ≤ r, s ≤ 2n. This is equivalent to the requirement that for all
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1 ≤ i, j ≤ n and 1 ≤ c ≤ 2n one has

〈α(ei, ej), ec〉 = 〈α(en+i, en+j), ec〉,(3.41)

〈α(ei, en+j), ec〉 = −〈α(en+i, ej), ec〉.(3.42)

Expanding (3.41) and (3.42) gives (a) and (b) respectively in Lemma 3.15.

For α ∈ ∧(1,1)g∗ ⊗ g, we define

α+(X,Y, Z) := 〈α(X,Y ), Z〉+ 〈α(Y,Z), X〉+ 〈α(Z,X), Y 〉

for all vector fields X,Y, Z on G. Note that α+ is a (real) 3-form of type
(2,1)+(1,2). Following the notation of Section 2, we write η+ to denote the
(2,1)+(1,2) part of any 3-form η ∈ Ω3(G).

Lemma 3.16. For α ∈ ∧(1,1)g∗ ⊗ g and 1 ≤ a, b, c ≤ 2n

α+
abc := α+(ea, eb, ec) = αcab + αabc + αbca

where αcab := 〈α(ea, eb), ec〉.

Proof. Immediate.

Lemma 3.17. (dω)+ is given as follows: for 1 ≤ i, j, k ≤ n

(dω)+(ei, ej , ek)(3.43)

=
1

4
[3Cn+kij + 3Cn+ijk + 3Cn+jki + Cik,n+j − Cn+kn+j,n+i + Cjn+i,k]

+
1

4
[Ckj,n+i − Cn+jn+i,n+k + Cin+k,j − Cki,n+j + Cn+in+j,n+k − C

j
n+k,i],

(dω)+(ei, ej , en+k)(3.44)

=
1

4
[−3Ckij + 3Cn+ij,n+k + 3Cn+jn+k,i − Ckn+i,n+j − Cin+j,n+k − C

j
n+k,n+i]

+
1

4
[Cijk − Cn+jk,n+i − Cn+kn+i,j − Cjik + Cn+ik,n+j + Cn+kn+j,i],

(dω)+(ei, en+j , en+k)

(3.45)

=
1

4
[−3Cki,n+j + 3Cn+in+j,n+k − 3Cjn+k,i − Ckj,n+i + Cn+jn+i,n+k − Cin+k,j ]

+
1

4
[Cjk,n+i − Cn+kn+i,n+j + Cin+j,k + Cn+kij + Cn+ijk + Cn+jki ],
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(dω)+(en+i, en+j , en+k)(3.46)

=
1

4
[−3Ckn+i,n+j − 3Cin+j,n+k − 3Cjn+k,n+i − Ckij + Cn+ij,n+k + Cn+jn+k,i]

+
1

4
[Cjik − Cn+ik,n+j − Cn+kn+j,i − Cijk + Cn+jk,n+i + Cn+kn+i,j ].

Proof. We compute only (3.43). The other cases are computed in the
same way. Using Proposition 2.2 and Lemma 3.10, we have

(dω)+(ei, ej , ek)

=
1

4
[3dω(ei, ej , ek) + dω(en+i, en+j , ek) + dω(en+i, ej , en+k) + dω(ei, en+j , en+k)]

=
1

4
[3dω(ei, ej , ek)− dω(ek, en+j , en+i)− dω(ej , en+i, en+k) + dω(ei, en+j , en+k)]

=
1

4
[3Cn+kij + 3Cn+ijk + 3Cn+jki + Cik,n+j − Cn+kn+j,n+i + Cjn+i,k]

+
1

4
[Ckj,n+i − Cn+jn+i,n+k + Cin+k,j − Cki,n+j + Cn+in+j,n+k − C

j
n+k,i].

Lemma 3.18. Let α ∈ ∧(1,1)g∗⊗g and let ∇α the left-invariant Hermitian
connections whose torsion is associated to α by Proposition 2.15. Let Tα

denote the torsion of ∇α. Then

〈Tα(X, JY ), Z〉 = −〈Tα(X,Y ), JZ〉 − 1

2
〈N(X,Y ), JZ〉(3.47)

+ 〈α(X,Y ), JZ〉+ 〈α(X,JY ), Z〉
for all vector fields X,Y, Z on G.

Proof. By Proposition 2.15, we have

〈Tα(X,Y ), Z〉 = −1

4
〈N(X,Y ), Z〉 − 1

2
(dω)+(JX, JY, JZ) +

1

2
(dω)+(X,Y, JZ)

+
1

2
α+(X,Y, Z)− 1

2
α+(JX, JY, Z) + 〈α(X,Y ), Z〉.

It follows from Proposition 2.2 that if η+ is a 3-form of type (2,1)+(1,2) then

η+(X,Y, Z) = η+(JX, JY, Z) + η+(JX, Y, JZ) + η+(X, JY, JZ).

Hence,

η+(X,Y, Z)− η+(JX, JY, Z) = η+(JX, Y, JZ) + η+(X, JY, JZ)

and

η+(JX, JY, JZ)− η+(X,Y, JZ) = η+(X, JY, Z) + η+(JX, Y, Z).
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Using these identities, we have

〈Tα(X, JY ), Z〉

= −1

4
〈N(X, JY ), Z〉+

1

2
(dω)+(JX, Y, JZ) +

1

2
(dω)+(X, JY, JZ)

+
1

2
α+(X,JY, Z) +

1

2
α+(JX, Y, Z) + 〈α(X, JY ), Z〉

= −1

4
〈−JN(X,Y ), Z〉+

1

2
(dω)+(X,Y, Z)− 1

2
(dω)+(JX, JY, Z)

+
1

2
α+(JX, JY, JZ)− 1

2
α+(X,Y, JZ) + 〈α(X, JY ), Z〉

= −1

4
〈N(X,Y ), JZ〉+

1

2
(dω)+(X,Y, Z)− 1

2
(dω)+(JX, JY, Z)

+
1

2
α+(JX, JY, JZ)− 1

2
α+(X,Y, JZ) + 〈α(X, JY ), Z〉

= −〈Tα(X,Y ), JZ〉 − 1

2
〈N(X,Y ), JZ〉+ 〈α(X,Y ), JZ〉+ 〈α(X, JY ), Z〉.

At this point, we have all the ingredients needed to compute the torsion
components of a left-invariant Hermitian connection (the components of a
left-invariant Hermitian connection is then computed using Lemma 3.8). In
particular, we also compute the torsion components of a left-invariant Gaudu-
chon connection.

Proposition 3.19. Let α ∈ ∧(1,1)g∗⊗g and let αcab := 〈α(ea, eb), ec〉. Let
∇α the left-invariant Hermitian connections whose torsion is associated to α
by Proposition 2.15. Let Tα denote the torsion of ∇α. Then for 1 ≤ i, j, k ≤ n

〈Tα(ei, ej), ek〉
(3.48)

= −1

2
Ckij −

1

4
Cjik +

1

4
Cijk +

1

2
Ckn+i,n+j +

1

4
Cin+j,n+k +

1

4
Cjn+k,n+i +

1

4
Cn+ij,n+k

+
1

4
Cn+jn+k,i +

1

4
Cn+ik,n+j −

1

4
Cn+jk,n+i + αkij +

1

2
αijk +

1

2
αjki −

1

2
αn+in+j,k −

1

2
αn+jk,n+i,

〈Tα(ei, ej), en+k〉
(3.49)

= −1

2
Cn+kij +

1

2
Cn+kn+i,n+j −

1

4
Cjk,n+i −

1

4
Cin+j,k −

1

4
Cji,n+k +

1

4
Cn+in+k,n+j

+
1

4
Cij,n+k −

1

4
Cn+jn+k,n+i −

1

4
Cn+jki −

1

4
Cn+ijk + αn+kij +

1

2
αij,n+k +

1

2
αjn+k,i

− 1

2
αn+in+j,n+k −

1

2
αn+jn+k,n+i,
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〈Tα(ei, en+j), ek〉
(3.50)

= −1

2
Ckn+i,j −

1

2
Cki,n+j −

1

4
Cn+jn+i,n+k +

1

4
Cin+k,j +

1

4
Cn+in+j,n+k −

1

4
Cjn+k,i

− 1

4
Cik,n+j −

1

4
Cjn+i,k −

1

4
Cn+jik − 1

4
Cn+ikj + αki,n+j +

1

2
αin+j,k +

1

2
αn+jki

+
1

2
αn+ijk +

1

2
αjk,n+i,

〈Tα(ei, en+j), en+k〉
(3.51)

= −1

2
Cn+kn+i,j −

1

2
Cn+ki,n+j +

1

4
Cijk −

1

4
Cn+jk,n+i +

1

4
Cin+j,n+k +

1

4
Cjn+k,n+i

+
1

4
Cjki −

1

4
Cn+in+j,k −

1

4
Cn+ji,n+k −

1

4
Cn+in+k,j + αn+ki,n+j +

1

2
αin+j,n+k +

1

2
αn+jn+k,i

+
1

2
αn+ij,n+k +

1

2
αjn+k,n+i,

〈Tα(en+i, en+j), ek〉
(3.52)

= −1

2
Ckn+i,n+j +

1

2
Ckij −

1

4
Cin+j,n+k −

1

4
Cjn+k,n+i −

1

4
Cn+ij,n+k −

1

4
Cn+jn+k,i

− 1

4
Cn+ik,n+j +

1

4
Cjik +

1

4
Cikj +

1

4
Cn+jk,n+i + αkn+i,n+j +

1

2
αjn+i,n+k +

1

2
αn+in+k,j

+
1

2
αn+ji,n+k +

1

2
αin+k,n+j ,

〈Tα(en+i, en+j), en+k〉
(3.53)

= −1

2
Cn+kn+i,n+j +

1

2
Cn+kij +

1

4
Cin+j,k +

1

4
Cjk,n+i +

1

4
Cn+ijk +

1

4
Cn+jki

+
1

4
Cn+in+j,n+k −

1

4
Cjn+k,i −

1

4
Cij,n+k +

1

4
Cn+jn+k,n+i + αn+kn+i,n+j +

1

2
αn+in+j,n+k

+
1

2
αn+jn+k,n+i −

1

2
αij,n+k −

1

2
αjn+k,i.
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Proof. (3.48) is computed using Proposition 2.15 and Lemmas 3.9, 3.15,
3.16, and 3.17:

〈Tα(ei, ej), ek〉

= −1

4
Nk
ij −

1

2
(dω)+(en+i, en+j , en+k) +

1

2
(dω)+(ei, ej , en+k)

+
1

2
α+(ei, ej , ek)− 1

2
α+(en+i, en+j , ek) + αkij

= −1

4
[−Cn+kn+i,j − Cn+ki,n+j + Ckij − Ckn+i,n+j ]

− 1

8
[−3Ckn+i,n+j − 3Cin+j,n+k − 3Cjn+k,n+i − Ckij + Cn+ij,n+k + Cn+jn+k,i]

− 1

8
[Cjik − Cn+ik,n+j − Cn+kn+j,i − Cijk + Cn+jk,n+i + Cn+kn+i,j ]

+
1

8
[−3Ckij + 3Cn+ij,n+k + 3Cn+jn+k,i − Ckn+i,n+j − Cin+j,n+k − C

j
n+k,n+i]

+
1

8
[Cijk − Cn+jk,n+i − Cn+kn+i,j − Cjik + Cn+ik,n+j + Cn+kn+j,i]

+
1

2
[αkij + αijk + αjki]−

1

2
[αkn+i,n+j + αn+in+j,k + αn+jk,n+i] + αkij

= −1

2
Ckij −

1

4
Cjik +

1

4
Cijk +

1

2
Ckn+i,n+j +

1

4
Cin+j,n+k +

1

4
Cjn+k,n+i +

1

4
Cn+ij,n+k

+
1

4
Cn+jn+k,i +

1

4
Cn+ik,n+j −

1

4
Cn+jk,n+i + αkij +

1

2
αijk +

1

2
αjki −

1

2
αn+in+j,k −

1

2
αn+jk,n+i.

(3.49) is computed the same way. (3.50) can be obtained from Lemma 3.18
via

〈Tα(ei, en+j), ek〉 = −〈Tα(ei, ej), en+k〉 −
1

2
Nn+k
ij + αn+kij + αki,n+j .

(3.51) is given by

〈Tα(ei, en+j), en+k〉 = 〈Tα(ei, ej), ek〉+
1

2
Nk
ij − αkij + αn+ki,n+j .

To compute (3.52) and (3.53), we apply Lemma 3.18 using (3.51) and (3.50)
respectively:

〈Tα(en+i, en+j), ek〉 = 〈Tα(ej , en+i), en+k〉+
1

2
Nn+k
j,n+i + αn+kn+i,j + αkn+i,n+j

〈Tα(en+i, en+j), en+k〉 = −〈Tα(ej , en+i), ek〉 −
1

2
Nk
j,n+i − αkn+i,j + αn+kn+i,n+j .
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From Section 2.4, the Gauduchon connections are parameterized by t ∈ R
and the elements αt ∈ ∧(1,1)g∗ ⊗ g which give rise to the Gauduchon connec-
tions are given by

(3.54) 〈αt(X,Y ), Z〉 =
t

4
(dω)+(JX, JY, JZ) +

t

4
(dω)+(X,Y, JZ).

Let ∇t denote the Gauduchon connection associated to t ∈ R; the associated
torsion T t is given by

〈T t(X,Y ), Z〉

(3.55)

= −1

4
〈N(X,Y ), Z〉 −

(
t− 2

4

)
(dω)+(X,Y, JZ) +

(
3t− 2

4

)
(dω)+(JX, JY, JZ).

Applying Lemma 3.17 and Lemma 3.9 to (3.55) yields the components of the
torsion T t:

〈T t(ei, ej), ek〉
(3.56)

=
t

4
Cn+kn+i,j +

t

4
Cn+ki,n+j −

1

2
Ckij +

−t+ 1

2
Ckn+i,n+j +

1

4
Cn+ij,n+k +

1

4
Cn+jn+k,i

+
−2t+ 1

4
Cin+j,n+k +

−2t+ 1

4
Cjn+k,n+i +

−t+ 1

4
Cijk +

t− 1

4
Cn+jk,n+i +

t− 1

4
Cjik

+
−t+ 1

4
Cn+ik,n+j ,

〈T t(ei, ej), en+k〉
(3.57)

=
−2t+ 1

4
Cjn+i,k +

2t− 1

4
Cin+j,k +

−t+ 1

2
Cn+kn+i,n+j +

−t+ 1

4
Cn+jn+i,n+k +

t− 1

4
Cn+in+j,n+k

− t

4
Cki,n+j +

t− 1

4
Cji,n+k +

−t+ 1

4
Cij,n+k −

t

4
Ckn+i,j −

1

2
Cn+kij +

1

4
Cn+jik − 1

4
Cn+ijk ,

〈T t(ei, en+j), ek〉
(3.58)

=
−t+ 1

4
Cin+j,k +

t

4
Cn+kn+i,n+j +

2t− 1

4
Cn+jn+i,n+k −

t

4
Cn+kij +

t− 1

4
Cn+jik +

−t+ 1

4
Cn+ijk

+
2t− 1

4
Cij,n+k +

t− 1

2
Ckn+i,j +

t− 1

4
Cjn+i,k +

1

4
Cn+in+j,n+k −

1

2
Cki,n+j +

1

4
Cji,n+k,
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〈T t(ei, en+j), en+k〉
(3.59)

= − t
4
Ckn+i,n+j +

t− 1

4
Cjn+i,n+k +

−t+ 1

4
Cin+j,n+k +

t

4
Ckij +

−2t+ 1

4
Cijk

+
t− 1

4
Cn+ji,n+k +

−t+ 1

4
Cn+ij,n+k +

t− 1

2
Cn+kn+i,j +

−2t+ 1

4
Cn+jn+i,k −

1

2
Cn+ki,n+j −

1

4
Cjik

− 1

4
Cn+in+j,k,

〈T t(en+i, en+j), ek〉
(3.60)

=
−t+ 1

4
Cn+in+j,k +

−t+ 1

2
Ckij +

−t+ 1

4
Cjik +

t− 1

4
Cijk −

t

4
Cn+ki,n+j +

−2t+ 1

4
Cn+ji,n+k

+
2t− 1

4
Cn+ij,n+k −

t

4
Cn+kn+i,j +

t− 1

4
Cn+jn+i,k −

1

2
Ckn+i,n+j +

1

4
Cjn+i,n+k −

1

4
Cin+j,n+k,

〈T t(en+i, en+j), en+k〉
(3.61)

=
t− 1

4
Cn+jn+i,n+k +

−t+ 1

4
Cn+in+j,n+k +

−t+ 1

2
Cn+kij +

2t− 1

4
Cn+jik +

t

4
Cki,n+j

+
−t+ 1

4
Cji,n+k +

−2t+ 1

4
Cn+ijk +

t− 1

4
Cij,n+k +

t

4
Ckn+i,j +

1

4
Cin+j,k −

1

2
Cn+kn+i,n+j

− 1

4
Cjn+i,k.

We conclude this section with the following examples.

Example 3.20. Consider the Lie groupG with left-invariant frame e1, e2, e3, e4
whose non-zero bracket relations are

[e1, e2] = e2, [e1, e3] = e2 + e3, [e1, e4] = e3 + e4.

The above 4-dimensional Lie algebra (and others) is studied in [2]. Equip
G with a left-invariant Hermitian structure (J, 〈·, ·〉) so that e1, e2, e3, e4 is a
standard frame with respect to (J, 〈·, ·〉). Let α ∈ ∧(1,1)g∗ ⊗ g be the left-
invariant 2-form of type (1,1) with values in g whose nonzero components
αcab = 〈α(ea, eb), ec〉 are given by

α1
12 = α1

34 = 1, α4
23 = −5, α4

41 = 5,

where αcab = −αcba. Note that the components of α satisfy the conditions of
Lemma 3.15. From Proposition 3.19, the nonzero components of Tα are

〈Tα(e1, e2), e1〉 =
3

4
, 〈Tα(e1, e4), e1〉 =

1

2
, 〈Tα(e2, e3), e1〉 = −1

2
,
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〈Tα(e3, e4), e1〉 =
5

4
, 〈Tα(e1, e2), e2〉 =

3

2
, 〈Tα(e3, e4), e2〉 = −3

2
,

〈Tα(e1, e2), e3〉 = −1

2
, 〈Tα(e1, e4), e3〉 = −3

4
, 〈Tα(e2, e3), e3〉 =

3

4
,

〈Tα(e3, e4), e3〉 =
1

2
, 〈Tα(e1, e4), e4〉 = −7

2
, 〈Tα(e2, e3), e4〉 = −13

2
.

The components Γcab of the associated left-invariant Hermitian connection ∇α
(which are defined by ∇αeaeb =

∑
c Γcabec) are computed via Lemma 3.8:

Γ1
12 =

3

4
, Γ1

14 =
1

2
, Γ1

22 =
5

2
, Γ1

32 =
1

2
, Γ1

33 = 1, Γ1
34 =

3

4
, Γ1

43 = −1

2
,

Γ1
44 = −5

2
, Γ2

11 = −3

4
, Γ2

13 =
1

2
, Γ2

21 = −5

2
, Γ2

31 = −1

2
, Γ2

33 =
3

4
, Γ2

34 = −4,

Γ2
43 = −5

2
, Γ3

12 = −1

2
, Γ3

14 =
3

4
, Γ3

24 =
5

2
Γ3
31 = −1, Γ3

32 = −3

4
, Γ3

34 =
1

2
.

Γ3
41 =

1

2
, Γ3

42 =
5

2
, Γ4

11 = −1

2
, Γ4

13 = −3

4
, Γ4

23 = −5

2
,

Γ4
31 = −3

4
, Γ4

32 = 4, Γ4
33 = −1

2
, Γ4

41 =
5

2
.

∇αJ = 0 if and only if (∇αeaJ)eb = 0 for all 1 ≤ a, b ≤ 4 and the latter is
easily found to be equivalent to the following for 1 ≤ a ≤ 2n and 1 ≤ j, k ≤ n
(where n = 2 here):

Γka,n+j + Γn+kaj = 0, Γn+ka,n+j − Γkaj = 0.(3.62)

The condition ∇g = 0 is easily found to be equivalent to the following condi-
tion for all 1 ≤ a, b, c ≤ 2n:

(3.63) Γcab + Γbac = 0.

One can verify by inspection that the values calculated above for Γcab satisfy
the above conditions.

Example 3.21. Let G and e1, e2, e3, e4 be as in Example 3.20 and let
(J, 〈·, ·〉) be the almost Hermitian structure on G so that e1, e2, e3, e4 is a
standard frame. The nonzero torsion components T t for t = 2 are computed
from (3.56)-(3.61):

〈T 2(e1, e2), e1〉 =
1

4
, 〈T 2(e2, e3), e1〉 = 1, 〈T 2(e3, e4), e1〉 = −1

4
,

〈T 2(e1, e3), e2〉 = −1, 〈T 2(e3, e4), e2〉 = −2,

〈T 2(e1, e2), e3〉 = 1, 〈T 2(e1, e4), e3〉 = −1

4
, 〈T 2(e2, e3), e3〉 =

1

4
,

〈T 2(e2, e4), e3〉 = 2, 〈T 2(e2, e3), e4〉 = −2.
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Let ∇2 denote the Gauduchon connection with torsion T 2. The components
Γcab of ∇2 (where ∇2

eaeb =
∑
c Γcabec) are given by

Γ1
12 =

1

4
, Γ1

22 = 1, Γ1
23 = 1, Γ1

33 = 1, Γ1
34 =

1

4
, Γ1

43 =
1

2
, Γ1

44 = 1,

Γ2
11 = −1

4
, Γ2

21 = −1, Γ2
33 =

1

4
, Γ2

34 = −1, Γ2
43 = 1,

Γ3
14 =

1

4
, Γ3

21 = −1, Γ3
24 = 1,Γ3

31 = −1, Γ3
32 = −1

4
, Γ3

41 = −1

2
, Γ3

42 = −1,

Γ4
13 = −1

4
, Γ4

23 = −1, Γ4
31 = −1

4
, Γ4

32 = 1, Γ4
41 = −1.

The conditions ∇J = 0 and ∇g = 0 expressed in terms of the Γcab’s are
given by equations (3.62) and (3.63) respectively. One easily verifies that the
computed Γcab’s satisfy equations (3.62) and (3.63).

4. Curvature on Totally Real Almost Hermitian Structures

In this section, we take G = H×A where H is an arbitrary n-dimensional
Lie group, A is any n-dimensional abelian Lie group and G is equipped with
the product Lie group structure. Hence, we have the natural identification
g ' h ⊕ a, where g := Lie(G), h := Lie(H), and a := Lie(A). Hence, a is
an abelian ideal of g. We equip G with the left-invariant almost Hermitian
structure (J, 〈·, ·〉) so that G has a standard frame of the form

e1, . . . , en, en+1, . . . , e2n

where e1, . . . , en is a basis of h and en+1, . . . , e2n is a basis of a. (For notational
convenience, we write (ei, 0) ∈ g as ei and (0, en+i) ∈ g as en+i.) In particular,
Jh = a. Motivated by the terminology of [6, 7, 8], we say that J is a totally
real almost complex structure with respect to h. Since g = h ⊕ a and a is
abelian, we have

(4.64) Cn+kij = Cci,n+j = Ccn+i,n+j = 0

for 1 ≤ i, j, k ≤ n and 1 ≤ c ≤ 2n. Lemma 3.9, Lemma 3.10, and (4.64) imply
the following:

Corollary 4.1. The Nijenhuis tensor associated with J has components

Nk
ij = Ckij , Nk

n+i,n+j = Nn+k
i,n+j = −Ckij , Nk

i,n+j = Nn+k
n+i,n+j = Nn+k

ij = 0,

for 1 ≤ i, j, k ≤ n where N c
ab := 〈N(ea, eb), ec〉. In particular, J is integrable if

and only if H is abelian. In addition, the fundamental 2-form ω(·, ·) := 〈J ·, ·〉
is closed if and only if H is abelian.
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As a consequence of (4.64), the torsion formulas (3.48)-(3.53) and (3.56)-
(3.61) reduce respectively to the following:

〈Tα(ei, ej), ek〉
(4.65)

= −1

2
Ckij −

1

4
Cjik +

1

4
Cijk + αkij +

1

2
αijk +

1

2
αjki −

1

2
αn+in+j,k −

1

2
αn+jk,n+i,

〈Tα(ei, ej), en+k〉 = αn+kij +
1

2
αij,n+k +

1

2
αjn+k,i −

1

2
αn+in+j,n+k −

1

2
αn+jn+k,n+i,

(4.66)

〈Tα(ei, en+j), ek〉 = αki,n+j +
1

2
αin+j,k +

1

2
αn+jki +

1

2
αn+ijk +

1

2
αjk,n+i,(4.67)

〈Tα(ei, en+j), en+k〉
(4.68)

=
1

4
Cijk +

1

4
Cjki + αn+ki,n+j +

1

2
αin+j,n+k +

1

2
αn+jn+k,i +

1

2
αn+ij,n+k +

1

2
αjn+k,n+i,

〈Tα(en+i, en+j), ek〉
(4.69)

=
1

2
Ckij +

1

4
Cjik +

1

4
Cikj + αkn+i,n+j +

1

2
αjn+i,n+k +

1

2
αn+in+k,j +

1

2
αn+ji,n+k

+
1

2
αin+k,n+j ,

〈Tα(en+i, en+j), en+k〉 = αn+kn+i,n+j +
1

2
αn+in+j,n+k +

1

2
αn+jn+k,n+i −

1

2
αij,n+k −

1

2
αjn+k,i,

(4.70)

and

〈T t(ei, ej), ek〉 = −1

2
Ckij +

−t+ 1

4
Cijk +

t− 1

4
Cjik,(4.71)

〈T t(ei, ej), en+k〉 = 0,(4.72)

〈T t(ei, en+j), ek〉 = 0,(4.73)

〈T t(ei, en+j), en+k〉 =
t

4
Ckij +

−2t+ 1

4
Cijk −

1

4
Cjik,(4.74)

〈T t(en+i, en+j), ek〉 =
−t+ 1

2
Ckij +

−t+ 1

4
Cjik +

t− 1

4
Cijk,(4.75)

〈T t(en+i, en+j), en+k〉 = 0.(4.76)

Let ∇α and ∇t be the Hermitian and Gauduchon connection on (G, J, 〈·, ·〉)
whose torsion is Tα and T t respectively. For completeness (and later use), we
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record some formulas related to the curvature of a left-invariant connection.
Recall that for an arbitrary connection∇ on G the associated curvature tensor
is defined by

R(X,Y )Z := [∇X ,∇Y ]Z −∇[X,Y ]Z

where X,Y, Z are any vector fields on G. For convenience, we define

R(X,Y, Z,W ) := 〈R(X,Y )Z,W 〉.

As usual, the components of ∇ are defined with respect to the standard frame
e1, . . . , e2n via

Γcab := 〈∇eaeb, ec〉.

In the case of a left-invariant connection one has the following:

Proposition 4.2. Let ∇ be a left-invariant connection on (G, J, 〈·, ·〉).
Then

(4.77) R(ea, eb, ec, ed) =
∑

p

(
ΓdapΓ

p
bc − ΓdbpΓ

p
ac − CpabΓdpc

)
.

Proof.

R(ea, eb)ec = ∇ea∇ebec −∇eb∇eaec −∇[ea,eb]ec

=
∑

p

(
Γpbc∇eaep − Γpac∇ebep − Cpab∇epec

)

=
∑

q

∑

p

(
ΓqapΓ

p
bc − ΓqbpΓ

p
ac − CpabΓqpc

)
eq

which implies (4.77).

Corollary 4.3. Let ∇ be a metric compatible left-invariant connection
on (G, J, 〈·, ·〉) with torsion T . Then

R(ea, eb, ec, ed) =
∑

p

(
ĈdapĈ

p
bc − ĈdbpĈpac − C

p
abĈ

d
pc

)
+
∑

p

(
T̂ dapT̂

p
bc − T̂ dbpT̂ pac

)

+
∑

p

(
ĈdapT̂

p
bc + ĈpbcT̂

d
ap − ĈdbpT̂ pac − T̂ dbpĈpac − CpabT̂ dpc

)
(4.78)

where Ĉcab := 1
2 (Ccab − Cabc − Cbac), T̂

c
ab := 1

2 (T cab − T abc − T bac), and T cab :=
〈T (ea, eb), ec〉.
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Proof. From Lemma 3.8, Γcab = Ĉcab + T̂ cab. Substituting this into (4.77)
gives

R(ea, eb, ec, ed)

=
∑

p

(
ΓdapΓ

p
bc − ΓdbpΓ

p
ac − CpabΓdpc

)

=
∑

p

(Ĉdap + T̂ dap)(Ĉ
p
bc + T̂ pbc)−

∑

p

(Ĉdbp + T̂ dbp)(Ĉ
p
ac + T̂ pac)−

∑

p

Cpab(Ĉ
d
pc + T̂ dpc)

=
∑

p

(ĈdapĈ
p
bc + ĈdapT̂

p
bc + ĈpbcT̂

d
ap + T̂ dapT̂

p
bc)

−
∑

p

(ĈdbpĈ
p
ac + ĈdbpT̂

p
ac + ĈpacT̂

d
bp + T̂ dbpT̂

p
ac)−

∑

p

(CpabĈ
d
pc + CpabT̂

d
pc)

which is (4.78) after rearranging the terms.

Remark 4.4. Note that the formulas in Proposition 4.2 and Corollary
4.3 apply to all Lie groups equipped with a left-invariant almost Hermitian
structure (as opposed to only Lie groups of the form H ×A).

For the remainder of the paper, we let

Rabcd := R(ea, eb, ec, ed).

Let α ∈ ∧(1,1)g∗⊗g and let∇α be the Hermitian connection on (G, 〈·, ·〉, J)
whose torsion is Tα. For notational convenience, we let T := Tα and T cab :=
〈T (ea, eb), ec〉. The components T cab satisfy the following identities:

Corollary 4.5. T ∈ ∧2g∗ ⊗ g is the torsion of a Hermitian connection
on (G, J, 〈·, ·〉) if and only if for 1 ≤ i, j, k ≤ n, the components of T satisfy
the following identities:

−Tn+kn+i,j − Tn+ki,n+j + T kij − T kn+i,n+j + Ckij = 0,(4.79)

T kn+i,j + T ki,n+j + Tn+kij − Tn+kn+i,n+j = 0,(4.80)

and

−Tn+kij − Tn+ijk − Tn+jki = 0,(4.81)

T kij − Tn+ij,n+k − T
n+j
n+k,i = −Ckij ,(4.82)

T ki,n+j − Tn+in+j,n+k + T jn+k,i = 0,(4.83)

T kn+i,n+j + T in+j,n+k + T jn+k,n+i = 0.(4.84)

Proof. This follows immediately from Proposition 3.12, Corollary 4.1,
and (4.64).
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The quantities T̂ cab feature prominently in the formula of Corollary 4.3. Note

that T̂ cab (unlike T cab) is not skew-symmetric in the lower indices. Instead, one

easily finds that T̂ cab satisfies the following identities:

(4.85) T̂ cab − T̂ cba = T cab, T̂ cab − T̂ acb = −T bac, T̂ cab = −T̂ bac.
Of course, the same identities apply to Ĉcab:

(4.86) Ĉcab − Ĉcba = Ccab, Ĉcab − Ĉacb = −Cbac, Ĉcab = −Ĉbac.
Using (4.65)-(4.70), the third identity in (4.85), and the symmetries of α, one
obtains the following for 1 ≤ i, j, k ≤ n:

T̂ kij = −1

4
Ckij +

1

4
Cjik +

1

2
Cijk +

1

2
αkij −

1

2
αjik −

1

2
αn+ji,n+k +

1

2
αn+ki,n+j ,(4.87)

T̂n+kij =
1

2
αn+kij − 1

2
αji,n+k +

1

2
αn+jik − 1

2
αki,n+j ,(4.88)

T̂ ki,n+j =
1

2
αki,n+j −

1

2
αn+jik +

1

2
αji,n+k −

1

2
αn+kij ,(4.89)

T̂ kn+i,j = −1

2
αki,n+j +

1

2
αji,n+k −

1

2
αn+jik +

1

2
αn+kij ,(4.90)

T̂n+ki,n+j = −1

4
Cjik +

1

4
Ckij +

1

2
αn+ki,n+j −

1

2
αn+ji,n+k −

1

2
αjik +

1

2
αkij ,(4.91)

T̂n+kn+i,j = −1

4
Cjik −

1

4
Ckij −

1

2
αn+ki,n+j −

1

2
αjik −

1

2
αn+ji,n+k −

1

2
αkij ,(4.92)

T̂ kn+i,n+j =
1

4
Ckij +

1

4
Cjik +

1

2
αkij +

1

2
αjik +

1

2
αn+ji,n+k +

1

2
αn+ki,n+j ,(4.93)

T̂n+kn+i,n+j = −1

2
αki,n+j +

1

2
αji,n+k −

1

2
αn+jik +

1

2
αn+kij .(4.94)

In the next result, we calculate the element α ∈ ∧(1,1)g∗⊗g which corresponds
to the trivial Hermitian connection, that is, ∇XY = 0 for all X,Y ∈ g (which
is clearly flat by Proposition 4.2). We will write ∇ = 0 to denote the trivial
Hermitian connection.

Proposition 4.6. Let G = H × A where H is any n-dimensional Lie
group and A is any n-dimensional abelian Lie group. Let (J, 〈·, ·〉) be any
left-invariant almost Hermitian structure on G such that (J, 〈·, ·〉) admits
a standard frame of the form e1, · · · en, en+1, . . . , e2n where e1, . . . , en and
en+1, . . . , e2n correspond to frames on H and A respectively. Then ∇α = 0
is (uniquely) given by the element α ∈ ∧(1,1)g∗ ⊗ g whose components for
1 ≤ i, j, k,≤ n and 1 ≤ c ≤ 2n are

αkij = αkn+i,n+j = −1

2
Ckij , αn+kij = αci,n+j = αcn+i,j = 0,

where (again) Ccab := 〈[ea, eb], ec〉.
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Proof. Following the previous notation, let αcab := 〈α(ea, eb), ec〉. Let
T := Tα be the torsion associated to ∇α. We need to show that Γcab = 0 for

all 1 ≤ a, b, c ≤ 2n. From Lemma 3.8 and the definition of Ĉcab and T̂ cab, we

have Γcab = Ĉcab + T̂ cab. So we need to show that T̂ cab = −Ĉcab for the above
choice of α. (Uniqueness of α follows from Corollary 2.17.) From (4.87), we
have

T̂ kij = −1

4
Ckij +

1

4
Cjik +

1

2
Cijk +

1

2
αkij −

1

2
αjik −

1

2
αn+ji,n+k +

1

2
αn+ki,n+j

= −1

4
Ckij +

1

4
Cjik +

1

2
Cijk −

1

4
Ckij +

1

4
Cjik

= −1

2
Ckij +

1

2
Cjik +

1

2
Cijk

= −1

2
(Ckij − Cijk − Cjik)

= −Ĉkij .

Since Ĉcab = 0 whenever one of its indices is greater than n, it only remains

to show that T̂ cab = 0 for a > n, b > n, or c > n. Equations (4.91), (4.92),
and (4.93) respectively give

T̂n+ki,n+j = −1

4
Cjik +

1

4
Ckij +

1

2
αn+ki,n+j −

1

2
αn+ji,n+k −

1

2
αjik +

1

2
αkij

= −1

4
Cjik +

1

4
Ckij +

1

4
Cjik −

1

4
Ckij

= 0,

T̂n+kn+i,j = −1

4
Cjik −

1

4
Ckij −

1

2
αn+ki,n+j −

1

2
αjik −

1

2
αn+ji,n+k −

1

2
αkij

= −1

4
Cjik −

1

4
Ckij +

1

4
Cjik +

1

4
Ckij

= 0,

T̂ kn+i,n+j =
1

4
Ckij +

1

4
Cjik +

1

2
αkij +

1

2
αjik +

1

2
αn+ji,n+k +

1

2
αn+ki,n+j

=
1

4
Ckij +

1

4
Cjik −

1

4
Ckij −

1

4
Cjik

= 0.

Lastly, from (4.88), (4.89), (4.90), and (4.94), we immediately have

T̂n+kij = T̂ ki,n+j = T̂ kn+i,j = T̂n+kn+i,n+j = 0.

This completes the proof.

Remark 4.7. The connection ∇α constructed in the proof of Proposition
4.6 is, in general, not a Gauduchon connection. To see this, recall from (3.54)
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that the t-Gauduchon connection is determined by αt ∈ ∧(1,1)g∗ ⊗ g which is
defined by

〈αt(X,Y ), Z〉 =
t

4
(dω)+(JX, JY, JZ) +

t

4
(dω)+(X,Y, JZ).

Using (3.43)-(3.46), we have for 1 ≤ i, j, k ≤ n
〈αt(ei, ej), ek〉

=
t

4
(dω)+(en+i, en+j , en+k) +

t

4
(dω)+(ei, ej , en+k) = − t

4
Ckij ,

〈αt(ei, en+j), en+k〉

=
t

4
(dω)+(en+i, ej , ek)− t

4
(dω)+(ei, en+j , ek) = − t

4
Cjik −

t

4
Cijk.

In order for αt to agree with the α appearing in the proof of Proposition 4.6,
we require

− t
4
Ckij = −1

2
Ckij , − t

4
Cjik −

t

4
Cijk = 0.

For an arbitrary Lie group H, there is, in general, no t ∈ R which satisfies
both equations simultaneously which shows that the connection appearing in
the proof of Proposition 4.6 is a Hermitian connection which is, in general,
not a t-Gauduchon connection.

Let ∇t be the t-Gauduchon connection whose torsion is T t. We now
determine a sufficient condition on H so that ∇t (for some t) is trivial. For
notational convenience, we set T := T t and (once again) T cab := 〈T (ea, eb), ec〉.
We now calculate T̂ cab := 1

2 (T cab−T abc +T bca). Recall that Ĉcab = 1
2 (Ccab−Cabc +

Cbca). Then

T̂ kij = −1

4
Ckij +

2− t
4

Cijk −
1

4
Cjki = −1

2
Ĉkij +

1− t
4

Cijk,(4.95)

T̂n+ki,n+j =
1

4
Ckij −

t

4
Cijk +

1

4
Cjki =

1

2
Ĉkij +

1− t
4

Cijk,(4.96)

T̂n+kn+i,j =
t− 1

4
Ckij +

1− t
4

Cjki =
1− t

2
Ĉjki +

t− 1

4
Cijk,(4.97)

T̂ kn+i,n+j =
1− t

4
Ckij +

t− 1

4
Cjki =

t− 1

2
Ĉjki +

1− t
4

Cijk,(4.98)

T̂n+kij = T̂ ki,n+j = T̂ kn+i,j = T̂n+kn+i,n+j = 0.(4.99)

In preparation for Theorem 4.11, we recall some basic facts from the theory
of Lie groups (cf [13, 17, 1]):

Lemma 4.8. Let H be a compact Lie group. Then h := Lie(H) admits a
positive definite Ad-invariant metric η, that is, η(Adh(X),Adh(Y )) = η(X,Y )
∀ h ∈ H, X,Y ∈ h where Ad : H → GL(h) is the adjoint representation.
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Proof. Fix an orientation on H and let Ω be a left-invariant volume
form such that

(4.100)

∫

H

Ωh = 1.

Let η be any left-invariant (Riemannian) metric on H. Define η̂ : h× h→ R
be defined by

η̂(X,Y ) :=

∫

H

η(Adh−1(X),Adh−1(Y ))Ωh

for X,Y ∈ h. Clearly η̂ is positive definite and, since η̂(X,Y ) ∈ R for X,Y ∈
h, η̂ also induces a left-invariant Riemannian metric on H. To see that η̂ is
Ad-invariant, fix X,Y ∈ h and define f : H → R by

f(h) := η(Adh−1(X),Adh−1(Y )) ∈ R, h ∈ H.
Let x ∈ H be arbitrary and let Lx : H → H be left translation by x. Then
for h ∈ H

(L∗xf)(h) = f(xh)

= η(Ad(xh)−1(X),Ad(xh)−1(Y ))

= η(Adh−1x−1(X),Adh−1x−1(Y ))

= η(Adh−1 ◦Adx−1(X),Adh−1 ◦Adx−1(Y )).

From this, we have

η̂(Adx−1X,Adx−1(Y )) =

∫

H

η(Adh−1 ◦Adx−1(X),Adh−1 ◦Adx−1(Y ))Ωh

=

∫

H

(L∗xf)(h)Ωh

=

∫

H

(L∗xf)(h)(L∗xΩ)h

=

∫

H

L∗x(fΩ)h

=

∫

H

f(h)Ωh

=

∫

H

η(Adh−1(X),Adh−1(Y ))Ωh

= η̂(X,Y )

where we have used the fact that Ω is left-invariant in the third equality and,
in the fifth equality, we have used the fact that Lx : H → H is an orientation
preserving diffeomorphism (since L∗xΩ = Ω and Ω is positively oriented by
(4.100)).
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Corollary 4.9. Let H be a compact Lie group and let η̂ be a positive-
definite Ad-invariant metric on h. If e1, . . . , en is an orthonormal frame with
respect to η̂ and Ckij := η([ei, ej ], ek), then Ckij = −Cjik.

Proof. Let X ∈ h and let h(t) = exp(tX). Then for Y,Z ∈ h, Ad-
invariance of η̂ gives

η̂(Adh(t)Y,Adh(t)Z) = η̂(Y,Z).

Differentiating both sides at t = 0 gives

η̂(adXY,Z) + η̂(Y, adXZ) = 0.

Hence,

η̂([X,Y ], Z) = −η̂(Y, [X,Z]).

Taking X = ei, Y = ej , and Z = ek gives

Ckij = −Cjik.

Remark 4.10. The proof of Lemma 4.8 provides a means of construct-
ing a positive definite Ad-invariant metric on the Lie algebra h of a compact
Lie group H. However, as the construction requires an integration, it would
be nice to have an alternate way of obtaining a positive definite Ad-invariant
metric on the Lie algebra. For the case when H is both compact and semisim-
ple, one can obtain such a metric by turning to the Killing form. Specifically,
if H is both compact and semisimple, then the Killing form K which we recall
is defined by

K(X,Y ) = Tr(adX ◦ adY )

is a negative definite Ad-invariant metric on h where Tr denotes the trace (see
Theorem 2.28 of [1]). Hence, if λ < 0 is any negative number, then η̂ := λK
is a positive definite Ad-invariant metric on h.

We now come to the main result of this section.

Theorem 4.11. Let H be an n-dimensional compact Lie group and let
A be any n-dimensional abelian Lie group. Then G = H × A admits a left-
invariant almost Hermitian structure (J, 〈·, ·〉) such that

(1) J is totally real with respect to h := Lie(H), and
(2) ∇t = 0 for t = 2 and has totally skew-symmetric torsion
(3) ∇t is flat (and nontrivial) for t = −2

Moreover, if TB denotes the torsion of the Gauduchon connection ∇2 and
β ∈ ∧3g∗ is the left-invariant 3-form defined by β(X,Y, Z) := 〈TB(X,Y ), Z〉,
then β is closed.
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Proof. Since H is compact, there exists a positive definite Ad-invariant
metric η̂ on h by Lemma 4.8. Let e1, . . . , en be any left-invariant frame on
H which is orthonormal with respect to η̂ and let Ckij := η̂([ei, ej ], ek). By

Corollary 4.9, the structure constants satisfy the symmetry condition Ckij =

−Cjik. Let en+1, . . . , e2n be any left-invariant frame on A. Define (J, 〈·, ·〉)
to be the left-invariant almost Hermitian structure on G = H × A so that
e1, . . . , e2n is a standard frame for (J, 〈·, ·〉). (Note that from the definition of
standard frame, we see that 〈·, ·〉 restricted to e1, . . . , en is precisely η̂.) From
the symmetry condition on Ckij for 1 ≤ i, j, k,≤ n, we immediately have

Ĉkij =
1

2
(Ckij − Cijk − Cjik) =

1

2
Ckij .

From (4.95)-(4.99), all of the T̂ cab components associated to ∇t vanish except

possibly T̂ kij and T̂n+ki,n+j which reduce to

T̂ kij = − t
4
Ckij , T̂n+ki,n+j =

2− t
4

Ckij .

Setting t = 2, we obtain T̂ cab = 0 whenever one of its indices is greater than n

and T̂ kij = − 1
2C

k
ij = −Ĉkij . From this, it follows that Γcab := 〈∇2

eaeb, ec〉 = 0.

This implies that the torsion T 2 of ∇2 is given by

(4.101) 〈T 2(ea, eb), ec〉 = −〈[ea, eb], ec〉 = −Ccab.
Since Ckij = −Cjik for 1 ≤ i, j, k ≤ n and Ccab = 0 whenever a, b, or c exceeds

n, it follows that 〈T 2(X,Y ), Z〉 is totally skew-symmetric. This completes the
proof of (1) and (2).

For (3), consider ∇t for arbitrary t. Given the values of Ĉcab and T̂ cab
above, it follows from Corollary 4.3 that all the components of Rt are zero
except possibly Rtijkl and Rtij,n+k,n+l (where 1 ≤ i, j, k, l ≤ n) which reduce
to

Rtijkl =
1

4

n∑

p=1

(
ClipC

p
jk − CljpC

p
ik − 2CpijC

l
pk

)
+
t2

16

n∑

p=1

(
ClipC

p
jk − CljpC

p
ik

)

− t

8

n∑

p=1

(
ClipC

p
jk + CpjkC

l
ip − CljpCpik − CljpC

p
ik − 2CpijC

l
pk

)
,

Rtij,n+k,n+l =
2− t

4

n∑

p=1

(
2− t

4
ClipC

p
jk −

2− t
4

CljpC
p
ik − C

p
ijC

l
pk

)
.

The Jacobi identity expressed in terms of the structure constants is
n∑

p=1

(
CpijC

l
pk + CpjkC

l
pi + CpkiC

l
pj

)
= 0.
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Applying the Jacobi identity to Rtijkl and Rtij,n+k,n+l gives

Rtijkl = Rtij,n+k,n+l =

(
t2

16
− 1

4

) n∑

p=1

CpijC
l
pk.

From this, we see that Rtijkl = Rtij,n+k,n+l = 0 for t = 2 (which we recognize

as the trivial left-invariant connection) and t = −2. This completes the proof
of (3).

For the last statement, let TB := T 2 (where we use “B” to emphasize that
the t = 2-Gauduchon connection corresponds to the Bismut (or Strominger)
connection in the integrable case). From (4.101), we have

β(X,Y, Z) := 〈TB(X,Y ), Z〉 = −〈[X,Y ], Z〉 ∀ X,Y, Z ∈ g,

where the above calculation shows that β is a (left-invariant) 3-form. For
W,X, Y, Z ∈ g, we have

dβ(W,X, Y, Z) = −β([W,X], Y, Z) + β([W,Y ], X, Z)− β([W,Z], X, Y )

− β([X,Y ],W,Z) + β([X,Z],W, Y )− β([Y,Z],W,X)

= 〈[[W,X], Y ], Z〉 − 〈[[W,Y ], X], Z〉+ 〈[[W,Z], X], Y 〉
+ 〈[[X,Y ],W ], Z〉 − 〈[[X,Z],W ], Y 〉+ 〈[[Y,Z],W ], X〉
= 〈[[W,X], Y ] + [[X,Y ],W ] + [[Y,W ], X], Z〉
+ 〈[[W,Z], X] + [[Z,X],W ], Y 〉+ 〈[[Y, Z],W ], X〉
= 〈[[W,X], Z], Y 〉+ 〈[[Y, Z],W ], X〉(4.102)

where we have applied the Jacobi identity in the last equality. It follows from
(4.102) that dβ(ea, eb, ec, ed) = 0 whenever any of the indices a, b, c, or d
exceeds n. For 1 ≤ i, j, k, l ≤ n, we have

dβ(ei, ej , ek, el) = 〈[[ei, ej ], el], ek〉+ 〈[[ek, el], ei], ej〉

=

n∑

p=1

(
CpijC

k
pl + CpklC

j
pi

)

=
n∑

p=1

(
CpijC

k
pl + CplkC

j
ip

)

=
n∑

p=1

(
CpijC

k
pl + CklpC

p
ij

)

= 0(4.103)

where we have used the symmetry condition Ckij = −Cjik in the fourth equality.
Hence, dβ = 0.

Remark 4.12. It is interesting to note that the t = 2-Gauduchon connec-
tion ∇2 of Theorem 4.11 is precisely the trivial left-invariant connection, that
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is, every left invariant vector field on H × A is parallel with respect to ∇2.
From this, it follows that every left-invariant tensor on H ×A is parallel with
respect to ∇2. Since the almost complex structure J is left-invariant here, the
associated Nijenhuis tensor is also left-invariant and one has, in particular,
the nice upshot that ∇2N = 0 as well1.

In addition, the 2-Gauduchon connection of Theorem 4.11 also has totally
skew-symmetric torsion (which is not guaranteed for the non-integrable case-
see Appendix A). Recall from Section 2.4 that the 2-Gauduchon connection
corresponds to the Strominger or Bismut connection in the integrable case.
With TB denoting the torsion of the 2-Gauduchon connection, Theorem 4.11
shows that the associated (left-invariant) 3-form β(X,Y, Z) := 〈TB(X,Y ), Z〉
is also closed. This is precisely the strong Kähler with torsion (or SKT)
condition which was first introduced in the context of physics (cf [15, 11])
and then became a topic of interest in complex geometry (see [9] and the
references therein). In general, the 3-form β induced by TB in Theorem 4.11
is not exact (see Example 4.13 below).

The SKT condition has mainly been studied for the case where the al-
most complex structure is integrable. In fact, the standard definition of an
SKT manifold assumes a Hermitian manifold rather than an almost Hermit-
ian one. The reason, of course, is due to the fact that the existence of a
Hermitian connection with totally skew-symmetric torsion is always guaran-
teed for a Hermitian manifold (and this connection is precisely the well-known
Bismut/Strominger connection). So interestingly, Theorem 4.11 yields a left-
invariant almost Hermitian manifold (G = H × A, 〈·, ·〉, J) which satisfies
the SKT condition despite the fact that J is non-integrable (when H is non-
abelian). Following the terminology of the literature, 〈·, ·〉 is an SKT-metric
for (G = H ×A, J).

We conclude the paper with the following example:

Example 4.13. Let G = SO(3) × R3 where SO(3) is the Lie group of
3× 3 orthogonal (real) matrices of determinant 1 and R3 is given its natural
abelian Lie group structure. Let (J, 〈·, ·〉) be the left-invariant almost Her-
mitian structure on G with standard frame e1, . . . , e6 where e4, e5, e6 is any
left-invariant frame on R3 and e1, e2, e3 is the left invariant frame on SO(3)
whose bracket relations are

[e1, e2] = −e3, [e1, e3] = e2, [e2, e3] = −e1.
Note that the frame on SO(3) has been chosen so that the symmetry condition

Ckij = −Cjik is satisfied for 1 ≤ i, j, k ≤ 3. From the proof of Theorem 4.11, the

2-Gauduchon connection ∇2 associated to (SO(3)× R3, J, 〈·, ·〉) is the trivial

1The authors wish to thank one of the anonymous referees for suggesting a question
which motivated the authors to make this nice point explicit.
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left-invariant connection and has totally skew-symmetric torsion. In addition,
the left-invariant 3-form β defined by

β(X,Y, Z) := 〈TB(X,Y ), Z〉 = −〈[X,Y ], Z〉, ∀ X,Y, Z ∈ g

is closed, where TB (again) denotes the torsion of ∇2. Explicitly, we see that
β(e1, e2, e3) = 1 and β(ea, eb, ec) = 0 whenever a, b, or c exceeds 3. We now
show that β is not exact. Let π : SO(3)×R3 → SO(3) be the natural projec-
tion map. Since R3 is contractible, it follows that π is a homotopy equivalence.
Hence, π induces an isomorphism between the de Rham cohomology groups
of SO(3)× R3 and SO(3). In particular, we have

π∗ : H3(SO(3))
∼−→ H3(SO(3)× R3).

Since SO(3) is compact, connected, and orientable of dimension 3, we have
H3(SO(3)) ' R. Any volume form on SO(3) is then a generator ofH3(SO(3)).
Let µ be the left-invariant volume form on SO(3) defined by µ(e1, e2, e3) = 1.
Then β = π∗µ is a generator for H3(SO(3) × R3) which shows that β is not
exact.

The proof of Theorem 4.11 also shows that ∇−2 is nontrivially flat. Cal-
culating the components Γcab := 〈∇−2ea eb, ec〉 we obtain the following:

Γ1
23 = −1, Γ1

32 = 1, Γ2
13 = 1, Γ2

31 = −1, Γ3
12 = −1, Γ3

21 = 1,

Γ4
26 = −1, Γ4

35 = 1, Γ5
16 = 1, Γ5

34 = −1, Γ6
15 = −1, Γ6

24 = 1.

The cautious reader can verify directly that the connection defined by the
above components is both Hermitian and flat.

Appendix A.

The following result was originally proved as part of Theorem 10.1 in [10].
We give a proof2 of this interesting fact for the sake of completeness.

Proposition A.1. Let (M, g, J, ω) be an almost Hermitian manifold.
Then (M, g, J, ω) admits a Hermitian connection whose torsion tensor is to-
tally skew-symmetric if and only if g(N(X,Y ), Z) is totally skew-symmetric.
Moreover, if g(N(X,Y ), Z) is totally skew-symmetric, then the Hermitian
connection with totally skew-symmetric torsion is precisely the t = 2-Gauduchon
connection (see (2.16)). In this case, the torsion T 2 of the t = 2-Gauduchon
connection can be simplified to

g(T 2(X,Y ), Z) = dω(JX, JY, JZ)− g(N(X,Y ), Z).

2The authors were originally unaware of the existence of Theorem 10.1 in [10] at the

time Proposition A.1 was proved. The authors are grateful to Prof. Stefan Ivanov for
sharing the reference to Theorem 10.1 in [10].



42 D. PHAM AND F. YE

Proof. Suppose ∇ is a Hermitian connection such that g(T (X,Y ), Z) is
skew-symmetric in X, Y , and Z. By expanding TJ in condition (1) of Lemma
2.10, condition (1) can be rewritten as

g(T (JX, JY ), Z)

(A.104)

= g(N(X,Y ), Z) + g(T (X,Y ), Z)− g(T (JX, Y ), JZ)− g(T (X, JY ), JZ).

Condition (2) of Lemma 2.10 can be rewritten as
(A.105)
dω(JX, JY, JZ) = g(T (JX, JY ), Z) + g(T (JY, JZ), X) + g(T (JZ, JX), Y ).

Substituting (A.104) into (A.105) and then using the assumption that g(T (·, ·), ·)
is skew-symmetric in its arguments, we find that

(A.106) g(T (X,Y ), Z) = dω(JX, JY, JZ)− g(N(X,Y ), Z).

This shows that if T is totally skew-symmetric, then it must be unique.
Since the left side is totally skew-symmetric and dω(J ·, J ·, J ·) is totally skew-
symmetric, it follows that g(N(X,Y ), Z) is totally skew-symmetric. We now
show that (A.106) is precisely the torsion T 2 of the t = 2 Gauduchon con-
nection (2.16). To do this, we first expand g(TJ(X,Y ), Z) with T defined by
(A.106). This gives

g(TJ(X,Y ), Z)

(A.107)

= −dω(X, JY, Z)− dω(JX, Y, Z) + dω(JX, JY, JZ)− dω(X,Y, JZ)

− 4g(N(X,Y ), Z).

At the same time, condition (1) of Lemma 2.10 gives g(TJ(X,Y ), Z) = −g(N(X,Y ), Z).
Substituting this into (A.107) gives
(A.108)
3g(N(X,Y ), Z) = −dω(X,JY, Z)−dω(JX, Y, Z)+dω(JX, JY, JZ)−dω(X,Y, JZ)
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Applying (A.108) to (A.106), we obtain the following:

g(T (X,Y ), Z)

= dω(JX, JY, JZ)− g(N(X,Y ), Z)

= dω(JX, JY, JZ)− 1

4
(g(N(X,Y ), Z) + 3g(N(X,Y ), Z))

= −1

4
g(N(X,Y ), Z) + dω(JX, JY, JZ)− 1

4
3g(N(X,Y ), Z)

= −1

4
g(N(X,Y ), Z) + dω(JX, JY, JZ)

− 1

4
(−dω(X, JY, Z)− dω(JX, Y, Z) + dω(JX, JY, JZ)− dω(X,Y, JZ))

= −1

4
g(N(X,Y ), Z)

+
1

4
(3dω(JX, JY, JZ) + dω(X,Y, JZ) + dω(X, JY, Z) + dω(JX, Y, Z))

= −1

4
g(N(X,Y ), Z) + (dω)+(JX, JY, JZ)

= g(T 2(X,Y ), Z)

where we applied (A.108) in the fourth equality, the second to last equality
follows from Proposition 2.2, and the last equality is T t in (2.16) for t = 2.

On the other hand, if g(N(X,Y ), Z) is totally skew-symmetric, then it
follows that g(T 2(X,Y ), Z) is totally skew-symmetric. The previous calcula-
tion shows that if a Hermitian connection has totally skew-symmetric torsion,
then the Hermitian connection is unique and must be T 2.
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