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ON THE BOUNDEDNESS OF EULER-STIELTJES
CONSTANTS FOR THE RANKIN-SELBERG L-FUNCTION

MEDINA ZUBACA
University of Sarajevo, Bosnia and Herzegovina

ABSTRACT. Let E be a Galois extension of Q of finite degree and let
7 and 7’ be two irreducible automorphic unitary cuspidal representations
of GLy(Ag) and GL,,,/(AEg), respectively. Let A(s,m X 7') be a Rankin-
Selberg L—function attached to the product m x 7/, where 7’ denotes the
contragredient representation of 7/, and let its a finite part (excluding
Archimedean factors) be L(s,m X 7’). The Euler-Stieltjes constants of the
Rankin-Selberg L—function are the coefficients in the Laurent (Taylor)
series expansion around s = 1 + itg of the function L(s,m X 7). In this
paper, we derive an upper bound of these constants.

1. INTRODUCTION

The classical Euler constant

. 1
¥=9 = lim ;E—logx = 0.57721. ..

discovered and computed correctly up to five decimal places by L. Euler [13]

in 1731 is the constant term in the Laurent series expansion of the Riemann
zeta function at s =1

1 = A 1 = X
C(S):;JFVJFZ%(S*U 15_71+Z’Yk(5*1)-
k=1 k=0
In 1885, T. J. Stieltjes [17] pointed out that each 4, can be obtained as
(=R loghn  loght'z
(L) T D

n<x
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2 M. ZUBACA

The proof of equation (1.1) can be found in [3] and [7]. Therefore, the con-
stants 7 (k > 0) are named the Stieltjes constants, the generalized Euler
constants or the Euler-Stieltjes constants.

The Euler-Stieltjes constants ~y; are closely related (see e.g. [5]) to coeffi-
cients 7 of the Laurent series expansion of the logarithmic derivative of the
Riemann zeta function at s = 1

¢y 1
E(S)__s—l

o0
+ (s — 1)k, [s—1] <3
k=0

Constants 7, can be evaluated as (see e.g. [10])

k-1 k k+1
e — ( lk)' lim (Z A(n)log"n  log gc) 7

ot n k+1

where A(n) is the von Mangoldt function [26, 40]. Usually, constants ~y; are
called the Euler-Stieltjes constants of the first kind, while constants 7 are
called the Euler-Stieltjes constants of the second kind.

The Euler-Stieltjes constants of the first and the second kind are impor-
tant in both theoretical and computational analytic number theory since they
appear in various estimations and as a result of asymptotic analysis. For ex-
ample, the Euler-Stieltjes constants of the first kind can be used to determine
a zero-free region of the Riemann zeta function near the real axis in the crit-
ical strip 0 < Res < 1 [1]. The Euler-Stieltjes constants of the second kind
are related to the Li positivity criterion for the Riemann hypothesis [5] since
they appear in the arithmetic formula for the non-archimedean part of the Li
coefficient. Numerical evaluation and estimations are given in [24].

The Euler-Stieltjes constants of the first and the second kind and their
relation to the Li criterion for the Riemann hypothesis were further investi-
gated by M. Coffey in [9] and [11] and by C. Knessl and M. Coffey in [21].
Some interesting formulas and bounds are recently derived in [31].

This concept is generalized in many different settings. Coefficients ap-
pearing in the Laurent (Taylor) series representation of a zeta or L function
or its logarithmic derivative are called generalized Euler-Stieltjes constants
of the first and the second kind. Different kinds of formulas, properties or
bounds are derived.

Results related to the Hurwitz zeta function are given in [3], those for
the Dedekind zeta function in [16] and [34], for the general setting of a non-
co-compact Fuchsian group with unitary representation in [2], for a class of
functions possessing an Euler product representation in [15], for a subclass
S’ of the Selberg class in [39], for the extended Selberg class in [18] and for
the Rankin-Selberg L—functions in [28] and [29]. Also, some investigations
are done in the case of zeta functions with multiple variables, introducing
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multiple Stieltjes constants, for example, see [23] and [4]. A g-analogues of
these coefficients are investigated in [8].

In this paper, we investigate generalized Euler-Stieltjes constants attached
to the Rankin-Selberg L—functions associated with two representations. We
precisely define coefficients under consideration in the sequel. Let F be a
Galois extension of Q of finite degree and let m and 7’ be two irreducible
automorphic unitary cuspidal representations (see e.g. [12]) of GL,,(Ag)
and GL,, (Ag), respectively. The generalized Euler-Stieltjes constants of the
first kind ~y, (k) attached to the finite part of Rankin-Selberg L—function
L(s, 7 x 7') (an analogue of classical ¢ function) are defined as coefficients in
the Laurent (Taylor) series representation of L(s,m x 7') at s = 1 + ito:

oo
(1.2) Lis,mx7) = > Yew(k)(s — 1 —ito)*,
k=—=6(to)

where (o) = 1 if and only if m = m’ and 7’ = 7 ® |det|", for some t; € R,
where 2 denotes isomorphic representations. Otherwise, d(tp) = 0.

In this paper, the finite part of Rankin-Selberg L—function we denote
by L(s,m x 7') and call the Rankin-Selberg L—function, and its completed
function (including Archimedean factors) we denote by A(s, 7 x 7).

The purpose of this paper is to derive an upper bound for coefficients
~r,n (k) appearing in (1.2). The Rankin-Selberg L—functions attached to a
convolution of two irreducible, unitary cuspidal representations of GL,,(Ag)
and GLy,/(Ag) over number field E do not always belong to the extended
Selberg class S*, which is introduced in [20] (nor to the class of functions

~ ito

considered in [15]). In the case when m = m’ and #’ = 7 ® |det|"°, for
some tg € R\ {0} the Rankin-Selberg L—function possesses pole at s =
1+itg # 1. Hence, they do not satisfy axiom (ii) of the class S*. Furthermore,
coefficients ji; appearing in the functional equation for the Rankin-Selberg
L—functions unconditionally satisfy the bound Reu; > —1, different from the
bound Rey; > 0, posed in axiom (iii) of the class S*.

The rest of the paper is organized as follows. In section 2 we give a com-
plete overview of the setting we are dealing with, introduce necessary notation
and recall some known results that will be used for the proofs. Section 3 con-
tains some preliminary results about functions under consideration, while the
main results are stated and proved in sections 4 and 5. In section 4 inte-
gral representation of coefficients under consideration is derived, while their
bounds are proved in 5.

2. PRELIMINARIES AND NOTATIONS

Let E be a Galois extension of Q of degree d, and let Ag denote the ring
of adeles over E. For every place v, let E, be the completion of a number field
E at v, and let f, denote the modular degree of E, over the field of p—adic
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numbers Q, for v|p, where p is a prime. Let S denotes a set of infinite
places v of the number field E. The Rankin-Selberg L-function attached to
the product 7 x 7 of irreducible cuspidal representations of GL,,(Ag) and
GLy,y (Ag) with a unitary central character (see e.g. [12]), respectively, is
given by absolutely convergent Euler product of local factors

L(s,mx )= [] Lo(s,m x7,),
v<o0
for Res > 1, see e.g. [19, Th. 5.3.], where 7 denotes the contragredient
representation of 7. For finite place v at which 7, and 7] are unramified, the
local factors of L(s,m x ©’) are given by

m m

(2.3) L,(s,mx7) HH(lfawvjaﬂ(vk) )1,

j=1k=1

where {ax(v,j)};L, and {am (v k) }k , are corresponding sets of Satake pa-
rameters assoclated to m and 7', respectively. If m, or m, ramified, we can
also write the local factors at ramified places v in the same form (2.3) with
the convention that some of a (v, j) and a. (v, k) may be zero(see e.g. [28]).
The function L(s, 7 x 7') has a Dirichlet series expansion of the form

. 2 Grxzr(n)
2.4 L =)
(24 (s ) = 30

that is valid for Res > 1.
Similarly, at the infinite place v € S, the archimedean local factor
L,(s,m, X 7,) can be written as a product

L,U(S,T(U X 7T H H S + Hax7 (’U j7k))
j=1k=1

where firx7 (v, 7, k:) = pr(v,7) + prs (v, k), at the 1nﬁn1te places v unramified
for both 7 and 7', {ux(v,5)}7L, and {1tz (v, j) ¥, are the Langlands pa-
rameters assomated to m, and 7/, respectively and T'y(s) = 7~%/?T'(s/2), if v
is real and T',(s) = 2(2m) " T'(s), if v is complex. In the case when infinite
place v is ramified for 7 or 7/, parameters p,x7 (v, j, k) are described in [32,
Appendix], where it is also proved that w7 (v, j, k), for all j = 1,...,m and
kE=1,...,m' satisfy the trivial bound Rep 7 (v, j, k) > —1.
As proved in [12, Th. 9.1. and Th. 9.2.], the completed Rankin-Selberg
L-function
A(s,mx ) = L(s,m x ) H Ly(s,m, x 7))
VESoo
extends to a meromorphic function of order one on the whole complex plane,
bounded (away from its possible poles) in the vertical strip. The functional
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equation, which is due to F. Shahidi ([36], [37], [38]),

(2.5) Als,m x 7') = e(m x #)QZ5A(1 — 8,7 x ')

TXT!

is valid for all s, where Qrxz > 0 is the arithmetic conductor and e(7 x ') is
a complex number of modulus 1. The function A(s, 7 x 7') has simple poles
at s = 1 +itg and s = ito, arising from L(s,7 x 7') if and only if m = m' and
7' 21 @ |det|", for some to € R. Otherwise, it is an entire function.
Following [14] let us define
1,m=m'and 7’ =7 ®|det|™, for some teR;

2.6 O(tg) = ’ ’ ’
(2:6) (t0) { 0, otherwise,
then the functional equation (2.5) can be written as

(2.7) L(s,m X 7 )Wy n(s) = L(1 — 5,7 x 7),

where L(s, 7 x ©') = L(3,m x 7') and the factor ¥, ./ (s) is given by

Qt T T(s o e (0,4, F)
(2.8) Ur o (s) = Ti%’) IT II1I T
0€8ee j=1 k=1 L'y (1 — 54 prxz (v, 7, k))

As in [27], it follows that (2.8) can be written in more convenient form, as

(2.9) Yra(s)=

)

(Qﬂ.ngﬂ'_dmm/)s_% di’_”[”/ L (3 (s + prxw (1))
xF) L T (F (1= st rem D))

where |e (m x 7')| = 1 and prx7 (1) = prxw (v, J, k), for r1 472 places v € S
and firx7(1) = prxz (v,4,k) + 1, for the rest of ro places v € Sy (j =
1, ..., m;k=1,...,m') and r1 denotes number of real places v € S, and
ro denotes number of complex places v € So.

The zeros of A(s, mx7") are called non-trivial zeros of L(s, 7 x7"). They lie
in the strip 0 < Res < 1, see [35]. The function L(s, 7 x7') may also have triv-
ial zeros, which arise from the poles of the local L—factors at infinite places.
There are finitely many of them inside the critical strip 0 < Res < 1 at points
§ = —pxx7(v,7, k), for those v € Soo, 5 € {1,...,m} and k € {1,...,m'}
such that Repirxz (v, 5, k) <O0.

3. SOME PROPERTIES OF THE RANKIN-SELBERG L—FUNCTIONS

In the following proposition, we give some asymptotic bounds for the
Rankin-Selberg L— functions and the factor ¥, ./ (s) of the functional equa-
tion. These results are used in proof of the main result of the paper.
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PROPOSITION 3.1. Let E be a Galois extension of Q of finite degree d and

let ™ and @ be two irreducible automorphic unitary cuspidal representations
of GLy,(Ag) and GLy (Ag). The function U, 1 (s) satisfies relation

1

. Q7r><7~r’ e o—1)dmm’
310 Wnmlo i) v (i) (D
as |t| = +oo. Further, for an arbitrary e > 0 the function L(s, 7 xX7') satisfies
0.(1) if o>1+e,
dmm/ (170’4»6) .
~ 2 —e<coc<
311 Lo +itmx7) = O <|t| > f —esoslte,

O-o (td"’?’" “‘2”)> if o<-—e

PRrROOF. The function ¥, ./(s) can be written as

1
2

1

e(m x7)

con |55 (e (H 250 ] i [p (122t 2D

By applying the asymptotic series expansion of function logI'(z + a) (see
[22, Section 2.11, relation (4)]) on the functions log [F (M)} and

N\ S
U (5) = (Qurm ")

log (T W)], with z = % and z = _Tlt respectively, we obtain

relation (3.10).
For Res = 0 > 1+ ¢ > 1 the Rankin-Selberg L-function L(s, 7 x 7') is
given by an absolutely convergent Euler product for Res > 1, so

Lo +it,m x7)=0.(1), for o>1+c¢,

where O. denotes that a constant appearing in O notation depends on €. For
Res = 0 < —e < 0, the functional equation for the Rankin-Selberg L-function
given by (2.7) and relation (3.10) imply

Lo +it, 7 x7) = Oy (|t| dugn <1—2a>) ,

as [t| — +oo, where O, , denotes that a constant appearing in O notation
depends on ¢ and e. In special case, if o lies in a closed and bounded subset
of R, a constant in O notation is uniform in ¢ and depends on €.

For o such that —e < o < 1+ ¢, Phragmén-Lindel6f theorem for strip can
be used to derive the desired result. Basically, since the function

(5 —itg)?®) (s — 1 — itg) P L(s,m x &),
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where 0(to) is defined by (2.6), is an entire of finite order, the bound
[L(s,m x &) = O (exp(exp(d]t]))) ,

holds true for sufficiently large |¢t| and any 6 > 0. Application of the result [30,
Proposition 8.15] to the Rankin-Selberg L-function in the strip —e < o < 1+¢
implies

Lo +it,m x ) = O, <|t i (1”5)) :

as |[t| = +o00. The proof is complete. 0

4. INTEGRAL REPRESENTATION OF THE GENERALIZED EULER-STIELTJES
CONSTANTS ASSOCIATED TO THE RANKIN-SELBERG L—FUNCTION

In this section, we derive an integral representation for coefficients in the
Laurent (Taylor) series expansion of the Rankin-Selberg L—function given
by (1.2) using a classical method in the analytic number theory based on
contour integrals (see e.g. [40, Section 4.14], [18]). A key idea in the method
is to apply the Cauchy integral formula to obtain an integral expression for
coefficients, and then deform the contour appearing in the integral expression
to a line from a — ico to a + ico. Cauchy integral formula implies

(4.12) s () = 1 /( L(s,m x7)

— [ s,
2mi s — 1 —itg)k+1

where contour C' is a positively oriented circle with centre s = 1 + ity and
radius r such that it contains s = 1 + it as the only singularity of the inte-
grand!. If 6(tg) = 0, for all tg € R, then (1.2) gives Taylor series expansions
of function L(s, 7 x ') and in that case, let tg = 0.

PROPOSITION 4.1. Let E be a Galois extension of Q of finite degree d and
let L(s,m x ) be Rankin-Selberg L—function attached to the product © x 7'
be two irreducible automorphic unitary cuspidal representations of GLn,(Ag)
and GL,,/(Ag). Let k be a positive integer and a be a real number such
that 1 < 1+e <a < 225 + 1 and 3(1 — a + Reprxw (1)) ¢ Z for all
l=1,...,dmm'. Then,

a+100

(—1)* L5, x7)GL(s)
2mi (s + i)k 1

a—100

+ 5(t0)(—1)k+1Re§ L(s,m x7),
S=1lg

(4.13) Yo, () = ds

1Since the function L(s, 7 x #') might have two poles s = ity and s = 1 +itg, we can choose

for radius r any positive number less than %
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where

s—3 dmm’ _
(1) Gyl =T e T [p <S+wa%(1))

(ﬂ-dmm ) s+ =1 2

« T (W) i % (1= 5+ pins (1))} .

PROOF. The proof is based on integral representation (4.12). The contour
C is deformed to a suitable rectangular R, 4,7 and the integral is decomposed
into integrals over its sides.

Let A and T be sufficiently large positive numbers. Let Rq a1 be a
positively oriented rectangle determined by vertices —a + 1 — iT, A — iT,
A +4T and —a + 1 + ¢T. Compared to the integral over C, the additional
contribution can be from a simple pole s = ity of the function L(s, 7 x 7) if
it exists. By the Cauchy’s formula, we can write

1 L(s,m x7) L(s,mx @)
1 ST T s = (k) + B(t0) Res o T
omi / =1 —itg)er1 4 = Ymar (R) +0(t0) Res o= i
Ra,a,T
Therefore,

1 L(s,m x 7
(415) ’yﬂ—,ﬂ—'(k) = % / st—i—é(to)( ) BGZSOL(S 7TX7T )
Ra,A,T
Now, integral over R, 4, can be written as a sum of integrals over line
segments S, S, S3 and Sy joining —a+ 1441, —a+1—4iT, A—iT, A+iT
and —a + 1+ 4T, respectively.
For integral over Ss, we have

T

L(s,m x7) ds / L(s,m x7") d

! ds = s
(s — 1 —itg)k+! (s — 1 —itg)k+?

So —a+1—1iT

75 T 1+6 T A—iT

L(s,m x7)
+ 7 Vk+1 &8
(s — 1 —itg)kt
a+l T —e— zT 1+e—iT

Using Proposition 3.1 we obtain following asymptotic bounds

—e—iT L( ~/) e k41
X 1 I _k—
/ 5, > 7rk _ds| = 0. |T|(a L)dmm/—k—1 7
(8—1—2t0)+ T+t0

a+1—iT

1+e—iT I -, T
/ Lsmx®) (’

(S— 1 —ito)k+l T+ to

s S
dmm’ (14 90)_f—1
A ;

—e—1
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and
A—iT L )
S, T X T 1
) sl =0 [ ———— |,
/ (s =Lt <|T+ m’““)

where O, denotes that constants appearing in O notation are uniform in
Res = o, for s € Sy, and might depend on e.
Hence, for 1 4+ ¢ < a < A5 + % and k£ > —1, we obtain

dmm/’
L(s,mx7)
Sa

Integral over &y can be bounded completely analogously, i.e. we get

L(s,m x7)
Sa

Next, we consider the integral over S3. Here s = A + it, and by choice
of A we are in the region of absolute convergence of the Rankin-Selberg
L—function, thus from Proposition 3.1 and by substitution u = t — tg fol-

lows
/ Lo x™) ol <ok /
(s —1—itg)kt! u2) e

3

where K is a positive constant such that |L(A + it,7 x /| < K. From
Lebesgue’s convergence theorem, when A — oo, it follows that the contri-
bution of the integral over S3 tends to zero, as |T| — oco. Namely, for the
integrand

falt) = L
(A-1)2+12)"

and function

1, te]0,1];
t) =
g() { #7t>17

holds fa(t) < g(¢t) on [0,+00), for k > 0 and g¢(t) is integrable. Then, since
AliIJIrl fa(t) =0, we have
— 400

) ) L(s,m x7)
hm hm T
A—+o0 T—+oo (S —-1- Zto)k+1
S3

ds = 0.
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Thus, the only contribution to the integral in (4.15), when |T| — oo, is
from the integral over S;. So, for £ > max {O, (% + 5) dmm’' — 1}, we have

—a+1—i00
1 L(s,m x7) & -
’Yﬂ',ﬂ—/(k) = % / mdb’ + (5(t0)(—1) ]SR:EZ?OL(S,TF X T )
—a—+1+ioco

a+100

~(-1)F / L(l—s,7mx7) ok _,
= (s Fito) 1 ds 4+ 6(to)(—1) BzeﬁoL(s,w x 7).

Functional equation (2.7) for the Rankin-Selberg L—function and defini-
tion (4.14) of the function G'z(s), combined with formula I'(s)['(1—s) = "—,
which is valid for all s ¢ Z, applied to the gamma functions appearing in
gamma factor of the functional equation imply

L(1—s,mx7)=L(5mx7)GL(s),
for 2 (1= s+ prxw (1) ¢ Z.

Hence, relation (4.13) holds true for all k& > max {0, (% + s) dmm' — 1},

where a € (1 +e, L 4+ %) is chosen such that %(1 —a+Rep-xz () ¢ Z

> dmm/

forall I =1,2,...,dmm’. This completes the proof of Proposition 4.1. ]

5. BOUNDS FOR THE GENERALIZED EULER-STIELTJES CONSTANTS
ASSOCIATED TO THE RANKIN-SELBERG L—FUNCTION

In this section, we prove the main result of the paper, the theorem that
gives an upper bound for the Euler-Stieltjes coefficients v, (k) defined by
(1.2). The proof is based on integral representation (4.13) derived in the
previous section. Firstly, in the following lemma, we prove a bound for the
function G, (s) appearing in the integrand in (4.13).

LEMMA 5.1. Let E be a Galois extension of Q of finite degree d and
let L(s,m x 7') be Rankin-Selberg L—function attached to the product = X 7'
two trreducible automorphic unitary cuspidal representations of GL,,(Ag) and
GL,(Ag). Let up = max  |Reprxw ()|, pr = max  |Impgxz ()]

1=1,...,dmm/’ l=1,...,dmm/’
For a > max{1l +¢,ur}, where e > 0, we have
a1l
(5.18) |Gr(a+it)] < Q. .2,Cr(a)
72a—1

dmm
1+a+pr 2+ [t + pr\® ’
2 2 ’

where constant Cp,(a) is given by

dmm/’ dmm/’
2 2 1
Cr(a) = ( ) exp ot
s

1 l; 6(a + Reprx (1) (1 +a — Repiaxz (1))
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PROOF. From definition (4.14) of function Gy, for s = a + it, and having
in mind that e(m x 7) is a complex number of modulus 1, one obtains
Qa—% dmm’

X! . T .
[ r—
=1

P(1+a+it—ﬂﬂx%’(l)>r (a”t*“”%’(”)

(5.19) |Gr(a+it)| =

2 2

] |

Factors containing sine function, we bound using a simple representation in
terms of exponential functions, precisely for z € C,

(5.20) |sin z| < el™=l,

While bounds for the factors containing gamma functions will be based on
Binet formula [41, p. 258]

1 Imz 1
(5.21) log|I'(2)| = <Rez - 2) log |z| — Imz arctan Res Rez + 3 log(2)

—+o00
1 1 1 \e®
R R dt
e /(2 t+et—1> t
0

valid for Rez > 0. A simple calculation implies that the second term can be
additionally simplified, i.e.

mz T
—Imzarctan — — Rez < —— |Imz]|.
Rez - 2 | |

The properties of the function g(t) = (% — % + L ) L1 specially, the fact

el—1 )t

that it attains its maximum 1/12, at ¢t = 0, gives us a bound

T tz 1
1 1 1 \e
R - — = dt| < .
¢ /(2 t+et—1> ¢ = 12Rez
0

So, for Rez > 0, relation (5.21) implies

(5.22) log|T'(2)] < (Rez — ;) log |z| — [Imz| g + %10g(27r) + 2oz

For the arguments appearing in (5.19), bound (5.20) implies

(5.23) ’sing (1= a—it+ firxs (l))’ <exp (g It — Imﬂﬂ%,(m),

for all I = 1,...,dmm/. Since, by the assumption, a > max{l + ¢, ur},

and coefficients prx7/(l) for the Rankin-Selberg L—function satisfy bound
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Repirx7z > —1, we have

Re <a+2t+ﬂﬂ%/(l)> >0 and Re(l—i_a_Ht_’u”X%/(l)) >0,

2 2

foralll =1,...,dmm’, thus inequality (5.22) may be applied for the gamma
factors in (5.19).
In addition, definition of numbers pgr and p; implies the following in-
equalities
(t = Tmpimsee (1) < (t] + pur)”,
(a + Repirxa (1))* < (14 a+ pur)?,
(14 a —Repirxz(1)? < (14 a+ pr)?,

and from (5.22) we obtain

t ﬂ.’ﬂ'-/l 1 't—ﬂ%/l
log |T M +log |T tatit — pirxzr ()
2 2
2a—1 l+a+pr\’ ]+ pr\ ™
< 1 ——t-1I = (1
< g(( ) (M " gt )
1 2a+1

+ log 27,

_l’_ —
6 (a + Repirxsz (1)) (1 + a — Repirxz (1))
for alll =1,...,dmm’. This bound combined with (5.23) implies

. <a+it+uﬁx%'(l)> . <1+a+ifuwx%'(l)>

2 2
y Sinﬂ-(l_a_n'i'ﬂwx%’(l))‘
2
oy |20 (Lot pn 2+ ]+ pr\
SO T 08 2 2
20+ 1

+ + log 27| .
6(a + Repimen () (1 +a — Repien (D) 0 ”]

Substituting it into (5.19), we obtain (5.18), and the proof is complete. 0

The first explicit upper bound for coefficients in the Laurent series expansion
of the Riemann zeta function about s = 1 has been given by Briggs [6]. Then,
Matsuoka studied the asymptotic behaviour of these coefficients and he gave
an excellent upper bound for its in [25]. Results related to upper bound for
Stieltjes constants for the Dirichlet L-function when Y is a primitive character
modulo ¢ is given in [33], those for the Hurwitz zeta function in [3]. The
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investigation of Stieltjes constants for functions from the extended Selberg
class S* is done and an upper bound for these coefficients is obtained in [18].

The following theorem is the main result of the paper, it gives a bound
for the coefficients under consideration.

THEOREM 5.2. Let E be a Galois extension of Q of finite degree d and
let L(s,m x ) be Rankin-Selberg L—function attached to the product © x 7'
two irreducible automorphic unitary cuspidal representations of GLy,(Ag) and
GLyy (Ag) with pole at s =1+ ity if m =m’ and « = 7 @ |det|"™, otherwise
to =0. Let pp = . max Reprxz (D], pr = L max Tmpir sz (1)| and

pr,r = max{pg, ur +to —1}. Let a > max{1l +¢,upr,|to| + pr — pr,1} and
%(1 —a+Reprxz (1)) € Z for alll = 1,...,dmm’. For positive integer k such
that k > dmm/ (a — %) we have

4
5.24 (k) <D —k (9
620 ) <Dsa)a +uR,z+u1+kdmm,2a21>

+6(tg) [Res L(s,m x 7|,

SZO

where constant Dy (a) is defined by

dmm/’

2a+1 1

Z (a+ Reprxz (1)1 +a— Reprxz (1)

_1
925 (30 ) Qi (ﬁ)d”””’@—%) *jf [axxz (n)]
T T ne .

Dp(a) =ex

n=1
PROOF. From the integral representation of generalized Euler-Stieltjes

coefficients given in Proposition 4.1, and using the bound obtained in Lemma 5.1,
we have

1
Qs
o )] < Cul@) =322

“+o00 9 2 dmm/' 2¢=1
Ltatpr)”  (t+pr
2 2

L(a —it,m x @)
L dt + 5(t0)
( + (t+1t9)?) =
where Cp(a) is defined in Lemma 5.1.
Since the Rankin-Selberg L—function possesses a Dirichlet series repre-
sentation (2.4) that converges absolutely for Res > 1, for a > 1+ ¢ > 1, one
yields

RQSL(Sﬂ'Xﬂ')

<3l

L(a—it,m x 7)
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hence

QL 2/ = |a7TX7T (n)]
(56.25) |y (k)] <C Uz Z I+ 6(to) Reb L(s,m x 7|,
where

/72a—1

2 2 dmm' =%
1+a+pur It + pur dt
— ) T3 =
(@ + (t + 1))

Thus, it is left to derive a bound for the integral I. Depending on the value
of tg, we examine two cases.

(i) Let top > 0. Then

+oo
(5.26) 1= / ( ! kt1 + ! k+1>
o \@+(+6)?) > (a®+(t—t0)?) 7

/2a—1
dmm' = —

T+a+pur\® [t+pupr)\’
—_— ] + dt.
2 2
The interval of integration we derive into two parts. Denote by I; and
I integrals that correspond to intervals (0, B) and (B, +00), respec-

tively, where B =1+a + pg,r — pr > to + 1.
For I; we have

+o0
- |

2a—1 ’
“—dmm
b

(5.27) I <202+ ppr+ pr)

since 1 +a+pp < 1+a+ prr < 4a and % < 2+ pr;1 + pr, by
assumptions of the theorem.
For integral I, we have t > B,

L+a+pur\? [t+pr)? t+pr\
— ) + | L2 )
2 2 2

and (t +1t9)% > (t —to)?, so

2 dmm’zafl‘_1
U+ pr
2 dt
()]
/2a—1

2o k+1 51-4
t+t0+,u1 2 mm 4 d 72a—1
/'< t ) a+m+un“1@+M+“ﬂmm T

B—tg

+o0o

B/ (a® + (¢ —2 t)2)" %

I

IN

IN

Furthermore, since the function g(t) = % is monotonically de-

creasing for t > B — ty, g(t) > 1 and , liIE g(t) = 1, it follows that
—+00
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maximal value of g(t) is at point ¢ = B — ¢y and it is equal to g%’t*of.
Hence,
B+ py s 1—dmm/ 2a=1
L <|—— 2 1
~“\B—t
—+oo
’2a—1
X / (t+to+ M[)i(k+1)+dmm 2 dt.
B—tg
For constant a under consideration, we have a < % + ﬁ, thus the
above integral converges and yields
21—dm’m/ 2u471 (1 +a+ MR’I)1+dmm"2a;1

I, < .
P k—dmm 2L (T a+ ppr — pr — to) !

Additionally, since pp; = max{ur, pr + to — 1} inequalities 1 + a +

R — pr —to > a > 1+¢e > 1 hold true. Also, 1 +a+ pugr < 4a.

Thus

—k+dmm’ %

(5.28) I, <

Substituting (5.27) and (5.28) into (5.26), combined with (5.25) implies
(5.24).
(ii) The result for the case ty < 0 can be derived completely analogously
as in (i) using simple substitution —tg = ¢; > 0.
The proof is complete. 0
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