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ON 2MP-, MP2-, AND CMP2-INVERSES IN ∗-RINGS

Janko Marovt and Dijana Mosić

Abstract. The notions of a 2MP-inverse, a MP2-inverse, and a

C2MP-inverse are extended from the set of all m × n complex matrices
to the set R† of all Moore-Penrose invertible elements in a unital ∗-ring R.

We study properties of these hybrid generalized inverses and thus general-

ize some known results. We apply the (b, c)-inverse of a ∈ R† to determine
a special case of a 2MP- or MP2-inverse of a and then use these inverses

to solve certain equations which lead to least-squares solutions and the

normal equation.

1. Introduction

Let R be a ∗-ring, i.e., a ring equipped with an involution ∗. There are many generalized
inverses that may be defined on R and two of the best known are the Moore-Penrose inverse and
an inner generalized inverse. We call an element a ∈ R Moore-Penrose invertible or ∗-regular with
respect to ∗ if there exists x ∈ R that satisfies the following four equations:

(1.1) axa = a, xax = x, (ax)∗ = ax, (xa)∗ = xa.

If such x exists, we write x = a† and call it the Moore-Penrose inverse of a. It is known that a† is
unique if it exists. The set of all ∗-regular elements in R is denoted by R†. We say that a ∈ R is
regular if there exists x ∈ R that satisfies the first equation in (1.1). Such x, if it exists, is called
an inner generalized inverse or {1}-inverse of a, and we write x = a−, i.e., aa−a = a. The set
of all {1}-inverses of a is denoted by a{1} and we denote the set of all regular elements in R by
R(1). If there exists x ∈ R that satisfies the second equation in (1.1), then such x is called an outer
generalized inverse or {2}-inverse of a, and we write x = a2−, i.e., a2−aa2− = a2−. The set of all
{2}-inverses of a is denoted by a{2}, and we denote the set of all elements in R that have an outer
inverse by R(2).

A ring R where every element is ∗-regular is called a ∗-regular ring. An example of a ∗-regular
ring is the set Mn(C) of all complex n × n matrices where A∗ denotes the conjugate transpose of
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A ∈ Mn(C). The above generalized inverses are defined in the same way on the set Mm,n(C) of all
m× n complex matrices, and it is known that every matrix A ∈ Mm,n(C) has an inner generalized
inverse A− ∈ Mn,m(C), an outer generalized inverse A2− ∈ Mn,m(C), and the unique Moore-
Penrose inverse A† ∈ Mn,m(C). Two new types of hybrid generalized inverses were introduced and
studied in [3] on Mm,n(C) (see also [9]). Let A ∈ Mm,n(C). For each outer generalized inverse A2−

of A, the matrices

A2MP = A2−AA† and AMP2 = A†AA2−

are called a 2MP-inverse and a MP2-inverse of A, respectively. Observe that A2MPA = A2−A
and AAMP2 = AA2− and thus

(1.2) AA2MPA = AA2−A = AAMP2A.

Since there may be many outer generalized inverses A2− of A, A2MP and AMP2 are (in general)
not unique. In the case when the range and the null space of A2− are fixed, the 2MP-inverse and
the MP2-inverse of A reduce to the unique OMP inverse and MPO inverse, respectively, proposed
in [7, 8] as follows. Let A2−

T,S denote the (unique) outer generalized inverse of A ∈ Mm,n(C) with
the range T and the null-space S. Then

A(2),† = A2−
T,SAA

† and A†,(2) = A†AA2−
T,S

are called the outer Moore-Penrose (or OMP) inverse and the Moore-Penrose outer (or MPO)
inverse of A, respectively.

Recall that the Drazin inverse of A ∈ Mn(C) is the unique matrix X ∈ Mn(C) that satisfies

XAX = X, AX = XA, Ak+1X = Ak

for some nonnegative integer k. The Drazin inverse, which exists for every A ∈ Mn(C), is denoted
by AD. Note that AD is an outer generalized inverse of A. In [6], a CMP-inverse of a matrix
A ∈ Mn(C) was introduced as

Ac† = A†A1A
†

where A1 is the core part in the core-nilpotent decomposition of A, i.e., A1 = AADA. As a
generalization of CMP-inverses from square to rectangular matrices, another generalized inverse
was introduced and studied in [3]. For A ∈ Mm,n(C) and for each outer generalized inverse A2− of
A, we call the matrix

CA
2 = AA2−A

a 2MP core-part of A (see (1.2)). For each outer generalized inverse A2− of A ∈ Mm,n(C), the
matrix

AC2MP = A†CA
2 A†

is called a C2MP-inverse of A. Note that for A ∈ Mm,n(C), CA
2 and AC2MP are not (in general)

unique. Also, for A ∈ Mn(C), take A2− = AD, and observe that then AC2MP = Ac†.
The aim of this paper is to extend the concepts of 2MP-, MP2-, and C2MP-inverses to the set

R† of all ∗-regular elements in a ∗-ring R, and present some characterizations and properties of
these hybrid generalized inverses.



2MP-, MP2-, AND CMP2-INVERSES IN ∗-RINGS 3

2. Preliminaries

In this section, let R be a ∗-ring with the (multiplicative) identity 1. If for p ∈ R, p2 = p, then
p is said to be an idempotent. A projection p ∈ R is a self-adjoint idempotent, i.e., p = p2 = p∗.
The equality 1 = e1+e2+ · · ·+en, where e1, e2, . . . , en are idempotents in R and eiej = 0 for i ̸= j,
is called a decomposition of the identity of R. Let 1 = e1 + e2 + · · ·+ en and 1 = f1 + f2 + · · ·+ fn
be two decompositions of the identity of R. We have

x = 1 · x · 1 = (e1 + e2 + · · ·+ en)x(f1 + f2 + · · ·+ fn) =
n∑

i,j=1

eixfj .

Then any x ∈ R can be uniquely represented in the following matrix form:

(2.3) x =




x11 · · · x1n

...
. . .

...
xn1 · · · xnn



e×f

where xij = eixfj ∈ eiRfj . With e× f we emphasize the use of the decompositions of the identity
1 = e1 + e2 + · · ·+ en on the left side and 1 = f1 + f2 + · · ·+ fn on the right side of x = 1 · x · 1. If
x = (xij)e×f and y = (yij)e×f , then x+y = (xij +yij)e×f . Moreover, if 1 = g1+ · · ·+gn is another
decomposition of the identity of R and z = (zij)f×g, then, by the orthogonality of the idempotents
involved, xz = (

∑n
k=1 xikzkj)e×g

. Thus, if we have decompositions of the identity of R, then the

usual algebraic operations in R can be interpreted as simple operations between appropriate n× n
matrices over R. When n = 2 and p, q ∈ R are idempotents, we may write

x = pxq + px(1− q) + (1− p)xq + (1− p)x(1− q) =

[
x11 x12

x21 x22

]

p×q

.

Here x11 = pxq, x12 = px(1− q), x21 = (1− p)xq, x22 = (1− p)x(1− q).
By (2.3) we may write

x∗ =




x∗
11 · · · x∗

n1
...

. . .
...

x∗
1n · · · x∗

nn



f∗×e∗

,

where this matrix representation of x∗ is given relative to the decompositions of the identity 1 = f∗
1

+ · · ·+ f∗
n and 1 = e∗1 + · · ·+ e∗n .

Let a ∈ R and let a◦ denote the right annihilator of a, i.e., the set a◦ = {x ∈ R : ax = 0}.
Similarly we denote the left annihilator ◦a of a, i.e., the set ◦a = {x ∈ R : xa = 0}. Suppose that
p, q ∈ R are such idempotents that ◦a = ◦p and a◦ = q◦. Observe (or see [1, Lemma 2.2]) that
◦p = R(1− p) and q◦ = (1− q)R. It follows that then a = paq, i.e.,

(2.4) a =

[
a 0
0 0

]

p×q

.

Let a ∈ R(2), x ∈ a{2}, and let us represent x with

x =

[
x11 x12

x21 x22

]

q×p

.
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Then

xax =

[
x11 x12

x21 x22

]

q×p

[
a 0
0 0

]

p×q

[
x11 x12

x21 x22

]

q×p

=

[
x11ax11 x11ax12

x21ax11 x21ax12

]

q×p

.

Since xax = x, it follows that x11 = x11ax11, x12 = x11ax12, x21 = x21ax11, and x22 = x21ax12.
Let t = ax12 and u = x21a. Then x22 = (x21a)x12 = ux12 = ux11(ax12) = ux11t and thus

x =

[
x11 x11t
ux11 ux11t

]

q×p

.

Conversely, let

x =

[
x11 x11t
ux11 ux11t

]

q×p

with x11 = x11ax11, t ∈ pR(1− p), and u ∈ (1− q)Rq. Then

xax =

[
x11 x11t
ux11 ux11t

]

q×p

[
a 0
0 0

]

p×q

[
x11 x11t
ux11 ux11t

]

q×p

=

[
x11ax11 x11ax11t
ux11ax11 ux11ax11t

]

q×p

=

[
x11 x11t
ux11 ux11t

]

q×p

= x.

Let a ∈ R(2) and suppose that there exist idempotents p, q ∈ R such that a has the matrix
form (2.4). We showed that then x ∈ a{2} if and only if

x =

[
x11 x11t
ux11 ux11t

]

q×p

where t ∈ pR(1− p), and u ∈ (1− q)Rq are arbitrary (but fixed) elements and x11 = x11ax11.

3. 2MP-inverses in rings

Let R be a ring with identity 1 and let a ∈ R(2). We next define a binary relation ∼l on the
set a{2} as follows. For a2−, a2= ∈ a{2} we write

a2− ∼l a
2= if a2−a = a2=a.

Clearly, ∼l is an equivalence relation and for a given a2− ∈ a{2} its equivalence class is the set
[
a2−

]
∼l

=
{
a2= ∈ a{2} : a2=a = a2−a

}
.

Suppose there exist idempotents p, q ∈ R such that ◦a = ◦p and a◦ = q◦. Let a have the matrix
form (2.4) and let a2−, a2= ∈ a{2} with

a2− =

[
x11 x11t
ux11 ux11t

]

q×p

and a2= =

[
x′
11 x′

11t
′

u′x′
11 u′x′

11t
′

]

q×p

where t, t′ ∈ pR(1−p), u, u′ ∈ (1−q)Rq, x11 = x11ax11, and x′
11 = x′

11ax
′
11. Suppose a

2= ∈
[
a2−

]
l
.

Since then a2=a = a2−a, we obtain
[

x11a 0
ux11a 0

]

q×q

=

[
x′
11a 0

u′x′
11a 0

]

q×q

and hence x11a = x′
11a and ux11a = u′x′

11a. It follows that x11 − x′
11 ∈ ◦a and ux11 − u′x′

11 ∈ ◦a.
From ◦a = ◦p we get x11p = x′

11p and ux11p = u′x′
11p, but since x11, x

′
11 ∈ qRp we obtain that

x11 = x′
11 and ux11 = u′x′

11. Conversely, if x11 = x′
11 and ux11 = u′x′

11, then x11a = x′
11a and
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ux11a = u′x′
11a, and thus a2=a = a2−a. We proved that a2= ∈

[
a2−

]
∼l

if and only if x11 = x′
11

and ux11 = u′x′
11. So, for a

2− ∈ a{2} with

(3.5) a2− =

[
x11 x11t
ux11 ux11t

]

q×p

,

where t ∈ pR(1− p), u ∈ (1− q)Rq, and x11 = x11ax11, it follows that

[
a2−

]
∼l

=

{[
x11 x11t

′

ux11 ux11t
′

]

q×p

: t′ ∈ pR(1− p) is arbitrary

}
.

If we pick t′ = 0, we get a representative
[

x11 0
ux11 0

]

q×p

of this equivalence class and hence a complete set of representatives of the partition of a{2} induced
by ∼l is given by

Rep∼l
=

{[
x11 0
ux11 0

]

q×p

: u ∈ (1− q)Rq is arbitrary and x11ax11 = x11

}
.

From now until the end of Section 3, let R be a ∗-ring with identity 1.

Remark 3.1. Suppose a ∈ R† and let p = aa† and q = a†a. Then p and q are projections.
Moreover, pa = a and aq = a, and so ◦a = ◦p and a◦ = q◦. We may thus write a in the matrix
form (2.4). Let a2− ∈ a{2} be represented with the matrix form (3.5). It follows that

a2−aa† = a2−p =

[
x11 x11t
ux11 ux11t

]

q×p

[
p 0
0 0

]

p×p

=

[
x11p 0
ux11p 0

]

q×p

=

[
x11 0
ux11 0

]

q×p

.

Here x11ax11 = x11. Thus, every element of Rep∼l
can be factorized as a2−aa† for a ∈ R† and for

some a2− ∈ a{2}.
We now extend the notion of a 2MP-inverse to the set of all ∗-regular elements in a ∗-ring.
Definition 3.2. Let a ∈ R†. For each a2− ∈ a{2} we call the element

a2MP = a2−aa†

a 2MP-inverse of a. We denote

a{2MP} =
{
a2−aa† : a2− ∈ a{2}

}
.

Remark 3.3. Observe that a2MP is the most simple representative of the equivalence class[
a2−

]
∼l
. Since a† ∈ a{2MP}, it follows that a{2MP} is nonempty for every a ∈ R†. Also, clearly,

0 ∈ a{2MP}. Suppose a ∈ R† is written as (2.4) where p = aa† and q = a†a. Then

a{2MP} =

{[
x11 0
ux11 0

]

q×p

: u ∈ (1− q)Rp is arbitrary and x11ax11 = x11

}
.

We prove the following result in the same way as [3, Proposition 2.3].

Proposition 3.4. Let a ∈ R†. Then there exists a bijective map between the quotient set
a{2}/∼l of a{2} by ∼l and the set a{2MP}.
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For a ∈ R† and for each a2− ∈ a{2} we define

(3.6) ca2 = aa2MPa

and call this element the 2MP core-part of a. Since a2MP ∈
[
a2−

]
∼l
, we have a2MPa = a2−a and

thus

(3.7) ca2 = aa2−a.

Remark 3.5. Note that if a ∈ R† and a2− ∈ a{2} are represented with the matrix forms (2.4)
and (3.5), respectively, then

ca2 =

[
a 0
0 0

]

p×q

[
x11 x11t
ux11 ux11t

]

q×p

[
a 0
0 0

]

p×q

=

[
ax11a 0
0 0

]

p×q

= ax11a.

Many new generalized inverses have been introduced recently as solutions of certain systems of
equations (see, e.g., [5, 9]). With the next result we characterize 2MP-inverses in terms of solutions
of systems of equations. Observe that

ca2a
2MP = a

(
a2−aa2−

)
aa† = aa2−aa† = ca2a

†.

Since also a2MP ∈ a{2} and a2MPa = a2−a, the element a2MP is a solution of the following system
of equations: xax = x, xa = a2−a, ca2x = ca2a

†. It is easy to prove (or see [3, proof of Theorem 2.5])
that it is the unique solution of the system.

Proposition 3.6. Let a ∈ R†. For each a2− ∈ a{2}, the element a2MP is the unique solution
to the following system of equations

(3.8) (i) xax = x, (ii) xa = a2−a, (iii) ca2x = ca2a
†.

Let ImA and KerA denote the image (i.e., the column space) and the kernel (i.e., the null space)
of A ∈ Mn(C). Note that for A,B ∈ Mn(C) we have (see [4, proof of Lemma 2.1])

ImA ⊆ ImB if and only if ◦B ⊆ ◦A

and
KerA ⊆ KerB if and only if A◦ ⊆ B◦.

Let A ∈ Mn(C) and let A2− be an outer generalized inverse of A. By [3, Theorem 2.6], AA2MP

is an idempotent matrix with Im
(
AA2MP

)
= Im

(
AA2MPA

)
and Ker

(
AA2MP

)
= KerA2MP ,

and A2MPA is an idempotent matrix such that Im
(
A2MPA

)
= ImA2MP and Ker

(
A2MPA

)
=

Ker
(
AA2MPA

)
. We now extend this result to the ∗-ring setting.

Theorem 3.7. Let a ∈ R†. For a given a2− ∈ a{2}, the element a2MP satisfies the following
properties:

(a) ◦a2− = ◦a2MP .

(b) aa2MP is the idempotent with ◦ (aa2MP
)
= ◦ca2 and

(
aa2MP

)◦
=

(
a2MP

)◦
.

(c) a2MPa is the idempotent with ◦ (a2MPa
)
= ◦a2MP and

(
a2MPa

)◦
= (ca2)

◦
.

Proof. (a) Clearly, by Definition 3.2, ◦a2− ⊆ ◦a2MP . Let now z ∈ ◦a2MP for some z ∈ R.
Then 0 = za2−aa†. Multiplying this equation from the right consequently first by a and then by
a2−, we get 0 = za2−. So, ◦a2− = ◦a2MP .

(b) Since aa2MPa = aa2−a and a2MP = a2−aa†, we have
(
aa2MP

)2
=

(
aa2MPa

)
a2MP = a

(
a2−aa2−

)
aa† = aa2−aa† = aa2MP
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and so aa2MP is an idempotent. Let us now prove that ◦ (aa2MP
)
= ◦ca2 . Let z ∈ ◦ (aa2MP

)
for

some z ∈ R. Then 0 = zaa2MP = zaa2−aa† = zca2a
† and thus 0 = zca2a

†a. But since ca2 = aa2MPa,
it follows that ca2a

†a = ca2 , and therefore, z ∈ ◦ca2 . Let now z ∈ ◦ca2 for some z ∈ R. Then
0 = zaa2−a and thus 0 = zaa2−aa† = zaa2MP . So, ◦ (aa2MP

)
= ◦ca2 .

Let us now show that
(
aa2MP

)◦
=

(
a2MP

)◦
. Clearly,

(
a2MP

)◦ ⊆
(
aa2MP

)◦
. If aa2MP z = 0

for some z ∈ R, then 0 = aa2−aa†z and hence 0 = a2−aa2−aa†z = a2−aa†z = a2MP z. So,(
aa2MP

)◦
=

(
a2MP

)◦
.

We similarly prove (c).

As a corollary to Theorem 3.7, we give another characterization of a 2MP-inverse. First, let us
prove an auxiliary result.

Lemma 3.8. Let p1, p2 ∈ R be two idempotent elements. If ◦p1 = ◦p2 and p◦1 = p◦2, then
p1 = p2.

Proof. From ◦p1 = ◦p2 we have (1 − p1)p2 = 0 and so p2 = p1p2. By p◦1 = p◦2 we obtain
p1(1− p2) = 0, i.e., p1 = p1p2. So, p1 = p1p2 = p2.

Corollary 3.9. Let a ∈ R†. For each a2− ∈ a{2}, the 2MP-inverse a2MP of a is the unique
element x that satisfies the following conditions:

(i) ax is an idempotent with

◦ (ax) = ◦ca2 and (ax)
◦
=

(
ca2a

†)◦ ,
(ii) ◦a2− ⊆ ◦x.

Proof. Condition (ii) is satisfied by Theorem 3.7. Also, aa2MP is an idempotent with
◦ (aa2MP

)
= ◦ca2 , and since ca2a

† = aa2−aa† = aa2MP , the element x = a2MP satisfies also
conditions in (i).

Let us prove the uniqueness. Suppose that x1, x2 ∈ R satisfy both (i) and (ii). Then ax1 and

ax2 are idempotents with ◦ (ax1) =
◦ca2 = ◦ (ax2) and (ax1)

◦
=

(
ca2a

†)◦ = (ax2)
◦
, and therefore by

Lemma 3.8, ax1 = ax2. From (ii), ◦a2− ⊆ ◦x1 ∩ ◦x2. So,
(
1− a2−a

)
x1 = 0 =

(
1− a2−a

)
x2

and thus x1 = a2−ax1 = a2−ax2 = x2.

The following characterizations of a 2MP-inverse can also be verified.

Theorem 3.10. Let a ∈ R† and x ∈ R. For a given a2− ∈ a{2}, the following statements are
equivalent:

(i) x = a2MP .
(ii) xR = a2−R and ax = aa2−aa†.
(iii) xR ⊆ a2−R and ax = aa2−aa†.
(iv) x∗R = aa†(a2−)∗R and xa = a2−a.
(v) x∗R ⊆ aR and xa = a2−a.

Proof. (i) ⇒ (ii): Since x = a2MP = a2−aa†, it follows that ax = aa2−aa† and

xR = a2−aa†R = a2−aR = a2−R.

(ii) ⇒ (iii): This implication is clear.
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(iii) ⇒ (i): The hypothesis xR ⊆ a2−R implies x = a2−u, for some u ∈ R. Hence, by
ax = aa2−aa†,

x = a2−a(a2−u) = a2−(ax) = (a2−aa2−)aa† = a2MP .

In a similar manner, we check the rest.

Let a, b ∈ R. If aR ⊆ bR, then a = bu for some u ∈ R, and thus ◦b ⊆ ◦a. Suppose now there
exists v ∈ R such that bvb = b, i.e., b ∈ v{2}. If ◦b ⊆ ◦a, then (1−bv)a = 0 which implies aR ⊆ bR.
Consequently, we obtain by Theorem 3.10 more characterizations of a 2MP-inverse.

Corollary 3.11. Let a ∈ R† and x ∈ v{2} for some v ∈ R. For a given a2− ∈ a{2}, the
following statements are equivalent:

(i) x = a2MP .
(ii) ◦x = ◦(a2−) and ax = aa2−aa†.
(iii) ◦x ⊇ ◦(a2−) and ax = aa2−aa†.
(iv) ◦(x∗) = ◦[aa†(a2−)∗] and xa = a2−a.
(v) ◦(x∗) ⊇ ◦a and xa = a2−a.

Let us recall the definition of the (b, c)-inverse which is a special kind of the outer generalized
inverse. For a, b, c ∈ R, an element x ∈ R is a (b, c)-inverse of a if xax = x, xR = bR and
Rx = Rc. The (b, c)-inverse of a is unique, if it exists, and denoted by a||(b,c) [2]. Applying a
2MP-inverse determined by the (b, c)-inverse a||(b,c) in place of an outer generalized inverse a2−, we
prove solvability of the next equation.

Theorem 3.12. Let a ∈ R† and b, c, d ∈ R. If a||(b,c) exists, the general solution to the equation

(3.9) cax = caa†d

is expressed as

(3.10) x = a||(b,c)aa†d+ (1− a||(b,c)a)z,

for an arbitrary z ∈ R.

Proof. By Ra||(b,c) = Rc, notice that c = ua||(b,c) and a||(b,c) = vc, for some u, v ∈ R. Thus,

caa||(b,c) = ua||(b,c)aa||(b,c) = ua||(b,c) = c.

For x expressed by (3.10), we therefore get

cax = caa||(b,c)aa†d+ ca(1− a||(b,c)a)z = caa†d,

i.e., x is a solution to (3.9).
If equation (3.9) has a solution x, then, by a||(b,c) = vc,

a||(b,c)ax = v(cax) = (vc)aa†d = a||(b,c)aa†d.

Thus, x has the form (3.10):

x = a||(b,c)aa†d+ x− a||(b,c)ax = a||(b,c)aa†d+ (1− a||(b,c)a)x.

Since c = ua||(b,c) and a||(b,c) = vc, for some u, v ∈ R, note that equation (3.9) is satisfied if
and only if

a||(b,c)ax = a||(b,c)aa†d.

Hence, any solution to (3.9) is a solution to a||(b,c)ax = a||(b,c)aa†d and vice versa.
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As a consequence of Theorem 3.12, we obtain the solvability of equation (3.10) with the con-
strain d ∈ aR.

Corollary 3.13. Let a ∈ R† and b, c, d ∈ R. If a||(b,c) exists, the general solution to the
equation

cax = cd, d ∈ aR
is expressed as

x = a||(b,c)d+ (1− a||(b,c)a)z,

for an arbitrary z ∈ R.

Proof. The assumption d ∈ aR gives d = aa†d. The rest is clear by Theorem 3.12.

We now study when equation (3.9) has the unique solution.

Theorem 3.14. Let a ∈ R† and b, c, d ∈ R such that a||(b,c) exists. Then a||(b,c)aa†d is the
unique solution in bR to (3.9).

Proof. We firstly observe that a||(b,c)aa†d ∈ a||(b,c)R = bR. Theorem 3.12 implies that
a||(b,c)aa†d is a solution to (3.9).

For two solutions y ∈ bR and x = a||(b,c)aa†d to equation (3.9), we get

cax = caa†d = cay

and thus

y − x ∈ (ca)◦ ∩ bR.

Note that Ra||(b,c) = Rc implies (ca)◦ = (a||(b,c)a)◦, and that a||(b,c)aa||(b,c) = a||(b,c) yields bR =
a||(b,c)R = a||(b,c)aR. Thus,

y − x ∈ (a||(b,c)a)◦ ∩ a||(b,c)aR = {0}.
Thus, y = x = a||(b,c)aa†d represents the unique solution in bR to (3.9).

4. MP2-inverses in rings

Let R be a ring and a ∈ R. Similarly to Section 3, we define an equivalence relation ∼r on the
set a{2} as follows. For a2−, a2= ∈ a{2}, we write

a2− ∼r a2= if aa2− = aa2=.

Consider now a new ring Q = (R, ◦) where
(4.11) a ◦ b := ba

for a, b ∈ R. It is then easy to see that b ∈ a{2} in the ring R if and only if b ∈ a{2} in the ring
Q, and that b ∼r c in the ring R if and only if b ∼l c in the ring Q. Also, if R is a ∗-ring, then ∗ is
also an involution in Q which yields that a ∈ R† if and only if a ∈ Q†.

From now on, let R be a ∗-ring with identity.

Definition 4.1. Let a ∈ R†. For each a2− ∈ a{2} we call the element

aMP2 = a†aa2−

the MP2-inverse of a. We denote

a{MP2} =
{
a†aa2− : a2− ∈ a{2}

}
.
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Note that b ∈ a{MP2} in the ring R if and only if b ∈ a{2MP} in the ring Q. For a ∈ R
observe that z ∈ ◦a in the ring R if and only if z ∈ a◦ in the ring Q, and z ∈ ◦a in the ring Q if
and only if z ∈ a◦ in the ring R.

The next two results thus follow immediately if we apply (4.11) to Proposition 3.6 and Theorem
3.7, respectively.

Proposition 4.2. Let a ∈ R†. For each a2− ∈ a{2}, the element aMP2 is the unique solution
to the following system of equations:

(i) xax = x, (ii) xa = aa2−, (iii) xca2 = a†ca2 .

Theorem 4.3. Let a ∈ R†. For a given a2− ∈ a{2}, the element aMP2 satisfies the following
properties:

(a)
(
a2−

)◦
=

(
aMP2

)◦
.

(b) aMP2a is the idempotent with ◦ (aMP2a
)
= ◦aMP2 and

(
aMP2a

)◦
= (ca2)

◦
.

(c) aaMP2 is the idempotent with ◦ (aaMP2
)
= ◦ca2 and

(
aaMP2

)◦
=

(
aMP2

)◦
.

We may similarly obtain other results and observations, analogous to the ones from Section 3.

5. C2MP-inverses in rings

In this section, we extend the concept of C2MP-inverses to the set of all ∗-regular elements in
a ∗-ring. Recall that for a ∈ R† and for each a2− ∈ a{2}, ca2 is defined with (3.6) (see also (3.7)).

Definition 5.1. Let a ∈ R†. For each outer generalized inverse a2− of a, the element

aC2MP = a†ca2a
†

is called a C2MP-inverse of a. We denote

a{C2MP} =
{
a†

(
aa2MPa

)
a† : a2MP ∈ a{2MP}

}
.

Since a{2MP} is nonempty, it follows that a{C2MP} is also nonempty for every a ∈ R†. Also,
since 2MP-inverses are not unique, the same holds also for C2MP-inverses.

Remark 5.2. Suppose that a ∈ R† and let p = aa† and q = a†a. Let a2− ∈ a{2} be represented
with the matrix form (3.5) with respect to projections p and q. By Remark 3.5 we have

aC2MP = a†ax11aa
† = qx11p

and since x11 ∈ qRp, we may conclude that

aC2MP = x11.

Recall here that x11ax11 = x11.

We now list four propositions that may be proved in a similar way as corresponding results for
matrices in Mm,n(C). The proof of the first proposition is the same as the proof of [3, Proposition
4.3].

Proposition 5.3. Let a ∈ R†. For a given a2MP ∈ a{2MP}, the element aC2MP satisfies the
following properties:

(a) aC2MP = aMP2aa2MP .
(b) aC2MP = a†aa2MPaa†.
(c) aC2MP ∈ a{2}.
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(d) aaC2MPa = ca2 .
(e) aaC2MP = ca2a

† = aa2MP .
(f) aC2MPa = a†ca2 = aMP2a.

By properties (c), (e), and (f) of Proposition 5.3, aC2MP is a solution of the following system
of equations: xax = x, ax = ca2a

†, xa = a†ca2 . It is easy to check (see [3, proof of Theorem 4.4])
that aC2MP is the unique solution of this system.

Proposition 5.4. Let a ∈ R†. For each a2MP ∈ a{2MP}, the element aC2MP is the unique
solution to the following system of equations:

(i) xax = x, (ii) ax = ca2a
†, (iii) xa = a†ca2 .

By using Proposition 5.3, we may prove the next proposition in the same way as [3, Proposition
4.6].

Proposition 5.5. Let a ∈ R† and let p = aa† and q = a†a. For each a2− ∈ a{2}, the element
aC2MP satisfies the following properties:

(a) aC2MP ∈ a{1} if and only if a2− ∈ a{1}.
(b) aC2MP = qa2−p = qa2MP p.
(c) aC2MP ∈ ca2{1} ∩ ca2{2}.
(d) ca2a

C2MP = aaC2MP .
(e) aC2MP ca2 = aC2MPa.
(f) pca2q = ca2 .

Proposition 5.6. Let a ∈ R†. For each a2− ∈ a{2}, the following statements are equivalent:

(i) aC2MP = a†.
(ii) ca2 = a.
(iii) a2− ∈ a{1}.
(iv) a2− ∈ a{1} ∩ a{2}.
(v) a† = x11 where a and a2− are represented with (2.4) and (3.5), respectively.
(vi) aC2MP ∈ a{1}.
Proof. We may prove the equivalence of statements (i), (ii), (iii), (iv), and (vi) by Proposition

5.5 and the arguments from the proof of [3, Theorem 4.8]. Equivalence of statements (v) and (i) is
a direct corollary of Remark 5.2.

We end the paper with a result that extends [3, Theorem 4.10].

Theorem 5.7. Let a ∈ R† and let p = aa† and q = a†a. For each a2− ∈ a{2} written as in
(3.5), the following statements are satisfied:

(a)
(
aC2MP

)†
= x†

11.

(b)
(
a†
)C2MP

= z where z ∈ pRq with za†z = z.

(c)
(
aC2MP

)†
=

(
a†
)C2MP

if and only if x†
11 = z where z ∈ pRq with za†z = z.

(d) aC2MP = a∗ if and only if a = x∗
11.

(e) aC2MP = 0 if and only if a2− = 0 if and only if ca2 = 0.

Proof. Statement (a) follows directly by Remark 5.2.
(b) Note that

a† =

[
a† 0
0 0

]

q×p

.
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Also,
(
a†
)†

= a and so there exists
(
a†
)2− ∈

(
a†
)
{2}. In accordance with (3.5), we write

(
a†
)2−

=

[
z zn
mz mzn

]

p×q

,

where m ∈ (1− p)Rp, n ∈ qR(1−q), and z = za†z. Then
(
a†
)C2MP

=
(
a†
)†

ca
†

2

(
a†
)†

= aa†
(
a†
)2−

a†a = p
(
a†
)2−

q = z.

Statement (c) follows directly by statements (a) and (b).
(d) By Remark 5.2, aC2MP = x11, and thus aC2MP = a∗ if and only if a∗ = x11 which is

equivalent to a = x∗
11.

(e) Since aC2MP = x11, we have that aC2MP = 0 if and only if a2− = 0. Since ca2 = aa2−a,
a2− = 0 implies ca2 = 0. If ca2 = 0, then aa2−a = 0 and thus

x11 = qa2−p = a†
(
aa2−a

)
a† = 0.

So, a2− = 0.
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[7] D. Mosić, P. S. Stanimirović, Composite outer inverses for rectangular matrices, Quaest. Math. 44 (2021), 45–72.
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