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ON 2MP-, MP2-, AND CMP2-INVERSES IN x-RINGS

JANKO MAROVT AND D1jANA Mosié

ABSTRACT. The notions of a 2MP-inverse, a MP2-inverse, and a
C2MP-inverse are extended from the set of all m X n complex matrices
to the set RT of all Moore-Penrose invertible elements in a unital *-ring R.
We study properties of these hybrid generalized inverses and thus general-
ize some known results. We apply the (b, ¢)-inverse of a € RY to determine
a special case of a 2MP- or MP2-inverse of a and then use these inverses
to solve certain equations which lead to least-squares solutions and the
normal equation.

1. INTRODUCTION

Let R be a %ring, i.e., a ring equipped with an involution *. There are many generalized
inverses that may be defined on R and two of the best known are the Moore-Penrose inverse and
an inner generalized inverse. We call an element a € R Moore-Penrose invertible or x-regular with
respect to x if there exists € R that satisfies the following four equations:

(1.1) ara =a, wzax==2z, (ax)*=azx, (xa)"=za.

If such z exists, we write z = af and call it the Moore-Penrose inverse of a. It is known that a' is
unique if it exists. The set of all *-regular elements in R is denoted by R'. We say that a € R is
reqular if there exists x € R that satisfies the first equation in (1.1). Such =z, if it exists, is called
an inner generalized inverse or {1}-inverse of a, and we write x = a~, i.e., aa"a = a. The set
of all {1}-inverses of a is denoted by a{1} and we denote the set of all regular elements in R by
RW., If there exists # € R that satisfies the second equation in (1.1), then such x is called an outer
generalized inverse or {2}-inverse of a, and we write x = a®~, i.e., a®>"aa®~ = a®>~. The set of all
{2}-inverses of a is denoted by a{2}, and we denote the set of all elements in R that have an outer
inverse by R().

A ring R where every element is x-regular is called a x-regular ring. An example of a x-regular
ring is the set M,,(C) of all complex n x n matrices where A* denotes the conjugate transpose of
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A € M, (C). The above generalized inverses are defined in the same way on the set M, ,(C) of all
m X n complex matrices, and it is known that every matrix A € M, ,,(C) has an inner generalized
inverse A~ € M, ,(C), an outer generalized inverse A>~ € M, ,,(C), and the unique Moore-
Penrose inverse AT € M, (C). Two new types of hybrid generalized inverses were introduced and
studied in [3] on M, (C) (see also [9]). Let A € M,, ,,(C). For each outer generalized inverse A%~
of A, the matrices

APMP — A2= AAT and AMP2 = At AA%-

are called a 2MP-inverse and a MP2-inverse of A, respectively. Observe that A?MFPA = A2— A
and AAMP2 — A A%~ and thus

(1.2) AAPMP A — AA?~ A = AAMP2 4,

Since there may be many outer generalized inverses A2~ of A, A?™F and AMP?2 are (in general)
not unique. In the case when the range and the null space of A2~ are fixed, the 2MP-inverse and
the MP2-inverse of A reduce to the unique OMP inverse and MPO inverse, respectively, proposed
in [7, 8] as follows. Let AQTTS denote the (unique) outer generalized inverse of A € M, ,(C) with
the range T and the null-space S. Then

A@T — A%‘SAAT and AD®) = ATAAQT,_S

are called the outer Moore-Penrose (or OMP) inverse and the Moore-Penrose outer (or MPO)
inverse of A, respectively.
Recall that the Drazin inverse of A € M,,(C) is the unique matrix X € M, (C) that satisfies

XAX =X, AX =XA, AMX=4F

for some nonnegative integer k. The Drazin inverse, which exists for every A € M,,(C), is denoted
by AP. Note that AP is an outer generalized inverse of A. In [6], a CMP-inverse of a matrix
A € M, (C) was introduced as

At = ATA AT

where A; is the core part in the core-nilpotent decomposition of A, ie., A, = AAPA. As a
generalization of CMP-inverses from square to rectangular matrices, another generalized inverse
was introduced and studied in [3]. For A € M,, ,(C) and for each outer generalized inverse A2~ of
A, we call the matrix

C3t = AA* A

a 2MP core-part of A (see (1.2)). For each outer generalized inverse A%~ of A € M,,,(C), the
matrix

AC2MP _ ATCéLXAT

is called a C2MP-inverse of A. Note that for A € M,, ,(C), C4' and A“2MP are not (in general)
unique. Also, for A € M, (C), take A2~ = AP, and observe that then A“2MP = Acf,

The aim of this paper is to extend the concepts of 2MP-, MP2-, and C2MP-inverses to the set
RT of all *-regular elements in a *-ring R, and present some characterizations and properties of
these hybrid generalized inverses.
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2. PRELIMINARIES

In this section, let R be a *ring with the (multiplicative) identity 1. If for p € R, p? = p, then
p is said to be an idempotent. A projection p € R is a self-adjoint idempotent, i.e., p = p? = p*.
The equality 1 = e; +e2+- - -+ ey, where ey, e, ..., e, are idempotents in R and e;e; = 0 for ¢ # 7,
is called a decomposition of the identity of R. Let 1 =e; +es+---+e,and 1= f1+ fo+---+ fn
be two decompositions of the identity of R. We have

n

p=lal=(e+e+ o teulfitfoto+f)= Y eaf.
ij=1

Then any = € R can be uniquely represented in the following matrix form:

11+ Tin
(2.3) T =

Tnl e Tnn exf

where z;; = e;x f; € e;Rf;. With e x f we emphasize the use of the decompositions of the identity
1=-e;+ey+---+e, on the left side and 1 = f; + fo +--- + f,, on the right side of x =12 -1. If
T = (Tij)exs and Yy = (Yij)exf, then z+y = (i +Yij)ex . Moreover, if 1 = g; +- - - + gy, is another
decomposition of the identity of R and z = (z;;) fx4, then, by the orthogonality of the idempotents
involved, zz = (3, _; xikzkj)exg. Thus, if we have decompositions of the identity of R, then the
usual algebraic operations in R can be interpreted as simple operations between appropriate n x n
matrices over R. When n = 2 and p,q € R are idempotents, we may write
T11 T12
x:pxqﬂm(l—q)+(1—p)wq+(1—p)fv(1—q)=[x } :
21 P22 | 0

Here 211 = pxq, ©12 = pr(l — q), ®21 = (1 — p)xq, T22 = (1 — p)z(1 — q).
By (2.3) we may write
1‘){1 DY "L‘
‘Ty{n e ‘T:;n f*xex
where this matrix representation of x* is given relative to the decompositions of the identity 1 = f}
Let a € R and let a® denote the right annihilator of a, i.e., the set a® = {z € R : axz = 0}.
Similarly we denote the left annihilator °a of a, i.e., the set °a = {z € R : za = 0}. Suppose that
p,q € R are such idempotents that °a = °p and a® = ¢°. Observe (or see [1, Lemma 2.2]) that
°p=TR(1—p) and ¢° = (1 — ¢)R. It follows that then a = pag, i.e.,

(2.4) a= [g HW'

Let a € R®), 2 € a{2}, and let us represent x with

11 T12
Tr = - " .
21 22 Jgxp
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Then
| T1r 712 a 0 T11  T12 | rnarn Tamie
Tar =1 4 T 0 0 T T | zojaz T910%
21 P22 |, pxq 21 T22 | ., 210%11  T210%12 |,
Since zaxr = x, it follows that z17; = z11a211, 12 = X11aT12, To1 = T210211, and o = To1aT12.
Let t = az12 and u = xo1a. Then x93 = (z210)T12 = ux12 = uz11(ar12) = uziit and thus

| T ozt
T uzit ’
11 ut |

| T ozt
T uzr1t
11 ut |

with #17 = z11a211, t € pPR(1 — p), and u € (1 — ¢)Rq. Then

Conversely, let

11 .Z‘llt a O 11 ZEHt
rar = ux uxy1t 0 0 ux uxy1t
11 11 axp pxq 11 11 axp
. [ r11ar11  T110T11t } . [ r11 w11t ] —
uri1ar11 u:ruaxnt « uriy ul‘nt axp

Let a € R® and suppose that there exist idempotents p,q € R such that a has the matrix
form (2.4). We showed that then z € a{2} if and only if

. { r11 Tt ]
v t
uriy urii axp
where t € pR(1 — p), and u € (1 — ¢)Rq are arbitrary (but fixed) elements and x1; = z11a211.

3. 2MP-INVERSES IN RINGS

Let R be a ring with identity 1 and let a € R(®). We next define a binary relation ~; on the
set a{2} as follows. For a®~,a?~ € a{2} we write

a’” ~a* if d®"a=d*"a.
Clearly, ~; is an equivalence relation and for a given a?~ € a{2} its equivalence class is the set
2-1  _ [ 2= L 2= 2—
[a ]~z ={a*" €a{2}: a®a=a""a}.
Suppose there exist idempotents p,q € R such that °a = °p and a® = ¢°. Let a have the matrix
form (2.4) and let a®>~,a*= € a{2} with

! ! !
2— | 11 w1t 2= T Tt
e uxit and - a” = uw'z), uwat
11 11 xp 11 11 gxp

where t,t' € pR(1—p), u,u’ € (1—q)Rq, ©11 = z11a211, and 2}, = z};az’;. Suppose a®= € [a?~]
Since then a?>=a = a®~a, we obtain

{ z11a 0 } B { zha 0 ]
- 1.0
uziia 0 u'zi;a 0
1 axq B axq
and hence z11a = 2,0 and uri1a = v'zi a. It follows that z1; — 2%, € °a and uzy; — vz € °a.

From °a = °p we get z11p = z}1p and ux11p = vz} p, but since z11,21; € ¢Rp we obtain that
x11 = ¢p and uxy; = v'a);. Conversely, if z1; = 2, and uzyy = 'z}, then 114 = 210 and

I
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uziia = w2z a, and thus a®>=a = a®>~a. We proved that a?= € [aQ’]Nl if and only if @1 = 24,

and uz1; = u'z},. So, for a®>~ € a{2} with

(3.5) 2 = { r11 T1it ]
uri11 U.’Ellt axp

where t € pR(1 —p), u € (1 — q)Rgq, and x11; = x116211, it follows that

2-7  _ ry1 wnt o R .
[a ]Nz - {{ ury  uzyt pr (e pR(1—p)is arb1trary}.

If we pick ¥ = 0, we get a representative

|: i 0 :|

uxril 0 axp

of this equivalence class and hence a complete set of representatives of the partition of a{2} induced
by ~; is given by

Rep. = zin 0 :u € (1 —q)Rq is arbitrary and z11a211 = 2171 ¢ -
l uryy O axp

From now until the end of Section 3, let R be a *-ring with identity 1.

REMARK 3.1. Suppose a € Rt and let p = aa’ and ¢ = afa. Then p and ¢ are projections.
Moreover, pa = a and aqg = a, and so °a = °p and a° = ¢°. We may thus write a in the matrix
form (2.4). Let a®>~ € a{2} be represented with the matrix form (3.5). It follows that

a2 aal = a2 p = { z11 96117;} {Zg 8] :[ 11D 8] :[ z11 8} .
uriy  wrt | PXp urp axp uriy axp
Here z11ax11 = x11. Thus, every element of Rep., can be factorized as a?~aa’ for a € R and for
some a?~ € a{2}.
We now extend the notion of a 2MP-inverse to the set of all *-regular elements in a *-ring.

DEFINITION 3.2. Let a € RY. For each a®>~ € a{2} we call the element

a2MP _ 2= ot

a 2MP-inverse of a. We denote
a{2MP} = {a®"aa': a*~ € a{2}}.
2M P

REMARK 3.3. Observe that a is the most simple representative of the equivalence class
[a®7] ., Since a' € a{2M P}, it follows that a{2M P} is nonempty for every a € RT. Also, clearly,

0 € a{2M P}. Suppose a € R' is written as (2.4) where p = aa’ and ¢ = afa. Then

a{2M P} = { { uxxll 8 ] :u € (1 —q)Rp is arbitrary and z11a211 = 11 p -
11 axp
We prove the following result in the same way as [3, Proposition 2.3].

PROPOSITION 3.4. Let a € RY. Then there exists a bijective map between the quotient set
a{2}/~; of a{2} by ~; and the set a{2M P}.
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For a € R' and for each a®>~ € a{2} we define
(3.6) s = aa*MPq

and call this element the 2MP core-part of a. Since a*M¥ ¢ [aQ’]Nl, we have a?MPq = q?~a and
thus

(3.7) ¢ = aa®"a.

REMARK 3.5. Note that if a € R and a?~ € a{2} are represented with the matrix forms (2.4)
and (3.5), respectively, then

= a 0 T Tt a 0 | ariia O — aria
2710 0 uxyy  uriit 0 0 - 0 0 -t
PXq gxp pXq pXq

Many new generalized inverses have been introduced recently as solutions of certain systems of
equations (see, e.g., [5, 9]). With the next result we characterize 2MP-inverses in terms of solutions
of systems of equations. Observe that

5a®MP = ¢ (aQ*aaQ*) aa’ = aa* aat = cgal.

Since also a?M? € a{2} and a*MPq = a®>~a, the element a?7 is a solution of the following system

of equations: zax = x, za = a®>a, c§x = cdal. It is easy to prove (or see [3, proof of Theorem 2.5])
that it is the unique solution of the system.

PROPOSITION 3.6. Let a € RY. For each a®>~ € a{2}, the element a®T is the unique solution
to the following system of equations

(3.8) (i) vax = x, (i) va = a®*"a, (i) cix = Sal.

Let ImA and KerA denote the image (i.e., the column space) and the kernel (i.e., the null space)
of A € M, (C). Note that for A, B € M, (C) we have (see [4, proof of Lemma 2.1])

ImA CImB ifand only if °BC°A

and
KerA C KerB if and only if A° C B°.

Let A € M, (C) and let A%~ be an outer generalized inverse of A. By [3, Theorem 2.6], AA2MP
is an idempotent matrix with Im (AAQMP) = Im (AAQMPA) and Ker (AAQMP) = KerA?MP
and A*MP A is an idempotent matrix such that Im (A?MFA4) = ImA?M” and Ker (A?MPA) =
Ker (AAQMPA). We now extend this result to the *-ring setting.

THEOREM 3.7. Let a € RY. For a given a®>~ € a{2}, the element a®MT satisfies the following
properties:
(a) oa2— — OQZZVIP'
(b) aa?M?¥ is the idempotent with ° (aaQMP) = °c§ and (aaQMP)O = (aZMP)O‘
(c) a®Pa is the idempotent with ° (a*Fa) = °a?¥ and (a*Pa)° = (c3)°.

PROOF. (a) Clearly, by Definition 3.2, °a?~ C °a?MP. Let now z € °a?M? for some 2z € R.
Then 0 = za? aal. Multiplying this equation from the right consequently first by a and then by
a’~, we get 0 = za®~. So, °a?~ = °a?MP,

2MP

(b) Since aa*”a = aa®* " a and a

(aa2MP)2 = (aaQMPa) a?MP — (a2_aa2_) aa’ = aa® aa’ = aa®™¥

= a’"aa', we have
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MP is an idempotent. Let us now prove that ° (aa®*) = °c§. Let z € ° (aa*”) for

2MP 2MPa7

and so aa®
some z € R. Then 0 = zaa = zaa?~aa’ = zc¢a’ and thus 0 = 2c¢a’a. But since c§ = aa
it follows that cfafa = c§, and therefore, z € °c3. Let now z € °cg for some z € R. Then
0 = zaa?~a and thus 0 = zaa?~aa’ = zaa®*. So, ° (aa®P) = °c§.

Let us now show that (aa®?)” = (a?MP)°. Clearly, (a?")° C (aa®M?)°. If aa®MPz =0

for some z € R, then 0 = aa’"aa’z and hence 0 = a?~aa’"aa’z = a*"aatz = a®M¥2. So,
(aazMP)O _ aZJVIP)O.
We similarly prove (c). |

As a corollary to Theorem 3.7, we give another characterization of a 2MP-inverse. First, let us
prove an auxiliary result.

LEMMA 3.8. Let p1,p2 € R be two idempotent elements. If °p1 = °p2 and p} = ps, then
b1 = p2.

PROOF. From °p; = °ps we have (1 — p1)p2 = 0 and so po = p1p2. By py = p$ we obtain
p1(1 —p2) =0, ie., p1 =pip2. So, p1 = p1p2 = pa. o

COROLLARY 3.9. Let a € RY. For each a®>~ € a{2}, the 2MP-inverse a*¥ of a is the unique
element x that satisfies the following conditions:

(1) azx is an idempotent with
°(ax) =°cy and (az)’ = (cgaT)o,

(i) °a®~ C°z.

PrOOF. Condition (ii) is satisfied by Theorem 3.7. Also, aa®? is an idempotent with
° (aa®MP) = °cg, and since cga’ = aa®"aa’ = aa®™?, the element x = a?¥ satisfies also
conditions in (i).

Let us prove the uniqueness. Suppose that z1, 22 € R satisfy both (i) and (ii). Then az; and
axy are idempotents with © (azy) = °cd = ° (azz) and (az;)’ = (cgaT)o = (ax2)°, and therefore by
Lemma 3.8, azx; = axy. From (ii), °a?~ C °xz; N °zs. So,

(1 — a2_a) r1=0= (1 — aQ_a) To

2

and thus z; = a?"ax; = a® axy = . O

The following characterizations of a 2MP-inverse can also be verified.

THEOREM 3.10. Let a € R and x € R. For a given a*~ € a{2}, the following statements are
equivalent:
(i) z = a?MP,
(ii) 2R = a®>~R and ax = aa®* aal.
ii) 2R C a®> R and ax = aa® aal.
(iv) 2*R = aa'(a®>")*R and za = a*a.
(v) 2*R C aR and za = a*"a.

2MP — 2= qal, it follows that az = aa? aa’ and

PRrOOF. (i) = (ii): Since z = a
2R =a’"ad'R =a*>"aR =a* R.

(ii) = (iii): This implication is clear.
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(iii) = (i): The hypothesis 2R C a?>~R implies * = a®> u, for some u € R. Hence, by

ar = aa2_aaT,
= a’"a(a® u) = a* (az) = (a* aa® )aat = a*M7T,

In a similar manner, we check the rest. 0

Let a,b € R. If aR C bR, then a = bu for some u € R, and thus °b C °a. Suppose now there
exists v € R such that bvb = b, i.e., b € v{2}. If °b C °a, then (1 —bv)a = 0 which implies aR C bR.
Consequently, we obtain by Theorem 3.10 more characterizations of a 2MP-inverse.

COROLLARY 3.11. Let a € Rt and = € v{2} for some v € R. For a given a®>~ € a{2}, the
following statements are equivalent:

(i) z = a?MP,

) 27) and ax = aa®* aal.
) 27 and ax = aa®"aa'.

(iv) °(x*) = °laa’(a®*)*] and xa = a*"a.
) -

°(z*) 2 °a and za = a*~a.

°x
°x

U

O(a
Oi(a

*

Let us recall the definition of the (b, ¢)-inverse which is a special kind of the outer generalized
inverse. For a,b,c € R, an element € R is a (b,c¢)-inverse of a if zax = z, R = bR and
Rx = Re. The (b, c)-inverse of a is unique, if it exists, and denoted by a!l(®¢) [2]. Applying a
2MP-inverse determined by the (b, ¢)-inverse all®9) in place of an outer generalized inverse a?~, we
prove solvability of the next equation.

THEOREM 3.12. Leta € Rt and b, c,d € R. If all®©) exists, the general solution to the equation

(3.9 cax = caa’d
is expressed as
(3.10) z=d®aa’d + (1 - all®9a)z,

for an arbitrary z € R.
Proor. By Rall®¢) = Re, notice that ¢ = uall®®®) and all(®®) = ve¢, for some u,v € R. Thus,
a0 — all 0 gl 0:0) — ygll®e) — o
For z expressed by (3.10), we therefore get
cax = caal®aatd + ca(l — al®9a)z = caald,

i.e., z is a solution to (3.9).
If equation (3.9) has a solution z, then, by all®®) = ve,

all®) gy = v(caz) = (vc)aaTd = all®gqtq.
Thus, = has the form (3.10):
z=al®aatd + 2 — ol gz = o109 gatq + (1— a‘l(b’c)a)x.
O

Since ¢ = uall®®® and all®®) = ve, for some u,v € R, note that equation (3.9) is satisfied if
and only if
200 g — o100 gt g,

Hence, any solution to (3.9) is a solution to a/l(®®az = al!(®9aa’d and vice versa.



2MP-, MP2-, AND CMP2-INVERSES IN #RINGS 9

As a consequence of Theorem 3.12, we obtain the solvability of equation (3.10) with the con-
strain d € aR.

COROLLARY 3.13. Let a € R and b,c,d € R. If all®9) exists, the general solution to the
equation
car =cd, d€aR
s expressed as
z=al®q 4 (1— a”(b’c)a)z,
for an arbitrary z € R.

PROOF. The assumption d € aR gives d = aa’d. The rest is clear by Theorem 3.12. 0
We now study when equation (3.9) has the unique solution.

THEOREM 3.14. Let a € RY and b,c,d € R such that all®) exists. Then all®aa'd is the
unique solution in bR to (3.9).

PrOOF. We firstly observe that all®9aafd € all®>R = bR. Theorem 3.12 implies that
all®9)qafd is a solution to (3.9).
For two solutions y € bR and z = a!l(®"9aald to equation (3.9), we get
cazx = caa'd = cay
and thus
y—z € (ca)® NbR.
Note that Rall®®) = Re implies (ca)® = (a!l®9)a)°, and that all®)aall®€) = all®€) yields ¥R =
all®IR = gl gR. Thus,
y—z € (a®9a)° nall®9aR = {0}.

Thus, y = z = al/(®?aald represents the unique solution in bR to (3.9). O

4. MP2-INVERSES IN RINGS

Let R be a ring and a € R. Similarly to Section 3, we define an equivalence relation ~, on the
set a{2} as follows. For a®~,a?~ € a{2}, we write
a®>" ~pa®= i ad® = ad®".
Consider now a new ring @ = (R, o) where
(4.11) aob:=ba

for a,b € R. It is then easy to see that b € a{2} in the ring R if and only if b € a{2} in the ring
Q, and that b ~, ¢ in the ring R if and only if b ~; ¢ in the ring Q. Also, if R is a *-ring, then * is
also an involution in @ which yields that a € R if and only if a € QF.

From now on, let R be a *-ring with identity.

DEFINITION 4.1. Let a € RT. For each a®>~ € a{2} we call the element

a]%PZ 2

=a'aa®"
the MP2-inverse of a. We denote
a{MP2} = {a'aa® : a* € a{2}}.
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Note that b € a{M P2} in the ring R if and only if b € a{2M P} in the ring Q. Fora € R
observe that z € °a in the ring R if and only if z € a° in the ring Q, and z € °a in the ring Q if
and only if z € a° in the ring R.

The next two results thus follow immediately if we apply (4.11) to Proposition 3.6 and Theorem
3.7, respectively.

PROPOSITION 4.2. Let a € RY. For each a®>~ € a{2}, the element a™T? is the unique solution
to the following system of equations:

(i) rax =z, (i) za = aa®", (i) zc$ = alcs.

THEOREM 4.3. Let a € RY. For a given a®>~ € a{2}, the element a™ 2 satisfies the following
properties:
(a) (azf)o _ (aMPQ)O'
(b) a™*2a is the idempotent with ° (a™"2a) = °a™? and (aMpza)o = (c2)°.
(c) aa™P? is the idempotent with ° (aa™F?) = °c§ and (aaMPQ)O = (aMP2)O.

We may similarly obtain other results and observations, analogous to the ones from Section 3.

5. C2MP-INVERSES IN RINGS

In this section, we extend the concept of C2MP-inverses to the set of all x-regular elements in
a +ring. Recall that for a € RT and for each a®>~ € a{2}, % is defined with (3.6) (see also (3.7)).

DEFINITION 5.1. Let a € RY. For each outer generalized inverse o>~ of a, the element
qC2MP _ aTcgaT

is called a C2MP-inverse of a. We denote
a{C2M P} = {a' (aa®"a) a': a®” € a{2M P}} .

Since a{2M P} is nonempty, it follows that a{C2M P} is also nonempty for every a € RT. Also,
since 2MP-inverses are not unique, the same holds also for C2MP-inverses.

REMARK 5.2. Suppose that a € RT and let p = aa’ and ¢ = a’a. Let a®>~ € a{2} be represented
with the matrix form (3.5) with respect to projections p and ¢. By Remark 3.5 we have

qC2MP 1 +

=a ariiaa = qriip

and since z11 € ¢Rp, we may conclude that

aCQ]\IP = 711.

Recall here that ri1axrip = I11-

‘We now list four propositions that may be proved in a similar way as corresponding results for
matrices in M,, ,(C). The proof of the first proposition is the same as the proof of [3, Proposition
4.3].

PROPOSITION 5.3. Let a € RY. For a given a®™? € a{2M P}, the element a“*™T satisfies the

following properties:

(a) aC2MP = MP2yq2MP.
(b) a®*MP = afaa®MPaqat.

(c) a“?MP ¢ q{2}.
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(d) aa®?MPq = ¢§.
(e) aa®?MP = cgal = aa®MP.
(f) a®?MPg = afcd = a™P2q.

By properties (c), (e), and (f) of Proposition 5.3, a®” is a solution of the following system
of equations: rax = x, ar = cfal, xa = alc§. It is easy to check (see [3, proof of Theorem 4.4])

that a“?M? is the unique solution of this system.

PROPOSITION 5.4. Let a € RY. For each a*F € a{2M P}, the element a®?MT is the unique
solution to the following system of equations:

. o .. _ a.t _ ta
— 4y - ) - .
(i) zax =z, (ii) ax = c§a (iii) za = a'c§

By using Proposition 5.3, we may prove the next proposition in the same way as [3, Proposition
4.6].

PROPOSITION 5.5. Let a € Rt and let p = aa' and q = a'a. For each a®>~ € a{2}, the element

aC?MP satisfies the following properties:
(a) a®?MP ¢ a{1} if and only if a®>~ € a{1}.
(b) aC2MP = 42~ p = qa?MPp.
(c) a“?MP ¢ c2{1} N cg{2}.

aC’QMPCg — aC2]WPa_

pesq = cs.

PROPOSITION 5.6. Let a € R. For each a®>~ € a{2}, the following statements are equivalent:
(i) aC2MP
(ii) c§ = a.

)
)
(iii) a?~ € af{1}.
)
)
)

)
)
(d) 2aC2MP = qqC2MP
)
)

a = CLT‘

(iv) a®>~ € a{l} Nna{2}.
(v) a' = z11 where a and a
(vi) a9?MP ¢ q{1}.

PrOOF. We may prove the equivalence of statements (i), (ii), (iii), (iv), and (vi) by Proposition
5.5 and the arguments from the proof of [3, Theorem 4.8]. Equivalence of statements (v) and (i) is
a direct corollary of Remark 5.2.

2= are represented with (2.4) and (3.5), respectively.

We end the paper with a result that extends [3, Theorem 4.10].

THEOREM 5.7. Let a € R and let p = aa' and ¢ = a’a. For each a®>~ € a{2} written as in
(3.5), the following statements are satisfied:

(a) (aC2MP>T _ xir

(b) (aT)CQMP = 2 where z € pRq with za'z = z.

(c) (achp>T = (aT)CQMP if and only if xL = z where z € pRq with za'z = 2.
(d) a®*MP = qa* if and only if a = x%,.

(e) a®?MP =0 if and only if a>~ = 0 if and only if ¢ = 0.

PROOF. Statement (a) follows directly by Remark 5.2.

(b) Note that
aT . CLT 0
10 0 '
axp
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Also, (aT)T = a and so there exists (aT)% € (a') {2}. In accordance with (3.5), we write

2- { z  zn }
(a')” = ,
mz  mzn
pxq
where m € (1 —p)Rp, n € ¢gR(1—q), and z = za'z. Then
((LT)CQMP = (aT)T ch (LLT)T = aal (aT)% ata=p (aT)% q==z.
Statement (c) follows directly by statements (a) and (b).

(d) By Remark 5.2, a“?MP = z;, and thus a“?MP = ¢* if and only if a* = x1; which is
equivalent to a = z7;.

(e) Since a“?MP = z1;, we have that a®?P = 0 if and only if a>~ = 0. Since ¢} = aa®"a,
a®>~ =0 implies ¢§ = 0. If ¢§ = 0, then aa®*"a = 0 and thus
11 =qa’p= at (aaz_a) at =0.
So, a®>~ = 0. O
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