

SERIJA III www.math.hr/glasnik

Janko Marovt and Dijana Mosić On 2MP-, MP2-, and CMP2-inverses in *-rings

Manuscript accepted December 5, 2024.

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by Glasnik Production staff.

ON 2MP-, MP2-, AND CMP2-INVERSES IN *-RINGS

Janko Marovt and Dijana Mosić

ABSTRACT. The notions of a 2MP-inverse, a MP2-inverse, and a C2MP-inverse are extended from the set of all $m \times n$ complex matrices to the set \mathcal{R}^{\dagger} of all Moore-Penrose invertible elements in a unital *-ring \mathcal{R} . We study properties of these hybrid generalized inverses and thus generalize some known results. We apply the (b, c)-inverse of $a \in \mathcal{R}^{\dagger}$ to determine a special case of a 2MP- or MP2-inverse of a and then use these inverses to solve certain equations which lead to least-squares solutions and the normal equation.

1. INTRODUCTION

Let \mathcal{R} be a *-ring, i.e., a ring equipped with an involution *. There are many generalized inverses that may be defined on \mathcal{R} and two of the best known are the Moore-Penrose inverse and an inner generalized inverse. We call an element $a \in \mathcal{R}$ Moore-Penrose invertible or *-regular with respect to * if there exists $x \in \mathcal{R}$ that satisfies the following four equations:

(1.1) $axa = a, \quad xax = x, \quad (ax)^* = ax, \quad (xa)^* = xa.$

If such x exists, we write $x = a^{\dagger}$ and call it the Moore-Penrose inverse of a. It is known that a^{\dagger} is unique if it exists. The set of all *-regular elements in \mathcal{R} is denoted by \mathcal{R}^{\dagger} . We say that $a \in \mathcal{R}$ is regular if there exists $x \in \mathcal{R}$ that satisfies the first equation in (1.1). Such x, if it exists, is called an inner generalized inverse or $\{1\}$ -inverse of a, and we write $x = a^-$, i.e., $aa^-a = a$. The set of all $\{1\}$ -inverses of a is denoted by $a\{1\}$ and we denote the set of all regular elements in \mathcal{R} by $\mathcal{R}^{(1)}$. If there exists $x \in \mathcal{R}$ that satisfies the second equation in (1.1), then such x is called an outer generalized inverse or $\{2\}$ -inverse of a, and we write $x = a^{2-}$, i.e., $a^2 - aa^{2-} = a^{2-}$. The set of all $\{2\}$ -inverses of a is denoted by $a\{2\}$, and we denote the set of all elements in \mathcal{R} that have an outer inverse by $\mathcal{R}^{(2)}$.

A ring \mathcal{R} where every element is *-regular is called a *-regular ring. An example of a *-regular ring is the set $M_n(\mathbb{C})$ of all complex $n \times n$ matrices where A^* denotes the conjugate transpose of

²⁰²⁰ Mathematics Subject Classification. 15A09, 15A10, 17C27.

Key words and phrases. Outer generalized inverse; 2MP-inverse; MP2-inverse; C2MP-inverse; *-ring.

This first author acknowledges the financial support from the Slovenian Research and Innovation Agency, ARIS (research program P1-0288). The second author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (grant no. 451-03-65/2024-03/200124).

 $A \in M_n(\mathbb{C})$. The above generalized inverses are defined in the same way on the set $M_{m,n}(\mathbb{C})$ of all $m \times n$ complex matrices, and it is known that every matrix $A \in M_{m,n}(\mathbb{C})$ has an inner generalized inverse $A^- \in M_{n,m}(\mathbb{C})$, an outer generalized inverse $A^{2-} \in M_{n,m}(\mathbb{C})$, and the unique Moore-Penrose inverse $A^{\dagger} \in M_{n,m}(\mathbb{C})$. Two new types of hybrid generalized inverses were introduced and studied in [3] on $M_{m,n}(\mathbb{C})$ (see also [9]). Let $A \in M_{m,n}(\mathbb{C})$. For each outer generalized inverse A^{2-} of A, the matrices

$$A^{2MP} = A^{2-}AA^{\dagger}$$
 and $A^{MP2} = A^{\dagger}AA^{2-}$

are called a 2MP-inverse and a MP2-inverse of A, respectively. Observe that $A^{2MP}A = A^{2-}A$ and $AA^{MP2} = AA^{2-}$ and thus

Since there may be many outer generalized inverses A^{2-} of A, A^{2MP} and A^{MP2} are (in general) not unique. In the case when the range and the null space of A^{2-} are fixed, the 2MP-inverse and the MP2-inverse of A reduce to the unique OMP inverse and MPO inverse, respectively, proposed in [7, 8] as follows. Let $A^{2-}_{T,S}$ denote the (unique) outer generalized inverse of $A \in M_{m,n}(\mathbb{C})$ with the range T and the null-space S. Then

$$A^{(2),\dagger} = A_{TS}^{2-}AA^{\dagger}$$
 and $A^{\dagger,(2)} = A^{\dagger}AA_{TS}^{2-}$

are called the outer Moore-Penrose (or OMP) inverse and the Moore-Penrose outer (or MPO) inverse of A, respectively.

Recall that the Drazin inverse of $A \in M_n(\mathbb{C})$ is the unique matrix $X \in M_n(\mathbb{C})$ that satisfies

$$XAX = X, \quad AX = XA, \quad A^{k+1}X = A^k$$

for some nonnegative integer k. The Drazin inverse, which exists for every $A \in M_n(\mathbb{C})$, is denoted by A^D . Note that A^D is an outer generalized inverse of A. In [6], a *CMP-inverse* of a matrix $A \in M_n(\mathbb{C})$ was introduced as

$$A^{c\dagger} = A^{\dagger}A_1A^{\dagger}$$

where A_1 is the core part in the core-nilpotent decomposition of A, i.e., $A_1 = AA^DA$. As a generalization of CMP-inverses from square to rectangular matrices, another generalized inverse was introduced and studied in [3]. For $A \in M_{m,n}(\mathbb{C})$ and for each outer generalized inverse A^{2-} of A, we call the matrix

$$C_2^A = AA^{2-}A$$

a 2MP core-part of A (see (1.2)). For each outer generalized inverse A^{2-} of $A \in M_{m,n}(\mathbb{C})$, the matrix

$$A^{C2MP} = A^{\dagger}C_2^A A^{\dagger}$$

is called a *C2MP-inverse* of *A*. Note that for $A \in M_{m,n}(\mathbb{C})$, C_2^A and A^{C2MP} are not (in general) unique. Also, for $A \in M_n(\mathbb{C})$, take $A^{2-} = A^D$, and observe that then $A^{C2MP} = A^{c\dagger}$.

The aim of this paper is to extend the concepts of 2MP-, MP2-, and C2MP-inverses to the set \mathcal{R}^{\dagger} of all *-regular elements in a *-ring \mathcal{R} , and present some characterizations and properties of these hybrid generalized inverses.

2. Preliminaries

In this section, let \mathcal{R} be a *-ring with the (multiplicative) identity 1. If for $p \in \mathcal{R}$, $p^2 = p$, then p is said to be an *idempotent*. A projection $p \in \mathcal{R}$ is a self-adjoint idempotent, i.e., $p = p^2 = p^*$. The equality $1 = e_1 + e_2 + \dots + e_n$, where e_1, e_2, \dots, e_n are idempotents in \mathcal{R} and $e_i e_j = 0$ for $i \neq j$, is called a *decomposition of the identity of* \mathcal{R} . Let $1 = e_1 + e_2 + \cdots + e_n$ and $1 = f_1 + f_2 + \cdots + f_n$ be two decompositions of the identity of \mathcal{R} . We have

$$x = 1 \cdot x \cdot 1 = (e_1 + e_2 + \dots + e_n)x(f_1 + f_2 + \dots + f_n) = \sum_{i,j=1}^n e_i x f_j.$$

Then any $x \in \mathcal{R}$ can be uniquely represented in the following matrix form:

(2.3)
$$x = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{bmatrix}_{e \times f}$$

where $x_{ij} = e_i x f_j \in e_i \mathcal{R} f_j$. With $e \times f$ we emphasize the use of the decompositions of the identity $1 = e_1 + e_2 + \dots + e_n$ on the left side and $1 = f_1 + f_2 + \dots + f_n$ on the right side of $x = 1 \cdot x \cdot 1$. If $x = (x_{ij})_{e \times f}$ and $y = (y_{ij})_{e \times f}$, then $x + y = (x_{ij} + y_{ij})_{e \times f}$. Moreover, if $1 = g_1 + \dots + g_n$ is another decomposition of the identity of \mathcal{R} and $z = (z_{ij})_{f \times g}$, then, by the orthogonality of the idempotents involved, $xz = (\sum_{k=1}^{n} x_{ik} z_{kj})_{e \times g}$. Thus, if we have decompositions of the identity of \mathcal{R} , then the usual algebraic operations in \mathcal{R} can be interpreted as simple operations between appropriate $n \times n$ matrices over \mathcal{R} . When n = 2 and $p, q \in \mathcal{R}$ are idempotents, we may write

$$x = pxq + px(1-q) + (1-p)xq + (1-p)x(1-q) = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}_{p \times q}$$

Here $x_{11} = pxq$, $x_{12} = px(1-q)$, $x_{21} = (1-p)xq$, $x_{22} = (1-p)x(1-q)$.

By (2.3) we may write

$$x^{*} = \begin{bmatrix} x_{11}^{*} & \cdots & x_{n1}^{*} \\ \vdots & \ddots & \vdots \\ x_{1n}^{*} & \cdots & x_{nn}^{*} \end{bmatrix}_{f^{*} \times e^{*}},$$

where this matrix representation of x^* is given relative to the decompositions of the identity $1 = f_1^*$ $+\cdots + f_n^*$ and $1 = e_1^* + \cdots + e_n^*$.

Let $a \in \mathcal{R}$ and let a° denote the right annihilator of a, i.e., the set $a^{\circ} = \{x \in \mathcal{R} : ax = 0\}$. Similarly we denote the left annihilator a of a, i.e., the set $a = \{x \in \mathcal{R} : xa = 0\}$. Suppose that $p,q \in \mathcal{R}$ are such idempotents that $a^{\circ} = p^{\circ}$ and $a^{\circ} = q^{\circ}$. Observe (or see [1, Lemma 2.2]) that $^{\circ}p = \mathcal{R}(1-p)$ and $q^{\circ} = (1-q)\mathcal{R}$. It follows that then a = paq, i.e.,

(2.4)
$$a = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}_{p \times q}$$

Let $a \in \mathcal{R}^{(2)}$, $x \in a\{2\}$, and let us represent x with

$$x = \left[\begin{array}{cc} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array} \right]_{q \times p}.$$

Then

$$xax = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}_{q \times p} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}_{p \times q} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}_{q \times p} = \begin{bmatrix} x_{11}ax_{11} & x_{11}ax_{12} \\ x_{21}ax_{11} & x_{21}ax_{12} \end{bmatrix}_{q \times p}$$

Since xax = x, it follows that $x_{11} = x_{11}ax_{11}$, $x_{12} = x_{11}ax_{12}$, $x_{21} = x_{21}ax_{11}$, and $x_{22} = x_{21}ax_{12}$. Let $t = ax_{12}$ and $u = x_{21}a$. Then $x_{22} = (x_{21}a)x_{12} = ux_{12} = ux_{11}(ax_{12}) = ux_{11}t$ and thus

$$x = \left[\begin{array}{cc} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{array} \right]_{q \times p}$$

Conversely, let

$$= \left[\begin{array}{cc} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{array} \right]_{q_1}$$

with $x_{11} = x_{11}ax_{11}, t \in p\mathcal{R}(1-p)$, and $u \in (1-q)\mathcal{R}q$. Then

x

$$\begin{aligned} xax &= \begin{bmatrix} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{bmatrix}_{q \times p} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}_{p \times q} \begin{bmatrix} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{bmatrix}_{q \times p} \\ &= \begin{bmatrix} x_{11}ax_{11} & x_{11}ax_{11}t \\ ux_{11}ax_{11} & ux_{11}ax_{11}t \end{bmatrix}_{q \times p} = \begin{bmatrix} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{bmatrix}_{q \times p} = x \end{aligned}$$

Let $a \in \mathcal{R}^{(2)}$ and suppose that there exist idempotents $p, q \in \mathcal{R}$ such that a has the matrix form (2.4). We showed that then $x \in a\{2\}$ if and only if

$$x = \left[\begin{array}{cc} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{array}\right]_{q \times q}$$

where $t \in p\mathcal{R}(1-p)$, and $u \in (1-q)\mathcal{R}q$ are arbitrary (but fixed) elements and $x_{11} = x_{11}ax_{11}$.

3. 2MP-inverses in rings

Let \mathcal{R} be a ring with identity 1 and let $a \in \mathcal{R}^{(2)}$. We next define a binary relation \sim_l on the set $a\{2\}$ as follows. For $a^{2-}, a^{2-} \in a\{2\}$ we write

$$a^{2-} \sim_l a^{2-}$$
 if $a^{2-}a = a^{2-}a$.

Clearly, \sim_l is an equivalence relation and for a given $a^{2-} \in a\{2\}$ its equivalence class is the set

$$\left[a^{2^-}\right]_{\sim_l} = \left\{a^{2^=} \in a\{2\} \colon a^{2^=}a = a^{2^-}a\right\}$$

Suppose there exist idempotents $p, q \in \mathcal{R}$ such that ${}^{\circ}a = {}^{\circ}p$ and $a^{\circ} = q^{\circ}$. Let a have the matrix form (2.4) and let $a^{2-}, a^{2=} \in a\{2\}$ with

$$a^{2-} = \begin{bmatrix} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{bmatrix}_{q \times p} \quad \text{and} \quad a^{2-} = \begin{bmatrix} x'_{11} & x'_{11}t' \\ u'x'_{11} & u'x'_{11}t' \end{bmatrix}_{q \times p}$$

where $t, t' \in p\mathcal{R}(1-p), u, u' \in (1-q)\mathcal{R}q, x_{11} = x_{11}ax_{11}$, and $x'_{11} = x'_{11}ax'_{11}$. Suppose $a^{2=} \in [a^{2-}]_l$. Since then $a^{2=}a = a^{2-}a$, we obtain

$$\left[\begin{array}{cc} x_{11}a & 0\\ ux_{11}a & 0 \end{array}\right]_{q\times q} = \left[\begin{array}{cc} x'_{11}a & 0\\ u'x'_{11}a & 0 \end{array}\right]_{q\times q}$$

and hence $x_{11}a = x'_{11}a$ and $ux_{11}a = u'x'_{11}a$. It follows that $x_{11} - x'_{11} \in {}^{\circ}a$ and $ux_{11} - u'x'_{11} \in {}^{\circ}a$. From ${}^{\circ}a = {}^{\circ}p$ we get $x_{11}p = x'_{11}p$ and $ux_{11}p = u'x'_{11}p$, but since $x_{11}, x'_{11} \in q\mathcal{R}p$ we obtain that $x_{11} = x'_{11}$ and $ux_{11} = u'x'_{11}$. Conversely, if $x_{11} = x'_{11}$ and $ux_{11} = u'x'_{11}$, then $x_{11}a = x'_{11}a$ and

 $ux_{11}a = u'x'_{11}a$, and thus $a^{2=}a = a^{2-}a$. We proved that $a^{2=} \in [a^{2-}]_{\sim_l}$ if and only if $x_{11} = x'_{11}$ and $ux_{11} = u'x'_{11}$. So, for $a^{2-} \in a\{2\}$ with

(3.5)
$$a^{2-} = \begin{bmatrix} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{bmatrix}_{q \times p}$$

where $t \in p\mathcal{R}(1-p)$, $u \in (1-q)\mathcal{R}q$, and $x_{11} = x_{11}ax_{11}$, it follows that

$$\begin{bmatrix} a^{2-} \end{bmatrix}_{\sim_l} = \left\{ \begin{bmatrix} x_{11} & x_{11}t' \\ ux_{11} & ux_{11}t' \end{bmatrix}_{q \times p} : t' \in p\mathcal{R}(1-p) \text{ is arbitrary} \right\}.$$

If we pick t' = 0, we get a representative

$$\left[\begin{array}{cc} x_{11} & 0\\ ux_{11} & 0 \end{array}\right]_{q \times p}$$

of this equivalence class and hence a complete set of representatives of the partition of $a\{2\}$ induced by \sim_l is given by

$$\operatorname{Rep}_{\sim_{l}} = \left\{ \left[\begin{array}{cc} x_{11} & 0 \\ ux_{11} & 0 \end{array} \right]_{q \times p} : u \in (1-q)\mathcal{R}q \text{ is arbitrary and } x_{11}ax_{11} = x_{11} \right\}.$$

From now until the end of Section 3, let \mathcal{R} be a *-ring with identity 1.

REMARK 3.1. Suppose $a \in \mathcal{R}^{\dagger}$ and let $p = aa^{\dagger}$ and $q = a^{\dagger}a$. Then p and q are projections. Moreover, pa = a and aq = a, and so $^{\circ}a = ^{\circ}p$ and $a^{\circ} = q^{\circ}$. We may thus write a in the matrix form (2.4). Let $a^{2-} \in a\{2\}$ be represented with the matrix form (3.5). It follows that

$$a^{2-}aa^{\dagger} = a^{2-}p = \begin{bmatrix} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{bmatrix}_{q \times p} \begin{bmatrix} p & 0 \\ 0 & 0 \end{bmatrix}_{p \times p} = \begin{bmatrix} x_{11}p & 0 \\ ux_{11}p & 0 \end{bmatrix}_{q \times p} = \begin{bmatrix} x_{11} & 0 \\ ux_{11} & 0 \end{bmatrix}_{q \times p}.$$

Here $x_{11}ax_{11} = x_{11}$. Thus, every element of $\operatorname{Rep}_{\sim_l}$ can be factorized as $a^{2-}aa^{\dagger}$ for $a \in \mathcal{R}^{\dagger}$ and for some $a^{2-} \in a\{2\}$.

We now extend the notion of a 2MP-inverse to the set of all *-regular elements in a *-ring.

DEFINITION 3.2. Let $a \in \mathbb{R}^{\dagger}$. For each $a^{2-} \in a\{2\}$ we call the element

$$a^{2MP} = a^{2-}aa^{\dagger}$$

a 2MP-inverse of a. We denote

$$a\{2MP\} = \left\{a^{2-}aa^{\dagger} \colon a^{2-} \in a\{2\}\right\}.$$

REMARK 3.3. Observe that a^{2MP} is the most simple representative of the equivalence class $[a^{2-}]_{\sim_l}$. Since $a^{\dagger} \in a\{2MP\}$, it follows that $a\{2MP\}$ is nonempty for every $a \in \mathcal{R}^{\dagger}$. Also, clearly, $0 \in a\{2MP\}$. Suppose $a \in \mathcal{R}^{\dagger}$ is written as (2.4) where $p = aa^{\dagger}$ and $q = a^{\dagger}a$. Then

$$a\{2MP\} = \left\{ \begin{bmatrix} x_{11} & 0 \\ ux_{11} & 0 \end{bmatrix}_{q \times p} : u \in (1-q)\mathcal{R}p \text{ is arbitrary and } x_{11}ax_{11} = x_{11} \right\}.$$

We prove the following result in the same way as [3, Proposition 2.3].

PROPOSITION 3.4. Let $a \in \mathcal{R}^{\dagger}$. Then there exists a bijective map between the quotient set $a\{2\}/\sim_l of a\{2\}$ by $\sim_l and$ the set $a\{2MP\}$.

For $a \in \mathcal{R}^{\dagger}$ and for each $a^{2-} \in a\{2\}$ we define

$$(3.6) c_2^a = a a^{2MP} a$$

and call this element the 2MP core-part of a. Since $a^{2MP} \in [a^{2-}]_{\sim}$, we have $a^{2MP}a = a^{2-}a$ and thus

(3.7)
$$c_2^a = aa^{2-}a.$$

REMARK 3.5. Note that if $a \in \mathcal{R}^{\dagger}$ and $a^{2-} \in a\{2\}$ are represented with the matrix forms (2.4) and (3.5), respectively, then

$$c_{2}^{a} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}_{p \times q} \begin{bmatrix} x_{11} & x_{11}t \\ ux_{11} & ux_{11}t \end{bmatrix}_{q \times p} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}_{p \times q} = \begin{bmatrix} ax_{11}a & 0 \\ 0 & 0 \end{bmatrix}_{p \times q} = ax_{11}a.$$

Many new generalized inverses have been introduced recently as solutions of certain systems of equations (see, e.g., [5, 9]). With the next result we characterize 2MP-inverses in terms of solutions of systems of equations. Observe that

$$c_2^a a^{2MP} = a \left(a^{2-} a a^{2-} \right) a a^{\dagger} = a a^{2-} a a^{\dagger} = c_2^a a^{\dagger}.$$

Since also $a^{2MP} \in a\{2\}$ and $a^{2MP}a = a^{2-}a$, the element a^{2MP} is a solution of the following system of equations: xax = x, $xa = a^{2-}a$, $c_2^a x = c_2^a a^{\dagger}$. It is easy to prove (or see [3, proof of Theorem 2.5]) that it is the unique solution of the system.

PROPOSITION 3.6. Let $a \in \mathbb{R}^{\dagger}$. For each $a^{2-} \in a\{2\}$, the element a^{2MP} is the unique solution to the following system of equations

(3.8) (i)
$$xax = x$$
, (ii) $xa = a^{2-}a$, (iii) $c_2^a x = c_2^a a^{\dagger}$.

Let ImA and KerA denote the image (i.e., the column space) and the kernel (i.e., the null space) of $A \in M_n(\mathbb{C})$. Note that for $A, B \in M_n(\mathbb{C})$ we have (see [4, proof of Lemma 2.1])

 $\operatorname{Im} A \subseteq \operatorname{Im} B$ if and only if $^{\circ}B \subseteq ^{\circ}A$

and

$$\operatorname{Ker} A \subseteq \operatorname{Ker} B$$
 if and only if $A^{\circ} \subseteq B^{\circ}$.

Let $A \in M_n(\mathbb{C})$ and let A^{2-} be an outer generalized inverse of A. By [3, Theorem 2.6], AA^{2MP} is an idempotent matrix with $\operatorname{Im}(AA^{2MP}) = \operatorname{Im}(AA^{2MP}A)$ and $\operatorname{Ker}(AA^{2MP}) = \operatorname{Ker}A^{2MP}$, and $A^{2MP}A$ is an idempotent matrix such that $\operatorname{Im}(A^{2MP}A) = \operatorname{Im}A^{2MP}$ and $\operatorname{Ker}(A^{2MP}A) =$ Ker $(AA^{2MP}A)$. We now extend this result to the *-ring setting.

THEOREM 3.7. Let $a \in \mathcal{R}^{\dagger}$. For a given $a^{2-} \in a\{2\}$, the element a^{2MP} satisfies the following properties:

(a)
$$\circ a^{2-} = \circ a^{2MP}$$
.

(b) aa^{2MP} is the idempotent with $\circ (aa^{2MP}) = \circ c_2^a$ and $(aa^{2MP})^\circ = (a^{2MP})^\circ$.

c)
$$a^{2MP}a$$
 is the idempotent with $(a^{2MP}a) = a^{2MP}a$ and $(a^{2MP}a)^{\circ} = (c_2^a)^{\circ}$.

PROOF. (a) Clearly, by Definition 3.2, ${}^{\circ}a^{2-} \subseteq {}^{\circ}a^{2MP}$. Let now $z \in {}^{\circ}a^{2MP}$ for some $z \in \mathcal{R}$. The $0 = za^2 - aa^{\dagger}$. Multiplying this equation from the right consequently first by a and then by a^{2-} , we get $0 = za^{2-}$. So, ${}^{\circ}a^{2-} = {}^{\circ}a^{2MP}$. (b) Since $aa^{2MP}a = aa^{2-}a$ and $a^{2MP} = a^{2-}aa^{\dagger}$, we have

$$(aa^{2MP})^{2} = (aa^{2MP}a) a^{2MP} = a (a^{2}-aa^{2}-) aa^{\dagger} = aa^{2}-aa^{\dagger} = aa^{2MP}a^{2}$$

and so aa^{2MP} is an idempotent. Let us now prove that $\circ(aa^{2MP}) = \circ c_2^a$. Let $z \in \circ(aa^{2MP})$ for some $z \in \mathcal{R}$. Then $0 = zaa^{2MP} = zaa^{2-}aa^{\dagger} = zc_2^a a^{\dagger}$ and thus $0 = zc_2^a a^{\dagger}a$. But since $c_2^a = aa^{2MP}a$,

Some $z \in \mathbb{A}$. Then $0 = zaa^{2MP} = zaa^{2}aa^{\dagger} = zc_2^aa^{\dagger}$ and thus $0 = zc_2^aa^{\dagger}a$. But since $c_2^a = aa^{2MP}a$, it follows that $c_2^aa^{\dagger}a = c_2^a$, and therefore, $z \in {}^\circ c_2^a$. Let now $z \in {}^\circ c_2^a$ for some $z \in \mathbb{R}$. Then $0 = zaa^{2-}a$ and thus $0 = zaa^{2-}aa^{\dagger} = zaa^{2MP}$. So, ${}^\circ (aa^{2MP}) = {}^\circ c_2^a$. Let us now show that $(aa^{2MP})^\circ = (a^{2MP})^\circ$. Clearly, $(a^{2MP})^\circ \subseteq (aa^{2MP})^\circ$. If $aa^{2MP}z = 0$ for some $z \in \mathbb{R}$, then $0 = aa^{2-}aa^{\dagger}z$ and hence $0 = a^{2-}aa^{2-}aa^{\dagger}z = a^{2-}aa^{\dagger}z = a^{2MP}z$. So, $(aa^{2MP})^\circ = (a^{2MP})^\circ$. We similarly prove (c) П

We similarly prove (c).

As a corollary to Theorem 3.7, we give another characterization of a 2MP-inverse. First, let us prove an auxiliary result.

LEMMA 3.8. Let $p_1, p_2 \in \mathcal{R}$ be two idempotent elements. If $\circ p_1 = \circ p_2$ and $p_1^\circ = p_2^\circ$, then $p_1 = p_2.$

PROOF. From ${}^{\circ}p_1 = {}^{\circ}p_2$ we have $(1-p_1)p_2 = 0$ and so $p_2 = p_1p_2$. By $p_1^{\circ} = p_2^{\circ}$ we obtain $p_1(1-p_2) = 0$, i.e., $p_1 = p_1p_2$. So, $p_1 = p_1p_2 = p_2$.

COROLLARY 3.9. Let $a \in \mathcal{R}^{\dagger}$. For each $a^{2-} \in a\{2\}$, the 2MP-inverse a^{2MP} of a is the unique element x that satisfies the following conditions:

(i) ax is an idempotent with

$$^{\circ}(ax) = ^{\circ}c_2^a \quad and \quad (ax)^{\circ} = \left(c_2^a a^{\dagger}\right)^{\circ},$$

(ii) $\circ a^{2-} \subset \circ x$.

PROOF. Condition (ii) is satisfied by Theorem 3.7. Also, aa^{2MP} is an idempotent with $\circ(aa^{2MP}) = \circ c_2^a$, and since $c_2^a a^{\dagger} = aa^{2-}aa^{\dagger} = aa^{2MP}$, the element $x = a^{2MP}$ satisfies also conditions in (i).

Let us prove the uniqueness. Suppose that $x_1, x_2 \in \mathcal{R}$ satisfy both (i) and (ii). Then ax_1 and ax_2 are idempotents with $(ax_1) = c_2^a = (ax_2)$ and $(ax_1)^\circ = (c_2^a a^{\dagger})^\circ = (ax_2)^\circ$, and therefore by Lemma 3.8, $ax_1 = ax_2$. From (ii), $\circ a^{2-} \subseteq \circ x_1 \cap \circ x_2$. So,

$$(1 - a^{2-}a) x_1 = 0 = (1 - a^{2-}a) x_2$$

and thus $x_1 = a^{2-}ax_1 = a^{2-}ax_2 = x_2$.

The following characterizations of a 2MP-inverse can also be verified.

THEOREM 3.10. Let $a \in \mathcal{R}^{\dagger}$ and $x \in \mathcal{R}$. For a given $a^{2-} \in a\{2\}$, the following statements are equivalent:

(i) $x = a^{2MP}$.

- (ii) $x\mathcal{R} = a^{2-}\mathcal{R}$ and $ax = aa^{2-}aa^{\dagger}$.
- (iii) $x\mathcal{R} \subseteq a^{2-}\mathcal{R} \text{ and } ax = aa^{2-}aa^{\dagger}.$ (iv) $x^*\mathcal{R} = aa^{\dagger}(a^{2-})^*\mathcal{R} \text{ and } xa = a^{2-}a.$
- (v) $x^* \mathcal{R} \subseteq a \mathcal{R}$ and $xa = a^{2-}a$.

PROOF. (i) \Rightarrow (ii): Since $x = a^{2MP} = a^{2-}aa^{\dagger}$, it follows that $ax = aa^{2-}aa^{\dagger}$ and $x\mathcal{R} = a^{2-}aa^{\dagger}\mathcal{R} = a^{2-}a\mathcal{R} = a^{2-}\mathcal{R}.$

(ii) \Rightarrow (iii): This implication is clear.

(iii) \Rightarrow (i): The hypothesis $x\mathcal{R} \subseteq a^{2-}\mathcal{R}$ implies $x = a^{2-}u$, for some $u \in \mathcal{R}$. Hence, by $ax = aa^{2-}aa^{\dagger},$

$$x = a^{2-}a(a^{2-}u) = a^{2-}(ax) = (a^{2-}aa^{2-})aa^{\dagger} = a^{2MP}.$$

In a similar manner, we check the rest.

Let $a, b \in \mathcal{R}$. If $a\mathcal{R} \subseteq b\mathcal{R}$, then a = bu for some $u \in \mathcal{R}$, and thus $b \subseteq a$. Suppose now there exists $v \in \mathcal{R}$ such that bvb = b, i.e., $b \in v\{2\}$. If $b \subseteq a$, then (1 - bv)a = 0 which implies $a\mathcal{R} \subseteq b\mathcal{R}$. Consequently, we obtain by Theorem 3.10 more characterizations of a 2MP-inverse.

COROLLARY 3.11. Let $a \in \mathbb{R}^{\dagger}$ and $x \in v\{2\}$ for some $v \in \mathbb{R}$. For a given $a^{2-} \in a\{2\}$, the following statements are equivalent:

(i) $x = a^{2MP}$. (ii) $^{\circ}x = ^{\circ}(a^{2-})$ and $ax = aa^{2-}aa^{\dagger}$. (iii) $^{\circ}x \supseteq ^{\circ}(a^{2-})$ and $ax = aa^{2-}aa^{\dagger}$. $(iv)^{\circ}(x^{*}) = {}^{\circ}[aa^{\dagger}(a^{2-})^{*}] and xa = a^{2-}a.$ (v) $\circ(x^*) \supset \circ a$ and $xa = a^{2-}a$.

Let us recall the definition of the (b, c)-inverse which is a special kind of the outer generalized inverse. For $a, b, c \in \mathcal{R}$, an element $x \in \mathcal{R}$ is a (b, c)-inverse of a if $xax = x, x\mathcal{R} = b\mathcal{R}$ and $\mathcal{R}x = \mathcal{R}c$. The (b,c)-inverse of a is unique, if it exists, and denoted by $a^{||(b,c)|}$ [2]. Applying a 2MP-inverse determined by the (b, c)-inverse $a^{||(b,c)}$ in place of an outer generalized inverse a^{2-} , we prove solvability of the next equation.

THEOREM 3.12. Let $a \in \mathcal{R}^{\dagger}$ and $b, c, d \in \mathcal{R}$. If $a^{||(b,c)}$ exists, the general solution to the equation $cax = caa^{\dagger}d$

is expressed as

(3.10)
$$x = a^{||(b,c)}aa^{\dagger}d + (1 - a^{||(b,c)}a)z$$

for an arbitrary $z \in \mathcal{R}$.

PROOF. By $\mathcal{R}a^{||(b,c)} = \mathcal{R}c$, notice that $c = ua^{||(b,c)}$ and $a^{||(b,c)} = vc$, for some $u, v \in \mathcal{R}$. Thus, $caa^{||(b,c)} = ua^{||(b,c)}aa^{||(b,c)} = ua^{||(b,c)} = c.$

For x expressed by (3.10), we therefore get

$$cax = caa^{||(b,c)}aa^{\dagger}d + ca(1-a^{||(b,c)}a)z = caa^{\dagger}d,$$

i.e., x is a solution to (3.9).

If equation (3.9) has a solution x, then, by $a^{||(b,c)|} = vc$,

 $a^{||(b,c)}ax = v(cax) = (vc)aa^{\dagger}d = a^{||(b,c)}aa^{\dagger}d.$

Thus, x has the form (3.10):

$$x = a^{||(b,c)}aa^{\dagger}d + x - a^{||(b,c)}ax = a^{||(b,c)}aa^{\dagger}d + (1 - a^{||(b,c)}a)x$$

Π

Since $c = ua^{||(b,c)|}$ and $a^{||(b,c)|} = vc$, for some $u, v \in \mathcal{R}$, note that equation (3.9) is satisfied if and only if

$$a^{||(b,c)}ax = a^{||(b,c)}aa^{\dagger}d.$$

Hence, any solution to (3.9) is a solution to $a^{||(b,c)}ax = a^{||(b,c)}aa^{\dagger}d$ and vice versa.

As a consequence of Theorem 3.12, we obtain the solvability of equation (3.10) with the constrain $d \in a\mathcal{R}$.

COROLLARY 3.13. Let $a \in \mathcal{R}^{\dagger}$ and $b, c, d \in \mathcal{R}$. If $a^{||(b,c)}$ exists, the general solution to the equation

 $cax = cd, \quad d \in a\mathcal{R}$

 $is \ expressed \ as$

$$x = a^{||(b,c)}d + (1 - a^{||(b,c)}a)z,$$

for an arbitrary $z \in \mathcal{R}$.

PROOF. The assumption $d \in a\mathcal{R}$ gives $d = aa^{\dagger}d$. The rest is clear by Theorem 3.12.

We now study when equation (3.9) has the unique solution.

THEOREM 3.14. Let $a \in \mathcal{R}^{\dagger}$ and $b, c, d \in \mathcal{R}$ such that $a^{||(b,c)}$ exists. Then $a^{||(b,c)}aa^{\dagger}d$ is the unique solution in $b\mathcal{R}$ to (3.9).

PROOF. We firstly observe that $a^{||(b,c)}aa^{\dagger}d \in a^{||(b,c)}\mathcal{R} = b\mathcal{R}$. Theorem 3.12 implies that $a^{||(b,c)}aa^{\dagger}d$ is a solution to (3.9).

For two solutions $y \in b\mathcal{R}$ and $x = a^{||(b,c)}aa^{\dagger}d$ to equation (3.9), we get

$$cax = caa^{\dagger}d = cay$$

and thus

$$y - x \in (ca)^{\circ} \cap b\mathcal{R}$$

Note that $\mathcal{R}a^{||(b,c)} = \mathcal{R}c$ implies $(ca)^\circ = (a^{||(b,c)}a)^\circ$, and that $a^{||(b,c)}aa^{||(b,c)} = a^{||(b,c)}$ yields $b\mathcal{R} = a^{||(b,c)}\mathcal{R} = a^{||(b,c)}a\mathcal{R}$. Thus,

$$y - x \in (a^{||(b,c)}a)^{\circ} \cap a^{||(b,c)}a\mathcal{R} = \{0\}$$

Thus, $y = x = a^{||(b,c)}aa^{\dagger}d$ represents the unique solution in $b\mathcal{R}$ to (3.9).

4. MP2-inverses in rings

Let \mathcal{R} be a ring and $a \in \mathcal{R}$. Similarly to Section 3, we define an equivalence relation \sim_r on the set $a\{2\}$ as follows. For $a^{2-}, a^{2=} \in a\{2\}$, we write

 $a^{2-} \sim_r a^{2-}$ if $aa^{2-} = aa^{2-}$.

Consider now a new ring $Q = (\mathcal{R}, \circ)$ where

for $a, b \in \mathcal{R}$. It is then easy to see that $b \in a\{2\}$ in the ring \mathcal{R} if and only if $b \in a\{2\}$ in the ring \mathcal{Q} , and that $b \sim_r c$ in the ring \mathcal{R} if and only if $b \sim_l c$ in the ring \mathcal{Q} . Also, if \mathcal{R} is a *-ring, then * is also an involution in \mathcal{Q} which yields that $a \in \mathcal{R}^{\dagger}$ if and only if $a \in \mathcal{Q}^{\dagger}$.

From now on, let \mathcal{R} be a *-ring with identity.

DEFINITION 4.1. Let $a \in \mathcal{R}^{\dagger}$. For each $a^{2-} \in a\{2\}$ we call the element $a^{MP2} = a^{\dagger}aa^{2-}$

the MP2-inverse of a. We denote

$$a\{MP2\} = \left\{a^{\dagger}aa^{2-} : a^{2-} \in a\{2\}\right\}.$$

Note that $b \in a\{MP2\}$ in the ring \mathcal{R} if and only if $b \in a\{2MP\}$ in the ring \mathcal{Q} . For $a \in \mathcal{R}$ observe that $z \in {}^{\circ}a$ in the ring \mathcal{R} if and only if $z \in a^{\circ}$ in the ring \mathcal{Q} , and $z \in {}^{\circ}a$ in the ring \mathcal{Q} if and only if $z \in a^{\circ}$ in the ring \mathcal{R} .

The next two results thus follow immediately if we apply (4.11) to Proposition 3.6 and Theorem 3.7, respectively.

PROPOSITION 4.2. Let $a \in \mathcal{R}^{\dagger}$. For each $a^{2-} \in a\{2\}$, the element a^{MP2} is the unique solution to the following system of equations:

(i) xax = x, (ii) $xa = aa^{2-}$, (iii) $xc_2^a = a^{\dagger}c_2^a$.

THEOREM 4.3. Let $a \in \mathbb{R}^{\dagger}$. For a given $a^{2-} \in a\{2\}$, the element a^{MP2} satisfies the following properties:

(a) $(a^{2-})^{\circ} = (a^{MP2})^{\circ}$.

(b) $a^{MP2}a$ is the idempotent with $\circ (a^{MP2}a) = \circ a^{MP2}$ and $(a^{MP2}a)^{\circ} = (c_2^a)^{\circ}$.

(c) aa^{MP2} is the idempotent with $\circ (aa^{MP2}) = \circ c_2^a$ and $(aa^{MP2})^\circ = (a^{MP2})^\circ$.

We may similarly obtain other results and observations, analogous to the ones from Section 3.

5. C2MP-inverses in Rings

In this section, we extend the concept of C2MP-inverses to the set of all *-regular elements in a *-ring. Recall that for $a \in \mathcal{R}^{\dagger}$ and for each $a^{2-} \in a\{2\}, c_2^a$ is defined with (3.6) (see also (3.7)).

DEFINITION 5.1. Let $a \in \mathcal{R}^{\dagger}$. For each outer generalized inverse a^{2-} of a, the element

$$a^{C2MP} = a^{\dagger}c_2^a a^{\dagger}$$

is called a C2MP-inverse of a. We denote

$$a\{C2MP\} = \left\{ a^{\dagger} \left(aa^{2MP} a \right) a^{\dagger} : a^{2MP} \in a\{2MP\} \right\}.$$

Since $a\{2MP\}$ is nonempty, it follows that $a\{C2MP\}$ is also nonempty for every $a \in \mathcal{R}^{\dagger}$. Also, since 2MP-inverses are not unique, the same holds also for C2MP-inverses.

REMARK 5.2. Suppose that $a \in \mathcal{R}^{\dagger}$ and let $p = aa^{\dagger}$ and $q = a^{\dagger}a$. Let $a^{2-} \in a\{2\}$ be represented with the matrix form (3.5) with respect to projections p and q. By Remark 3.5 we have

$$a^{C2MP} = a^{\dagger}ax_{11}aa^{\dagger} = qx_{11}p$$

and since $x_{11} \in q\mathcal{R}p$, we may conclude that

$$a^{C2MP} = x_{11}.$$

Recall here that $x_{11}ax_{11} = x_{11}$.

We now list four propositions that may be proved in a similar way as corresponding results for matrices in $M_{m,n}(\mathbb{C})$. The proof of the first proposition is the same as the proof of [3, Proposition 4.3].

PROPOSITION 5.3. Let $a \in \mathcal{R}^{\dagger}$. For a given $a^{2MP} \in a\{2MP\}$, the element a^{C2MP} satisfies the following properties:

(a) $a^{C2MP} = a^{MP2}aa^{2MP}$.

(b)
$$a^{C2MP} = a^{\dagger}aa^{2MP}aa^{\dagger}$$
.

(c) $a^{C2MP} \in a\{2\}.$

 $\begin{array}{ll} ({\rm d}) & aa^{C2MP}a=c_2^a.\\ ({\rm e}) & aa^{C2MP}=c_2^aa^\dagger=aa^{2MP}.\\ ({\rm f}) & a^{C2MP}a=a^\dagger c_2^a=a^{MP2}a. \end{array}$

By properties (c), (e), and (f) of Proposition 5.3, a^{C2MP} is a solution of the following system of equations: xax = x, $ax = c_2^a a^{\dagger}$, $xa = a^{\dagger} c_2^a$. It is easy to check (see [3, proof of Theorem 4.4]) that a^{C2MP} is the unique solution of this system.

PROPOSITION 5.4. Let $a \in \mathcal{R}^{\dagger}$. For each $a^{2MP} \in a\{2MP\}$, the element a^{C2MP} is the unique solution to the following system of equations:

(i)
$$xax = x$$
, (ii) $ax = c_2^a a^{\dagger}$, (iii) $xa = a^{\dagger} c_2^a$.

By using Proposition 5.3, we may prove the next proposition in the same way as [3, Proposition 4.6].

PROPOSITION 5.5. Let $a \in \mathcal{R}^{\dagger}$ and let $p = aa^{\dagger}$ and $q = a^{\dagger}a$. For each $a^{2-} \in a\{2\}$, the element a^{C2MP} satisfies the following properties:

- (a) $a^{C2MP} \in a\{1\}$ if and only if $a^{2-} \in a\{1\}$.
- (b) $a^{C2MP} = qa^{2^{-}}p = qa^{2MP}p$.
- (c) $a^{C2MP} \in c_2^a \{1\} \cap c_2^a \{2\}.$ (d) $c_2^a a^{C2MP} = aa^{C2MP}.$ (e) $a^{C2MP} c_2^a = a^{C2MP} a.$

- (f) $pc_2^a q = c_2^a$.

PROPOSITION 5.6. Let $a \in \mathcal{R}^{\dagger}$. For each $a^{2-} \in a\{2\}$, the following statements are equivalent: (i) $a^{C2MP} = a^{\dagger}$.

- (ii) $c_2^a = a$. (iii) $a^{\overline{2}-} \in a\{1\}.$
- (iv) $a^{2-} \in a\{1\} \cap a\{2\}.$
- (v) $a^{\dagger} = x_{11}$ where a and a^{2-} are represented with (2.4) and (3.5), respectively. (vi) $a^{C2MP} \in a\{1\}$.

PROOF. We may prove the equivalence of statements (i), (ii), (iii), (iv), and (vi) by Proposition 5.5 and the arguments from the proof of [3, Theorem 4.8]. Equivalence of statements (v) and (i) is a direct corollary of Remark 5.2.

We end the paper with a result that extends [3, Theorem 4.10].

THEOREM 5.7. Let $a \in \mathcal{R}^{\dagger}$ and let $p = aa^{\dagger}$ and $q = a^{\dagger}a$. For each $a^{2-} \in a\{2\}$ written as in (3.5), the following statements are satisfied:

(a) $\left(a^{C2MP}\right)^{\dagger} = x_{11}^{\dagger}$.

(b)
$$(a^{\dagger})^{C2MP} = z$$
 where $z \in p\mathcal{R}q$ with $za^{\dagger}z = z$.

- (c) $(a^{C2MP})^{\dagger} = (a^{\dagger})^{C2MP}$ if and only if $x_{11}^{\dagger} = z$ where $z \in p\mathcal{R}q$ with $za^{\dagger}z = z$. (d) $a^{C2MP} = a^*$ if and only if $a = x_{11}^*$. (e) $a^{C2MP} = 0$ if and only if $a^{2^-} = 0$ if and only if $c_2^a = 0$.

PROOF. Statement (a) follows directly by Remark 5.2. (b) Note that

$$a^{\dagger} = \left[\begin{array}{cc} a^{\dagger} & 0\\ 0 & 0 \end{array} \right]_{q \times p}.$$

Also, $(a^{\dagger})^{\dagger} = a$ and so there exists $(a^{\dagger})^{2-} \in (a^{\dagger})$ {2}. In accordance with (3.5), we write

$$(a^{\dagger})^{2-} = \left[\begin{array}{cc} z & zn \\ mz & mzn \end{array}\right]_{p \times q}$$

where $m \in (1-p)\mathcal{R}p$, $n \in q\mathcal{R}(1-q)$, and $z = za^{\dagger}z$. Then

$$(a^{\dagger})^{C2MP} = (a^{\dagger})^{\dagger} c_2^{a^{\dagger}} (a^{\dagger})^{\dagger} = aa^{\dagger} (a^{\dagger})^{2-} a^{\dagger} a = p (a^{\dagger})^{2-} q = z.$$

Statement (c) follows directly by statements (a) and (b). (d) By Remark 5.2, $a^{C2MP} = x_{11}$, and thus $a^{C2MP} = a^*$ if and only if $a^* = x_{11}$ which is

equivalent to $a = x_{11}^*$. (e) Since $a^{C2MP} = x_{11}$, we have that $a^{C2MP} = 0$ if and only if $a^{2-} = 0$. Since $c_2^a = aa^{2-}a$, $a^{2-} = 0$ implies $c_2^a = 0$. If $c_2^a = 0$, then $aa^{2-}a = 0$ and thus

$$x_{11} = qa^{2-}p = a^{\dagger} (aa^{2-}a) a^{\dagger} = 0$$

So, $a^{2-} = 0$.

ACKNOWLEDGEMENTS.

The authors wish to thank the anonymous reviewers for helpful and constructive comments that improved the presentation of this paper.

References

- [1] D. S. Djordjević, D. S. Rakić, J. Marovt, Minus partial order in Rickart rings, Publ. Math. Debrecen 87 (2015), No. 3/4, 291–305.
- M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436 (2012), 1909–1923.
- [3] M. V. Hernández, M. B. Lattanzi, N. Thome, On 2MP-, MP2- and C2MP-inverses for rectangular matrices, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 116 (2022), article 156.
- [4] J. Marovt, D. S. Rakić, D. S. Djordjević, Star, left-star, and right-star partial orders in Rickart *-rings, Linear Multilinear Algebra 63 (2015), No. 2, 343-365.
- [5] J. Marovt, D. Mosić, On G-S and C-S inverses in *-rings, Comm. Algebra 52 (2024), No. 12, 5320–5338.
- M. Mehdipour, A. Salemi, On a new generalized inverse of matrices, Linear Multilinear Algebra 66 (2018), No. [6]5.1046-1053
- [7] D. Mosić, P. S. Stanimirović, Composite outer inverses for rectangular matrices, Quaest. Math. 44 (2021), 45–72.
- [8] P. S. Stanimirović, D. Mosić, Y. Wei, Least squares properties of generalized inverses, Commun. Math. Res. 37 (2021), No. 4, 421–447.
- [9] D. Stojanović, D. Mosić, Inner-gMP and gMP-inner inverses, Hacet. J. Math. Stat. 53 (2024), No. 5, 1312–1325.

J. Marovt University of Maribor Faculty of Economics and Business Razlagova 14, SI-2000 Maribor, Slovenia, and IMFM Jadranska ulica 19, SI-1000 Ljubljana, Slovenia E-mail: janko.marovt@um.si

D. Mosić Faculty of Sciences and Mathematics University of Niš P.O. Box 224, 18000 Niš, Serbia E-mail: dijana@pmf.ni.ac.rs