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PARABOLIC INDUCTION FROM TWO SEGMENTS,
LINKED UNDER CONTRAGREDIENT, WITH A ONE HALF

CUSPIDAL REDUCIBILITY, A SPECIAL CASE

Igor Ciganović

University of Zagreb, Croatia

Abstract. In this paper, we determine the composition series of the

induced representation δ([ν−aρ, νcρ]) × δ([ν
1
2 ρ, νbρ]) ⋊ σ where a, b, c ∈

Z + 1
2

such that 1
2

≤ a < b < c, ρ is an irreducible cuspidal unitary

representation of a general linear group and σ is an irreducible cuspidal

representation of a classical group such that ν
1
2 ρ ⋊ σ reduces.

1. Introduction

The problem of determining the composition series of induced representa-
tions is important for the representation theory. Namely, classes of representa-
tions of certain interest, like irreducible, unitary, tempered representations or
discrete series, are often placed inside parabolically induced representations,
raising a question of their position. Despite the interest, complete description
of the composition factors of induced representations is known only in some
special cases, such as [2], [7], [9], [14] and [24], and for some low-rank groups.

This paper is a continuation of the effort from [3] and [4] to study classes of
parabolically induced representations similar to ones appearing in the Mœglin-
Tadić classification of discrete series ([11], [13]). To explain this we introduce
some notation. Fix a local non-archimedean field F of characteristic different
than two. Let ρ be an irreducible cuspidal unitary representation of some
GL(m,F ), and x, y ∈ R, such that y− x+ 1 ∈ Z≥0. By Zelevinsky classifica-
tion, the set ∆ = [νxρ, νyρ] = {νxρ, ..., νyρ} is called a segment. We have a
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unique irreducible subrepresentation

δ(∆) = δ([νxρ, νyρ]) ↪→ νyρ× · · · × νxρ,

of the parabolically induced representation. If ∆ ⊆ ∆′, then δ(∆)× δ(∆′) ∼=
δ(∆′) × δ(∆) is irreducible. Set e(∆) = (x + y)/2. Given a sequence of
segments ∆1, ...,∆k, such that e(∆1) ≥ · · · ≥ e(∆k) > 0 and an irreducible
tempered representation τ , of a symplectic or (full) orthogonal group, we have
a unique irreducible quotient, called the Langlands quotient,

δ(∆1)× · · · × δ(∆k)⋊ τ ↠ L(δ(∆1)× · · · × δ(∆k)⋊ τ),

of the parabolically induced representation. Let ρ be as above, and σ an
irreducible cuspidal representation of a symplectic or (full) orthogonal group

such that ν
1
2 ρ ⋊ σ reduces. Let a, b, c ∈ Z + 1

2 such that 1
2 ≤ a < b < c. In

[3], we determined composition series of induced representation

δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ])⋊ σ.

The search for composition factors relied on decomposing kernels of inter-
twining operators using results of [14]. This approach held in [4], where
we considered an arbitrary number of segments ∆i. There, one of condi-
tions was on segments involved: induced representations δ(∆i) × δ(∆j) and

δ(∆i) × δ̃(∆j), i ̸= j, are to be irreducible, where ˜ stands for the contragre-
dient. As a result, all discrete series there appeared as subrepresentations.
Neither this property nor the condition holds in the present paper, where we
consider composition series of induced representation

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ,

even though all irreducible subquotients, including discrete series, are pre-
served. Moreover, decomposing kernels of intertwining operators requires
more basic tools developed in [14], complicating our search.

To describe our results, we introduce some discrete series, appearing as
only irreducible subrepresentations in the following induced representations
(for more details see Section 3):

σa ↪→ δ([ν
1
2 ρ, νaρ])⋊ σ, and similarly for σb and σc. Further

σ+
b,c ↪→ δ([ν

1
2 ρ, νbρ])⋊ σc, σ+

b,c + σ−
b,c ↪→ δ([ν−bρ, νcρ])⋊ σ,

and similarly for σ±
a,c. Finally σ

±
b,c,a ↪→ δ([ν

1
2 ρ, νaρ])⋊ σ±

b,c. Now we have
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Theorem 1.1. Let ψ = δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ and define rep-

resentations

W1 =σ+
b,c,a + L(δ([ν

1
2 ρ, νaρ])⋊ σ−

b,c),

W2 =L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν−aρ, νbρ])⋊ σc)+

L(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c) + L(δ([ν−bρ, νcρ])⋊ σa),

W3 =L(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c) + L(δ([ν−aρ, νcρ])⋊ σb)+

σ−
b,c,a + L(δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ])⋊ σ),

W4 =L(ψ).

Then there exists a sequence {0} = V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ V4 = ψ, such that

Vi/Vi−1
∼=Wi, i = 1, . . . , 4.

Further, W1 is chosen to be the largest possible, then W2, and so on.

Now we describe the content of the paper.
After Preliminaries, we fix the notation in Section 3 and collect some re-
ducibility results. Intertwining operators and an approach to decompose the
induced representation are considered in Section 4. In Section 5, we deter-
mine the occuring discrete series. The remaining non-tempered candidates,
not provided in Section 4, are listed in Section 6. Their occurrence is con-
firmed in Sections 7-9. Composition factors are described in Section 10. To
determine composition series, we decompose kernels of intertwining operators
in Sections 11-13, and provide the main result in Section 14.

2. Preliminaries

Let F be a local non-archimedean field of characteristic different than
two. As in [13], fix a tower of symplectic or orthogonal non-degenerate F
vector spaces Vn, n ≥ 0 where n is the Witt index. We denote by Gn the
group of isometries of Vn. It has split rank n. Also, we fix the set of standard
parabolic subgroups in the usual way. Standard parabolic proper subgroups
of Gn are in bijection with the set of ordered partitions of positive integers
m ≤ n:

{s = (n1, . . . , nk) | n1 + · · ·+ nk = m, k > 0} ←→ Ps,

Ps =MsNs, Levi factorization with Ms Levi factor,

Ms
∼= GL(n1, F )× · · · ×GL(nk, F )×Gn−m.

By Alg Gn we denote smooth representations of Gn, Irr Gn irreducible repre-
sentations, and subscript f.l. means finite length, u unitary, and cusp cuspi-
dal. Also denote Alg G = ∪n≥0Alg Gn, and so on. We use a similar notation
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for GL(n, F ). For δi ∈ Alg GL(ni, F ), i = 1, ..., k and τ ∈ Alg Gn−m, let
π = δ1 ⊗ · · · ⊗ δk ⊗ τ ∈ Alg Ms and

δ1 × · · · × δk ⋊ τ = IndGn

Ms
(π)

be the representation induced from π using normalized parabolic induction.
If σ ∈ Alg Gn we denote by rs(σ) = rMs

(σ) = JacqGn

Ms
(σ) the normalized

Jacquet module of σ. We have the Frobenius reciprocity

HomGn
(σ, IndGn

Ms
(π)) ∼= HomMs

(JacqGn

Ms
(σ), π).

Let ρ ∈ Irru,cuspGL and x, y ∈ R, such that y − x+ 1 ∈ Z≥0. The set

∆ = [νxρ, νyρ] = {νxρ, ..., νyρ}
is called a segment. We have a unique irreducible subrepresentation

δ([νxρ, νyρ]) ↪→ νyρ× · · · × νxρ,
of the induced representation, and it is essentially square integrable. We also
denote e([νxρ, νyρ]) = e(δ([νxρ, νyρ]) = x+y

2 . For y − x + 1 ∈ Z<0 define
[νxρ, νyρ] = ∅ and δ(∅) is the irreducible representation of the trivial group.

Let ∆̃ = [ν−yρ̃, ν−xρ̃] where ρ̃ denotes the contragredient of ρ. We have

δ(∆)̃ = δ(∆̃). By [24] if δ ∈ Irr GL is essentially square integrable, there
exists a segment ∆ such that δ = δ(∆). Let δi = δ(∆i), ei = e(δi), i = 1, 2.
We have

δ1 × δ2 reduces⇔ ∆1 ∪∆2 is a segment and ∆1 ⊈ ∆2,∆2 ⊈ ∆1.

In that case, if e1 ≥ e2, the induced representation has a unique irreducible
quotient, called Langlands quotient, and a unique irreducible subrepresenta-
tion. They swap positions in δ2 × δ1 and make composition factors. We have
an exact sequence.

δ(∆1 ∪∆2)× δ(∆1 ∩∆2) ↪→ δ1 × δ2 ↠ L(δ1 × δ2) = L(δ1, δ2).

Given a sequence δi = δ(∆i), i = 1, . . . , k such that e(∆1) ≥ · · · ≥ e(∆k) > 0
and τ ∈ Irr G, tempered, the Langlands quotient is a unique irreducible
quotient:

δ1 × · · · × δk ⋊ τ ↠ L(δ1 × · · · × δk ⋊ τ),

and it appears with multiplicity one in the induced representation. It is also
a unique irreducible subrepresentation of

δ̃1 × · · · × δ̃k ⋊ τ ∼= (δ1 × · · · × δk ⋊ τ )̃ .

Permuting δi-s and possibly taking contragredients does not change compo-
sition factors. Every irreducible representation of Gn can be written as a
Langlands quotient.
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If σ is a discrete series representation of Gn then by the Mœglin-Tadić,
now unconditional, classification ([11],[13]), it is described by an admissible
triple

(Jord, σcusp, ϵ).

Here Jord is a set of pairs (a, ρ) where ρ̃ ∼= ρ ∈ Irru,cuspGL and a ∈ Z>0, of

parity depending on ρ, such that δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])⋊ σ is irreducible,
but there exists an integer a′ > a, of the parity same as a such that the
induced representation reduces when we replace a with a′. We write

Jordρ = {a : (a, ρ) ∈ Jord}
and for a ∈ Jordρ let a− be the largest element of Jordρ strictly less than
a, if such exists. Next, there exists a unique, up to an isomorphism, σcusp ∈
IrrcuspG, such that there exists π ∈ IrrGL and σ ↪→ π ⋊ σcusp. It is called
the partial cuspidal support of σ. Finally, ϵ is a function from a subset of
Jord ∪ (Jord × Jord) into {±1}. Assume (a, ρ) ∈ Jord and a is even. Then
ϵ(a, ρ) is defined, and if a = min(Jordρ)

ϵ(a, ρ) = 1⇔ ∃π′ ∈ IrrG, σ ↪→ δ([ν1/2ρ, ν(a−1)/2ρ])⋊ π′,

while if a− exists

ϵ(a, ρ)ϵ(a−, ρ)
−1 = 1⇔ ∃π′′ ∈ IrrG, σ ↪→ δ([ν(a−+1)/2ρ, ν(a−1)/2ρ])⋊ π′′.

Now we recall the Tadić formula for computing Jacquet modules of in-
duced representations. Let R(Gn) be the Grothendieck group of the category
of smooth representations of Gn of finite length. It is the free Abelian group
generated by classes of irreducible representations ofGn. If σ is a smooth finite
length representation of Gn denote by s.s.(σ) the semisimplification of σ, that
is the sum of classes of composition series of σ. Put R(G) = ⊕n≥0R(Gn).
Let R+

0 (G) be a Z≥0 subspan of classes of irreducible representations. For
π1, π2 ∈ R(G) we define π1 ≤ π2 if π2 − π1 ∈ R+

0 (G). Similarly define
R(GL) = ⊕n≥0R(GL(n, F )). We have the map µ∗ : R(G)→ R(GL)⊗ R(G)
defined by

µ∗(σ) = 1⊗ σ +
n∑

k=1

s.s.(r(k)(σ)), σ ∈ R(Gn).

The following result derives from Theorems 5.4 and 6.5 of [20], see also Section
1. in [13]. They are based on Geometrical Lemma (2.11 of [1]).

Theorem 2.1. Let σ ∈ Algf.l.G, and [νxρ, νyρ] ̸= ∅ a segment. Then

µ∗(δ([νxρ, νyρ])⋊ σ) =
∑

δ′⊗σ′≤µ∗(σ)

y−x+1∑

i=0

i∑

j=0

δ([νi−yρ̃, ν−xρ̃])× δ([νy+1−jρ, νyρ])× δ′ ⊗ δ([νy+1−iρ, νy−jρ])⋊ σ′

(2.1)
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where δ′ ⊗ σ′ denotes an irreducible subquotient in the appropriate Jacquet
module.

Now we provide results of [10], about Jacquet modules of some irreducible
representations. Consider induced representation

π = δ([ν−aρ, νcρ])⋊ σ

where σ ∈ IrrcuspG, ρ̃ ∼= ρ ∈ Irru,cuspGL, such that ν
1
2 ρ ⋊ σ reduces, and

a, c ∈ Z + 1
2 , such that c − a ≥ 0. We define terms δ([ν−aρ, νcρ]+;σ),

δ([ν−aρ, νcρ]−;σ) and L(δ([ν−aρ, νcρ]);σ). Each of them is either an irre-
ducible representation or zero.

If 1
2 < −a, then π is irreducible and L(δ([ν−aρ, νcρ]);σ) = π, while other

terms are zero.
If −a ≤ 1

2 then π reduces. We denote by δ([ν−aρ, νcρ]+;σ) a unique
irreducible subquotient that has in its minimal standard Jacquet module at
least one irreducible subquotient whose all exponents are non-negative.

If −a = 1
2 , then π is of length two, δ([ν−aρ, νcρ]+;σ) is a discrete series

subrepresentation and L(δ([ν−aρ, νcρ]);σ) is the Langlands quotient of π. The
remaining term is zero.

If −a ≤ − 1
2 , and a = c, then π is a direct sum of two tempered repre-

sentations, δ([ν−aρ, νcρ]+;σ) and δ([ν−aρ, νcρ]−;σ). The remaining term is
zero.

If −a ≤ − 1
2 , and a ̸= c, then π is of length three. It has two discrete series

representations, δ([ν−aρ, νcρ]+;σ) and δ([ν
−aρ, νcρ]−;σ), and L(δ([ν−aρ, νcρ]);σ)

is the Langlands quotient.
We have in R(G)

δ([ν−aρ, νcρ])⋊ σ =δ([ν−aρ, νcρ]+;σ) + δ([ν−aρ, νcρ]−;σ)+

L(δ([ν−aρ, νcρ]);σ).
(2.2)

where the right hand side equals to

1

2
< −a : L(δ([ν−aρ, νcρ]);σ),

1

2
= −a : δ([ν−aρ, νcρ]+;σ) + L(δ([ν−aρ, νcρ]);σ),

c = a,−a ≤ −1

2
: δ([ν−aρ, νcρ]+;σ) + δ([ν−aρ, νcρ]−;σ),

c ̸= a,−a ≤ −1

2
: δ([ν−aρ, νcρ]+;σ) + δ([ν−aρ, νcρ]−;σ) + L(δ([ν−aρ, νcρ]);σ).
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Now we have

µ∗(δ([ν−aρ, νcρ]±;σ)) =

± 1
2−1∑

i=−a−1

δ([ν−iρ, νaρ])× δ([νi+1ρ, νcρ])⊗ σ+

a∑

i=−a−1

c∑

j=i+1

δ([ν−iρ, νaρ])× δ([νj+1ρ, νcρ])⊗ δ([νi+1ρ, νjρ]±;σ)+

∑

−a−1≤i≤a

∑

i+1≤j≤a
i+j<−1

δ([ν−iρ, νaρ])× δ([νj+1ρ, νcρ])⊗ L(δ([νi+1ρ, νjρ]);σ).

(2.3)

If we write δ([ν
1
2 ρ, ν−

1
2 ρ]+;σ) for σ, we have

(2.4) µ∗(δ([ν
1
2 ρ, νcρ]+;σ)) =

c∑

j=− 1
2

δ([νj+1ρ, νcρ])⊗ δ([ν 1
2 ρ, νjρ]+;σ).

And for a < 1
2 or 1

2 ≤ a < c we have

µ∗(L(δ([ν−aρ, νcρ]);σ)) =

c∑

i= 1
2

L(δ([ν−iρ, νaρ]), δ([νi+1ρ, νcρ]))⊗ σ+

∑

−a−1≤i≤c

∑

i+1≤j≤c

0≤i+j

L(δ([ν−iρ, νaρ]), δ([νj+1ρ, νcρ]))⊗ L(δ([νi+1ρ, νjρ]);σ).

(2.5)

3. Notation and basic reducibilities

In this section, we fix the notation and prepare some reducibility results.
Let ρ be an irreducible unitary cuspidal representation of GL(mρ, F ) and σ

an irreducible cuspidal representation of Gn such that ν
1
2 ρ ⋊ σ reduces. By

Proposition 2.4 of [17] ρ is self-dual. We consider

1

2
≤ a, b, c ∈ Z+

1

2
,

that need not be fixed, but when appearing together in a formula, we have,
depending on which appears, a < b < c. We denote the representation we
want to decompose

ψ = δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ.

Further, we shorten some notations from (2.2):

σa = δ([ν
1
2 ρ, νaρ]+;σ), σ−

b,c = δ([ν−bρ, νcρ]−;σ), σ+
b,c = δ([ν−bρ, νcρ]+;σ).

The following result is Theorem 2.3 from [14].
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Theorem 3.1. With discrete series being subrepresentations, we have in
R(G)

δ([ν
1
2 ρ, νaρ])⋊ σ = σa + L(δ([ν

1
2 ρ, νaρ])⋊ σ),

δ([ν−bρ, νcρ])⋊ σ = σ+
b,c + σ−

b,c + L(δ([ν−bρ, νcρ])⋊ σ).

Here

Jord(σa) = {(2a+ 1, ρ)} ∪ Jord(σ),
Jord(σ+

b,c) = Jord(σ−
b,c) = {(2b+ 1, ρ), (2c+ 1, ρ)} ∪ Jord(σ).

Further, ϵσa , ϵσ+
b,c
, and ϵσ−

b,c
extend ϵσ, such that ϵσa(2a+ 1, ρ) = 1, and

ϵσ+
b,c
(2b+ 1, ρ) = ϵσ+

b,c
(2c+ 1, ρ) = 1, ϵσ−

b,c
(2b+ 1, ρ) = ϵσ−

b,c
(2c+ 1, ρ) = −1.

The next proposition follows from Theorem 2.1 of [14].

Proposition 3.2. We use σ+
b,c,a = σ+

a,b,c, σ
−
b,c,a and σ−

a,b,c to denote non-

isomorphic discrete series, such that in R(G) we have

δ([ν−bρ, νcρ])⋊ σa = σ+
b,c,a + σ−

b,c,a + L(δ([ν−bρ, νcρ])⋊ σa) and

δ([ν−aρ, νbρ])⋊ σc = σ+
b,c,a + σ−

a,b,c + L(δ([ν−aρ, νbρ])⋊ σc).

These discrete series appear as subrepresentations in induced representations.
Also

Jord(σ+
b,c,a) =Jord(σ−

b,c,a) = Jord(σ−
a,b,c) =

{(2a+ 1, ρ), (2b+ 1, ρ), (2c+ 1, ρ)} ∪ Jord(σ)
and ϵσ+

b,c,a
, ϵσ−

b,c,a
and ϵσ−

a,b,c
extend ϵσ such that

ϵσ+
b,c,a

(2a+ 1, ρ) = 1, ϵσ+
b,c,a

(2b+ 1, ρ) = 1, ϵσ+
b,c,a

(2c+ 1, ρ) = 1,

ϵσ−
b,c,a

(2a+ 1, ρ) = 1, ϵσ−
b,c,a

(2b+ 1, ρ) = −1, ϵσ−
b,c,a

(2c+ 1, ρ) = −1,
ϵσ−

a,b,c
(2a+ 1, ρ) = −1, ϵσ−

a,b,c
(2b+ 1, ρ) = −1, ϵσ−

a,b,c
(2c+ 1, ρ) = 1.

Observe that

µ∗(σ+
b,c,a) ≥δ([ν−aρ, νbρ])⊗ σc + δ([ν−bρ, νcρ])⊗ σa,

µ∗(σ−
b,c,a) ≥δ([ν−bρ, νcρ])⊗ σa,

µ∗(σ−
a,b,c) ≥δ([ν−aρ, νbρ])⊗ σc.

(3.1)

We finished introducing notation and state some more reducibility results.

Here is a consequence of Theorem 6.3 of [19], see also section 3 there.

Proposition 3.3. We have in R(G), with multiplicity one:

νaρ× · · · × ν 1
2 ⋊ σ ≥ σa.
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The next lemma follows from Theorem 5.1 of [14], ii).

Lemma 3.4. We have in R(G),

δ([ν
1
2 ρ, νaρ])⋊ σb =σ

+
a,b + L(δ([ν

1
2 ρ, νaρ])⋊ σb), and

δ([ν
1
2 ρ, νbρ])⋊ σa =σ+

a,b + L(δ([ν−aρ, νbρ])⋊ σ)+

L(δ([ν
1
2 ρ, νaρ])⋊ σb) + L(δ([ν

1
2 ρ, νbρ])⋊ σa).

By Proposition 2.4 of [3] we have

Lemma 3.5. We have in R(G)

δ([ν
1
2 ρ, νaρ])⋊ σ±

b,c = σ±
b,c,a + L(δ([ν

1
2 ρ, νaρ])⋊ σ±

b,c), so(3.2)

µ∗(σ±
b,c,a) ≥ δ([ν

1
2 ρ, νaρ])⊗ σ±

b,c.(3.3)

The next is Proposition 3.2 of [8].

Theorem 3.6. With discrete series being a subrepresentation, we have in
R(G)

δ([ν−aρ, νcρ])⋊ σb = σ+
b,c,a + L(δ([ν−aρ, νcρ])⋊ σb)+

L(δ([ν−aρ, νbρ])⋊ σc) + L(δ([ν−bρ, νcρ])⋊ σa).

Finally we have the main result of [3].

Theorem 3.7. With discrete series being a subrepresentation, we have in
R(G)

δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ])⋊ σ = L(δ([ν

1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c)

+σ+
b,c,a + σ−

b,c,a + L(δ([ν−bρ, νcρ])⋊ σa) + L(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ])⋊ σ).

4. Decomposing mixed case

As we are interested in the composition series of induced representations,
we shall need a result that follows from proofs of Theorems 2-1 and 2-6 from
[5].

Theorem 4.1. There exists a contravariant exact functor:

Alg Gn
∧−→ Alg Gn,

such that
∧
π ∼= π, π ∈ Irr Gn,

and if δi ∈ Irr GL(ni, F ), i = 1, ..., k, m = n1 + · · · + nk and τ ∈ Irr Gn−m

we have

(δ1 × · · · × δk ⋊ τ)∧ ∼= δ̃1 × · · · × δ̃k ⋊ τ.
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Proof. We follow the same lines as in proofs of Theorems 2-1 and 2-6
from [5]. IfGn is orthogonal, then ∧ is just contragredient. IfGn is symplectic,
by a result of Waldspurger ([12] Chapter 4, II.1), for any element η ∈ GSp(2n)
of similitude −1, and π ∈ IrrGn we have π̃ ∼= πη, where πη(g) = π(ηgη−1).
Now choose an element of the form η = (id, η′) ∈ GL(n, F ) × GSp(0, F ) =
GL(n, F )×F×, identified with the Levi subgroup of the appropriate maximal
parabolic subgroup of GSp(2n, F ), where η′ is an element with similitude
equal to −1, as η is. For ∧ = η◦ ∼, we have

(δ1 × · · · × δk ⋊ τ)∼η ∼= (δ̃1 × · · · × δ̃k ⋊ τ̃)η ∼= δ̃1 × · · · × δ̃k ⋊ τ.

Consider some standard intertwining operators

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ

∼=−−−−→ δ([ν
1
2 ρ, νbρ])× δ([ν−aρ, νcρ])⋊ σ

∼=
yf0 ∼=

yg0

δ([ν
1
2 ρ, νbρ])× δ([ν−aρ, νcρ])⋊ σ δ([ν−aρ, νcρ])× δ([ν 1

2 ρ, νbρ])⋊ σ
yf1

yg1

δ([ν
1
2 ρ, νbρ])× δ([ν−cρ, νaρ])⋊ σ δ([ν−aρ, νcρ])× δ([ν−bρ, ν−

1
2 ρ])⋊ σ

yf2

yg2

δ([ν−cρ, νaρ])× δ([ν 1
2 ρ, νbρ])⋊ σ δ([ν−bρ, ν−

1
2 ρ])× δ([ν−aρ, νcρ])⋊ σ

yf3

yg3

δ([ν−cρ, νaρ])× δ([ν−bρ, ν−
1
2 ρ])⋊ σ

∼=−−−−→ δ([ν−bρ, ν−
1
2 ρ])× δ([ν−cρ, νaρ])⋊ σ

We denoted ψ = δ([ν−aρ, νcρ]) × δ([ν 1
2 ρ, νbρ]) ⋊ σ. Also for all i ≥ 1 denote

Ki = Ker fi, and Hi = Ker gi. By Theorems 3.1 and 4.1, we have

K1
∼= H3

∧ ∼= δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c + δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c,

K2
∼= H∧

2
∼= δ([ν−cρ, νbρ])× δ([ν 1

2 ρ, νaρ])⋊ σ,

K3
∼= H∧

1
∼= δ([ν−cρ, νaρ])⋊ σb,

and no kernel contains L(ψ). Thus we have:

Im(f3 ◦ · · · ◦ f0) ∼= L(ψ) ∼= Im(g3 ◦ · · · ◦ g0),
and the diagram is commutative up to a constant. We have in R(G):

(4.1) ∀i Ki ≤ ψ ≤ K1 +K2 +K3 + L(ψ).

The composition factors of K2 and K3 are determined by Theorems 3.6 and
3.7. So in search of remaining subquotients, we need to decompose K1. After
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that, we determine the multiplicities of all subquotients of ψ. Note that by
Lemma 8.1 of [13], all tempered subquotients of ψ are discrete series.

5. Discrete series subquotients

Here we determine discrete series subquotients in three induced represen-
tations

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ ≥

δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c + δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c,
(5.1)

where the inequality follows from Theorem 3.1. We start with candidates.

Lemma 5.1. Only possible discrete series subquotients appearing in

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ

are σ+
b,c,a, σ

−
b,c,a and σ−

a,b,c.

Proof. Consider cuspidal support of the induced representation and
Mœglin Tadić classification of discrete series. Since ν±

1
2 ρ appears 3 times

in the cuspidal support, possible discrete series are subrepresentations of a
representation of the form

δ([ν−yρ, νzρ])⋊ σx,

for some 1
2 ≤ x, y, z ∈ Z + 1

2 , where either 0 < x < y < z or 0 < y < z < x,

and σx is a unique irreducible subrepresentation of δ([ν
1
2 ρ, νxρ])⋊σ. We look

at the first case. Here z is the largest such that ν±zρ appears once in the
cuspidal support, so we must have z = c. Further, y is the largest such that
ν±yρ appears two times in the cuspidal support, so it must be b. Finally, x
is the largest such that ν±xρ appears three times in the cuspidal support, so
it must be a. Same reasoning goes for the second case, where we have x = c,
z = b, and y = a. By Theorem 2.1 of [14], we look for subrepresentations

σ+
b,c,a⊕σ−

a,b,c ↪→ δ([ν−aρ, νbρ])⋊σc and σ+
b,c,a⊕σ−

b,c,a ↪→ δ([ν−bρ, νcρ])⋊σa,

To determine which of these discrete series do appear in (5.1), and what are
their multiplicities, we need a couple of lemmas.

Lemma 5.2. We have in R(G), with maximum multiplicity

δ([ν
1
2 ρ, νbρ])× δ([ν 1

2 ρ, νcρ])⋊ σ ≥
1 · σ+

b,c + 1 · σ−
b,c + 1 · L(δ([ν−bρ, νcρ])⋊ σ).

(5.2)

Proof. Check multiplicity two of δ([ν−bρ, νcρ])⊗σ and one of δ([ν−cρ, νbρ])⊗
σ in µ∗(δ([ν

1
2 ρ, νbρ])× δ([ν 1

2 ρ, νcρ])⋊ σ) and use Theorem 3.1.
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Lemma 5.3. We have in R(G), with maximum multiplicities:

µ∗(δ([ν
1
2 ρ, νbρ])×δ([ν−aρ, νcρ])⋊ σ) ≥

1 · δ([ν 1
2 ρ, νaρ])⊗ σ+

b,c + 1 · δ([ν 1
2 ρ, νaρ])⊗ σ−

b,c.

Proof. The claim can be deduced from (2.1) and Lemma 5.2.

Lemma 5.4. We have in R(G), with maximum multiplicities:

µ∗(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c) ≥1 · δ([ν−aρ, νbρ])⊗ σc
+1 · δ([ν 1

2 ρ, νaρ])⊗ σ+
b,c + 0 · δ([ν 1

2 ρ, νaρ])⊗ σ−
b,c.

Proof. By (2.1) consider 0 ≤ s ≤ r ≤ b+ 1
2 , δ

′ ⊗ σ′ ≤ µ∗(σ+
a,c), and

δ([νr−bρ, ν−
1
2 ρ])× δ([νb−s+1ρ, νbρ])× δ′ ⊗ δ([νb+1−rρ, νb−sρ])⋊ σ′.(5.3)

First we look for δ([ν−aρ, νbρ]) ⊗ σc. Observe that νcρ is not in a cuspidal
support of δ′, so in (2.3) we have j = c and

δ′ ⊗ σ′ ≤
a∑

i=−a−1

δ([ν−iρ, νaρ])⊗ δ([νi+1ρ, νcρ]+;σ).

Searching for ν−aρ in cuspidal support in (5.3), left of ⊗, we have options

• r − b = −a, so b + 1 − s > 1
2 , and we have i = − 1

2 , s = b − a and

σ′ = δ([ν
1
2 ρ, νcρ]+;σ) = σc.

• b+ 1− s = −a, so s > b+ 1
2 and this is not possible.

• −i = −a, this is not possible since δ([νa+1ρ, νcρ]+;σ) is zero.

Looking for δ([ν
1
2 ρ, νaρ])⊗σ−

b,c, we have r = b+ 1
2 and s = 0. Thus we search

in

δ′ ⊗ δ([ν 1
2 ρ, νbρ])⋊ σ′.

Now in (2.3) we have j = c and i = − 1
2 , so σ

′ = δ([ν
1
2 ρ, νcρ]+;σ) = σc. But,

σ−
b,c ≰ δ([ν

1
2 ρ, νbρ])⋊ σc, and σ

+
b,c appears there once, by Lemma 3.4.

Lemma 5.5. We have in R(G), with maximum multiplicities:

µ∗(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c) ≥ 0 · δ([ν−aρ, νbρ])⊗ σc + 0 · δ([ν 1
2 ρ, νaρ])⊗ σ−

b,c.

Proof. The proof goes as in Lemma 5.4, with the difference that one
now obtains σ′ = δ([ν

1
2 , ρ, νc]−;σ), but the term on the right-hand side is

zero, by (2.2).

Now we determine all discrete series that appear on the left-hand side of
(5.1).
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Proposition 5.6. Writting all discrete series, with multiplicities, we
have in R(G):

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ ≥ 1 · σ+

b,c,a + 1 · σ−
b,c,a,

δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c ≥ 1 · σ+
b,c,a,

δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c ≥ 0.

Proof. By (5.1) and Lemma 5.1, only possible discrete series subquo-
tients in all of these representations are σ+

b,c,a, σ
−
b,c,a and σ−

a,b,c. By Theorem

3.7 and (4.1), σ+
b,c,a and σ−

b,c,a appear in δ([ν−aρ, νcρ])×δ([ν 1
2 ρ, νbρ])⋊σ. Lem-

mas 3.5 and 5.3 show that they appear with multiplicity one. Now (3.1) and

Lemma 5.4 show that we have only one discrete series in δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c,

which is σ+
b,c,a, and none in the δ([ν

1
2 ρ, νbρ])⋊ σ−

a,c, by Lemma 5.5. Since we

have no σ−
a,b,c in neither δ([ν

1
2 ρ, νbρ])⋊σ+

a,c nor δ([ν
1
2 ρ, νbρ])⋊σ−

a,c, Theorems

3.6 and 3.7, and (4.1), show that we have no σ−
a,b,c in

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ.

6. Non-tempered candidates

As noted in Section 4, we search for possible remaining non-tempered
subquotients in

δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c + δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c.

We have

Proposition 6.1. If π is a non-tempered subquotient of δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c,

different from its Langlands quotient, then π is either L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c)

or L(δ([ν−aρ, νbρ])⋊ σc).

Proof. We use Lemma 2.2 of [14] (in terms of that lemma
π ≤ δ([ν−l1ρ, νl2ρ])⋊ σ, −l1 = 1

2 , l2 = b and σ = σ+
a,c). So we look for

possible embeddings

(6.1) π ↪→ δ([ν−α1ρ, νβ1ρ])⋊ π′,

where −α1 + β1 < 0 and π′ is irreducible. By the lemma, there exists an
irreducible representation σ1 such that

(6.2)

{
µ∗(σ+

a,c) ≥ δ([ν
1
2 ρ, νβ1ρ])⊗ σ1

π′ ≤ δ([να1+1ρ, νbρ])⋊ σ1

and we must have

(6.3)





− 1
2 ≤ β1

b ≥ α1 > β1,− 1
2

α1 ≥ 1
2 .
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We have two possible cases:

a) β1 = − 1
2 . Now σ1 = σ+

a,c.

• Assume that π′ is tempered. We may take 2α1+1 ∈ Jordρ(σ
+
a,c).

Now α1 = c is not possible, since that would imply b ≥ c. Thus
α1 = a, and

π′ ≤ δ([νa+1ρ, νbρ])⋊ σ+
a,c.

Looking at the cuspidal support on the right hand side, Lemma
8.1 of [13] implies that π′ is a discrete series. Thus π′ = σ+

b,c or

π′ = σ−
b,c. By Section 8. of [22], we have π′ = σ+

b,c. So (6.1) is
written as

π ↪→ δ([ν−aρ, ν−
1
2 ρ])⋊ σ+

b,c.

Thus, we have π ∼= L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c).

• If π′ is not tempered, by Lemma 2.2 of [14], there exist β2 +1 ∈
Jordρ(σ

+
a,c) and (β2 + 1)− = (β2)− + 1 ∈ Jordρ(σ

+
a,c) = {2a +

1, 2c+ 1}, such that (in terms of the lemma α1 ≤ (β2)− < β2 <
α2 ≤ l2) we have

α1 ≤ a < c < α2 ≤ b.
So c < b, but this is a contradiction.

b) β1 >
1
2 . Then, by the lemma, 2β1+1 ∈ Jordρ(σ

+
a,c) = {2a+1, 2c+1}.

Since

c > b ≥ α1 > β1,−
1

2
we have β1 = a and α1 > a. Now (6.2) gives

µ∗(σ+
a,c) ≥ δ([ν

1
2 ρ, νaρ])⊗ σ1.

To determine σ1, we look at µ∗(σ+
a,c). In (2.3) it is necessary to pick

j = c and i = − 1
2 , and we have

σ1 = δ([ν
1
2 ρ, νcρ]+;σ) = σc.

So far, we have

(6.4)





π ↪→ δ([ν−α1ρ, νaρ])⋊ π′,

π′ ≤ δ([να1+1ρ, νbρ])⋊ σc,

a < α1 ≤ b.
If α1 = b then π′ ∼= σc and π ↪→ δ([ν−bρ, νaρ])⋊ σc, so

π ∼= L(δ([ν−aρ, νbρ])⋊ σc),

as expected. Thus, we assume

a < α1 < b.



A ONE HALF CUSPIDAL REDUCIBILITY 15

Since Jordρ(σc) ∩ [2α1 + 1, 2b + 1] = {2c + 1} ∩ [2α1 + 1, 2b + 1] = ∅,
Proposition 3.1 ii) of [14] implies that δ([να1+1ρ, νbρ]) ⋊ σc is irre-
ducible. So

π′ ∼= δ([να1+1ρ, νbρ])⋊ σc ∼= δ([ν−bρ, ν−α1−1ρ])⋊ σc,

and finally

π ↪→ δ([ν−α1ρ, νaρ])× δ([ν−bρ, ν−α1−1ρ])⋊ σc.

Now, by Lemma 5.5 of [6], either π ↪→ δ([ν−bρ, νaρ])⋊σc or there exists
an irreducible representation π′′ ≤ δ([ν−α1ρ, νaρ])⋊ σc such that

π ↪→ δ([ν−bρ, ν−α1−1ρ])⋊ π′′.

The second case is not possible since, similar to (6.3), we would obtain
− 1

2 ≤ −α1 − 1(≤ − 1
2 − 1), a contradiction.

Using the same methods as above, we obtain

Proposition 6.2. If π is a non-tempered subquotient of δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c,

different from its Langlands quotient, then π is L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c).

7. Multiplicity of L(δ([ν
1
2 ρ, νaρ])⋊ σ±

b,c)

Here we write explicitly L(δ([ν
1
2 ρ, νaρ]) ⋊ σ±

b,c) as a non-tempered sub-

quotient of δ([ν
1
2 ρ, νbρ])⋊ σ±

a,c, different from its unique Langlands quotient,
as claimed by Lemma 6.2 of [15]. We start with a couple of lemmas.

Lemma 7.1. Discrete series σ+
b,c and σ−

b,c appear with multiplicity one in
equations

1 · σ+
b,c ≤ δ([νa+1ρ, νbρ])⋊ σ+

a,c,

1 · σ−
b,c ≤ δ([νa+1ρ, νbρ])⋊ σ−

a,c,

1 · σ+
b,c + 1 · σ−

b,c ≤ δ([νa+1ρ, νbρ])× δ([ν−aρ, νcρ])⋊ σ.

Proof. This follows from Section 8. of [22] and (2.1).

The next two lemmas follow.

Lemma 7.2. Both δ([ν−aρ, ν−
1
2 ρ])⊗σ+

b,c and δ([ν
−aρ, ν−

1
2 ρ])⊗σ−

b,c appear

with multiplicity one in µ∗(δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ).

Lemma 7.3. For ϵ = ± irreducible representation δ([ν−aρ, ν−
1
2 ρ]) ⊗ σϵ

b,c

appears with multiplicity one in µ∗(δ([ν
1
2 ρ, νbρ])⋊ σϵ

a,c).

Using Lemmas 7.2 and 7.3 we have



16 I. CIGANOVIĆ

Proposition 7.4. With all multiplicities being one, we have in R(G)

δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c ≥1 · L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c),

δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c ≥1 · L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c),

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ ≥1 · L(δ([ν 1

2 ρ, νaρ])⋊ σ+
b,c)+

1 · L(δ([ν 1
2 ρ, νaρ])⋊ σ−

b,c).

8. Multiplicity of L(δ([ν−aρ, νbρ])⋊ σc)

By Theorem 3.6 and (4.1), this subquotient does appear in

δ([ν−aρ, νcρ])×δ([ν 1
2 ρ, νbρ])⋊σ, but also as a candidate in δ([ν 1

2 ρ, νbρ])⋊σ+
a,c,

by Proposition 6.1, so we need to check its multiplicity. We want to obtain a
subquotient in some of its Jacquet module, used to identify it.

First we state a result of Proposition 3.9 of [23].

Lemma 8.1. In appropriate Grothendieck group we have

ν
1
2 ρ× ν 1

2 ρ⋊ σ = δ([ν−
1
2 ρ, ν

1
2 ρ]+;σ) + δ([ν−

1
2 ρ, ν

1
2 ρ]−;σ)+

L(ν
1
2 ⋊ σ 1

2
) + L(ν

1
2 ρ× ν 1

2 ρ⋊ σ).

Lemma 8.2. We have in R(G), with multiplicity one

δ([ν
1
2 ρ, νbρ])× δ([ν 1

2 ρ, νbρ])⋊ σ ≥ 1 · L(δ([ν 1
2 ρ, νbρ])⋊ σb).

Proof. By Lemma 8.1 we may assume b ≥ 3
2 . Obviously,

L(δ([ν
1
2 ρ, νbρ])⋊ σb) does appear as a subquotient, so we need to prove mul-

tiplicity one. Let us denote

π = δ([ν
3
2 ρ, νbρ])× δ([ν 3

2 ρ, νbρ])⊗ L(ν 1
2 ρ⋊ σ 1

2
).

It is enough to see that π appears in both

i) µ∗(L(δ([ν
1
2 ρ, νbρ])⋊ σb)) and ii) µ∗(δ([ν

1
2 ρ, νbρ])× δ([ν 1

2 ρ, νbρ])⋊ σ),

and that its multiplicity is one in ii).
We start with i). By Theorem 5.1 of [14] ii), and Lemma 5.4 there, we have
in R(G)

δ([ν
1
2 ρ, νbρ])⋊ σb = σtemp + L(δ([ν

1
2 ρ, νbρ])⋊ σb),

where σtemp is an irreducible tempered subquotient of δ([ν−bρ, νbρ])⋊ σ. By

(2.3), π ≰ µ∗(σtemp). On the other hand, by (2.4) µ∗(σb) ≥ δ([ν
3
2 ρ, νbρ])⊗ σ 1

2
,

so from (2.1) we have

µ∗(δ([ν
1
2 ρ, νbρ])⋊ σb) ≥ δ([ν

3
2 ρ, νbρ])× δ([ν 3

2 ρ, νbρ])⊗ ν 1
2 ρ⋊ σ 1

2
≥ π.
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To we prove ii), look for 0 ≤ i ≤ j ≤ b + 1
2 and 0 ≤ s ≤ r ≤ b + 1

2 such
that

δ([ν
3
2 ρ, νbρ])× δ([ν 3

2 ρ, νbρ]) ≤δ([νi−bρ, ν−
1
2 ρ])× δ([νb+1−jρ, νbρ])

×δ([νr−bρ, ν−
1
2 ρ])× δ([νb+1−sρ, νbρ]),

and

L(ν
1
2 ρ⋊ σ 1

2
) ≤ δ([νb+1−iρ, νb−jρ])× δ([νb+1−rρ, νb−sρ])⋊ σ.

The first equation implies i = r = b+ 1
2 and j = s = b− 1

2 . The second is

L(ν
1
2 ρ⋊ σ 1

2
) ≤ ν 1

2 ρ× ν 1
2 ρ⋊ σ.

Multiplicity one in the second follows from Lemma 8.1.

Lemma 8.3. We have in R(G), with multiplicity one

δ([ν
1
2 ρ, νcρ])× δ([ν 1

2 ρ, νbρ])⋊ σ ≥ 1 · L(δ([ν 1
2 ρ, νbρ])⋊ σc).

Proof. Use Lemma 3.4, (2.1) and (2.3) to show that δ([νb+1ρ, νcρ]) ⊗
L(δ([ν

1
2 ρ, νbρ]) ⋊ σb) appears in µ∗(L(δ([ν

1
2 ρ, νbρ]) ⋊ σc)), and Lemma 8.2

that it appears once in µ∗(δ([ν
1
2 ρ, νcρ])× δ([ν 1

2 ρ, νbρ])⋊ σ).

Now we provide a subquotient that can be used to identify L(δ([ν−aρ, νbρ])⋊ σc).

Lemma 8.4. We have in R(G)

µ∗(L(δ([ν−aρ, νbρ])⋊ σc)) ≥ δ([ν
1
2 ρ, νaρ])⊗ L(δ([ν 1

2 ρ, νbρ])⋊ σc).

Proof. By Proposition 3.2, we have

δ([ν−aρ, νbρ])⋊ σc = σ+
b,c,a + σ−

a,b,c + L(δ([ν−aρ, νbρ])⋊ σc).

To prove the claim, one can use (2.1) and a square integrability criterium, see
the end of Section 2 of [21].

Lemma 8.5. We have in R(G), with maximum multiplicity

µ∗(δ([ν−aρ, νcρ])×δ([ν 1
2 ρ, νbρ])⋊σ) ≥ 1 ·δ([ν 1

2 ρ, νaρ])⊗L(δ([ν 1
2 ρ, νbρ])⋊σc).

Proof. Use (2.1) and Lemma 8.3.

Lemma 8.6. We have in R(G), with maximum multiplicity

µ∗(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c) ≥ 1 · δ([ν 1
2 ρ, νaρ])⊗ L(δ([ν 1

2 ρ, νbρ])⋊ σc).

Proof. By (3.1) µ∗(σ+
a,c) ≥ δ([ν

1
2 ρ, νaρ])⊗σc. The inequality follows by

(2.1) and multiplicity one by (5.1) and Lemma 8.5.

Finally we have
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Proposition 8.7. Both induced representations

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ and δ([ν

1
2 ρ, νbρ])⋊ σ+

a,c,

contain L(δ([ν−aρ, νbρ])⋊ σc) as a subquotient, with multiplicity one.

Proof. Theorem 3.6 and (4.1) give existence in the first representation,
and Lemmas 8.4 and 8.5 multiplicity one. For the second, use (5.1), and
Lemma 8.6.

9. Multiplicity of L(δ([ν−bρ, νcρ])⋊ σa)

We observe that by Theorems 3.6 and 3.7, L(δ([ν−bρ, νcρ])⋊σa) appears
two times in (4.1). So we determine its multiplicity. First we state a result
that we use later.

Lemma 9.1. We have in R(G), with multiplicity one

µ∗(L(δ([ν−bρ, νcρ])⋊ σa)) ≥ 1 · δ([ν 1
2 ρ, νaρ])⊗ L(δ([ν−bρ, νcρ])⋊ σ).

Proof. Denote the subquotient by π. By (2.4)

µ∗(σa) ≥ δ([ν
1
2 ρ, νaρ])⊗ σ, so

µ∗(δ([ν−bρ, νcρ])⋊ σa) ≥ π.
Comparing Proposition 3.2 and Lemma 3.5, it is enough to show

µ∗(δ([ν
1
2 ρ, νaρ])⋊ σ±

b,c) ≱ π.

So by (2.1) consider 0 ≤ j ≤ i ≤ a+ 1
2 , δ

′ ⊗ σ′ ≤ µ∗(σ±
b,c) and

δ([νi−aρ, ν−
1
2 ρ])× δ([νa−j+1ρ, νaρ])× δ′ ⊗ δ([νa+1−iρ, νa−jρ])⋊ σ′.

As δ′ should not contain neither νbρ nor νcρ in its cuspidal support, by (2.3),

we have δ′ ⊗ σ′ = 1⊗ σ±
b,c, and i = j = a+ 1

2 , giving δ([ν
1
2 ρ, νaρ])⊗ σ±

b,c ≇ π.

Proposition 9.2. We have in R(G), with multiplicity one

δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ ≥ 1 · L(δ([ν−bρ, νcρ])⋊ σa).

Proof. It is easy to check that δ([ν−cρ, νbρ]) ⊗ σa appears with multi-

plicity one in µ∗(δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ).

10. Composition factors

Here we determine composition factors of the kernel K1 from Section 4.

Proposition 10.1. We have in R(G)

δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c =L(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c) + σ+
b,c,a+

L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν−aρ, νbρ])⋊ σc).
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Proof. Discrete series subquotients are determined in Proposition 5.6.
Remaining irreducible subquotients are described by Propositions 6.1, 7.4 and
8.7.

Proposition 10.2. We have in R(G)

δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c = L(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c) + L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c).

Proof. Possible discrete series subquotients are discussed in Proposition
5.6. Remaining irreducible subquotients are described by Propositions 6.2 and
7.4.

Theorem 10.3. We have in R(G)

δ([ν−aρ, νcρ])×δ([ν 1
2 ρ, νbρ])⋊ σ = L(δ([ν−aρ, νcρ])× δ([ν 1

2 ρ, νbρ])⋊ σ)+

L(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c) + L(δ([ν−aρ, νcρ])⋊ σb)+

σ−
b,c,a + L(δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ])⋊ σ)+

L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν−aρ, νbρ])⋊ σc)+

L(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c) + L(δ([ν−bρ, νcρ])⋊ σa)+

σ+
a,b,c + L(δ([ν

1
2 ρ, νaρ])⋊ σ−

b,c).

Proof. By (4.1), Theorems 3.6 and 3.7, and Propositions 10.1 and 10.2,
we listed all irreducible subquotients, up to multiplicities. Proposition 5.6
shows multiplicity one for discrete series. Propositions 7.4, 8.7 and 9.2, show
multiplicity one for L(δ([ν

1
2 ρ, νaρ])⋊ σ+

b,c), L(δ([ν
−aρ, νbρ])⋊ σc),

L(δ([ν−bρ, νcρ]) ⋊ σa), and L(δ([ν
1
2 ρ, νaρ]) ⋊ σ−

b,c). Remaining irreducible

subquotients appear with a multiplicity one in K1 +K2 +K3 + L(ψ), on the
right hand side of (4.1), by Theorems 3.6 and 3.7, and Propositions 10.1 and
10.2.

11. Composition series of δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c and δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c.

Here we determine the composition series of the kernel K1, from Section
4. For the first representation, we show that a discrete series is a subrepesen-
tation, and use intertwining operators to position other subquotients.

The first lemma follows directly from (2.3) and (2.4).

Lemma 11.1. We have in R(G), with maximum multiplicities:

µ∗(δ([ν
1
2 ρ, νbρ])× δ([ν 1

2 ρ, νaρ])⋊ σc) ≥ 2 · δ([ν−aρ, νbρ])⊗ σc.

The next proposition gives positions of both σ+
b,c,a and L(δ([ν

−aρ, νbρ])⋊ σc).
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Proposition 11.2. We have embeddings

σ+
b,c,a ↪→ δ([ν−aρ, νbρ])⋊ σc/σ

−
a,b,c

↪→ δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c.

Proof. By Theorem 2-6. of [5] and Lemma 3.4 we have an epimorphism

δ([ν−aρ, ν−
1
2 ρ])⋊ σc ↠ σ+

a,c.

Now we have a composition of an embedding and an epimorphism

δ([ν−aρ, νbρ])⋊ σc ↪→ δ([ν
1
2 ρ, νbρ])× δ([ν−aρ, ν−

1
2 ρ])⋊ σc

↠ δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c.
(11.1)

By Propositions 3.2, and 5.6 and Lemma 11.1, all representations in (11.1),
have σ+

b,c,a as a subquotient, with multiplicity one, and the last doesn’t contain

σ−
a,b,c.

Now we want to see a position of L(δ([ν
1
2 ρ, νaρ]) ⋊ σ+

b,c). First we state

two lemmas that can be proved using (2.1), (2.3), Proposition 3.2, and Lemma
3.5.

Lemma 11.3. We have in R(G), with multiplicity one:

(11.2) µ∗(L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c)) ≥ 1 · δ([ν−bρ, νcρ])⊗L(δ([ν 1
2 ρ, νaρ])⋊ σ).

Lemma 11.4. We have in R(G), with maximum multiplicities:

µ∗(δ([ν
1
2 ρ, νbρ])× δ([ν 1

2 ρ, νaρ])⋊ σc) ≥ 1 · δ([ν 1
2 ρ, νaρ])⊗ σ+

b,c

+1 · δ([ν−bρ, νcρ])⊗ L(δ([ν 1
2 ρ, νaρ])⋊ σ).

The next proposition gives position of L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c)

Proposition 11.5. There exists an embedding

δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c ↪→ δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c.

Proof. Denote π = δ([ν
1
2 ρ, νaρ]) × δ([ν 1

2 ρ, νbρ]) ⋊ σc. By Lemma 3.4,
we have

δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c ↪→ δ([ν
1
2 ρ, νbρ])× δ([ν 1

2 ρ, νaρ])⋊ σc ∼= π, and by (3.2)

σ+
b,c,a + L(δ([ν

1
2 ρ, νaρ])⋊ σ+

b,c)
R(G)
= δ([ν

1
2 ρ, νaρ])⋊ σ+

b,c ↪→ π.

It is enough to show that both σ+
b,c,a and L(δ([ν

1
2 ρ, νaρ])⋊ σ+

b,c) appear in π
once. This follows by Lemmas 3.5, 11.3 and 11.4.

Finally
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Proposition 11.6. Induced representation δ([ν
1
2 ρ, νbρ])⋊σ+

a,c has a unique
irreducible subrepresentation and unique quotient. We have an exact sequence

L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν−aρ, νbρ])⋊ σc) ↪→
δ([ν

1
2 ρ, νbρ])⋊ σ+

a,c/σ
+
a,b,c ↠ L(δ([ν

1
2 ρ, νbρ])⋊ σ+

a,c).

Proof. Composition factors are determined by Proposition 10.1. Posi-
tion of irreducible subquotients are determined by Propositions 3.2, 11.2, 3.5
and 11.5.

By Theorem 4.1, we have

Corollary 11.7. Induced representation δ([ν−bρ, ν−
1
2 ρ]) ⋊ σ+

a,c has a
unique irreducible subrepresentation and a unique irreducible quotient. We
have an exact sequence

L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν−aρ, νbρ])⋊ σc) ↪→
δ([ν−bρ, ν−

1
2 ρ])⋊ σ+

a,c/L(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c) ↠ σ+
a,b,c.

Now we state the composition series of δ([ν
1
2 ρ, νbρ]) ⋊ σ−

a,c as a direct
consequence of Proposition 10.2.

Proposition 11.8. We have a non split exact sequence

L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c) ↪→ δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c ↠ L(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c).

By Theorem 4.1, we have

Corollary 11.9. We have a non split exact sequence

L(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c) ↪→ δ([ν−bρ, ν−
1
2 ρ])⋊ σ−

a,c ↠ L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c).

12. Composition series of δ([ν−cρ, νbρ])× δ([ν 1
2 ρ, νaρ])⋊ σ

Here we determine the composition series of the kernelK2 from Section 4.

Proposition 12.1. Induced representation
δ([ν−cρ, νbρ])×δ([ν 1

2 ρ, νaρ])⋊σ has exactly one irreducible subrepresentation,
and two irreducible quotients. We have an exact sequence

σ+
b,c,a + L(δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ])⋊ σ) + σ−
b,c,a ↪→

δ([ν−cρ, νbρ])× δ([ν 1
2 ρ, νaρ])⋊ σ/L(δ([ν−bρ, νcρ])⋊ σa)

↠ L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c).

Proof. Denote the induced representation by π. By Theorem 3.7, π is
a multiplicity one representation with irreducible subquotients listed in the
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claim. Consider embeddings

δ([ν−cρ, νbρ])⋊ σa ↪→π,
δ([ν

1
2 ρ, νaρ])× L(δ([ν−bρ, νcρ])⋊ σ) ↪→π,

δ([ν−bρ, νcρ])⋊ L(δ([ν
1
2 ρ, νaρ])⋊ σ) ↪→∧

π,

δ([ν−aρ, ν−
1
2 ρ])⋊ σ±

b,c ↪→
∧
π.

We shall describe representations on the left and the claim will follow.
• By Proposition 3.2, δ([ν−cρ, νbρ]) ⋊ σa has a unique irreducible subrepre-
sentation:
L(δ([ν−bρ, νcρ])⋊ σa), and two irreducible quotients: σ±

b,c,a.

• By Corrolary 4.1 of [3], δ([ν
1
2 ρ, νaρ]) × L(δ([ν−bρ, νcρ]) ⋊ σ) is a quotient

of δ([ν
1
2 ρ, νaρ])× δ([ν−bρ, νcρ])⋊ σ containing a unique irreducible subrepre-

sentation: L(δ([ν−bρ, νcρ])⋊ σa) and a quotient:

L(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ])⋊ σ).

• By Corrolary 4.1 of [3], δ([ν−bρ, νcρ]) ⋊ L(δ([ν
1
2 ρ, νaρ]) ⋊ σ) is a quotient

of δ([ν
1
2 ρ, νaρ])× δ([ν−bρ, νcρ])⋊σ, containing a unique irreducible quotient:

L(δ([ν
1
2 ρ, νaρ])× δ([ν−bρ, νcρ])⋊ σ)

and two irreducible subrepresentations: L(δ([ν
1
2 ρ, νaρ])⋊σ±

b,c). Thus π has a

quotient, containing two irreducible quotients: L(δ([ν
1
2 ρ, νaρ]) ⋊ σ±

b,c) and a

unique irreducible subrepresentation: L(δ([ν
1
2 ρ, νaρ])× δ([ν−bρ, νcρ])⋊ σ).

• Similarly, by Lemma 3.5, for every ϵ ∈ {+,−} π has a quotient, containing a
unique irreducible subrepresentation σϵ

b,c,a and a unique irreducible quotient

L(δ([ν
1
2 ρ, νaρ])⋊ σϵ

b,c).

By Theorem 4.1, we have

Corollary 12.2. Induced representation
δ([ν−bρ, νcρ]) × δ([ν−aρ, ν−

1
2 ρ]) ⋊ σ has exactly two irreducible subrepresen-

tations and one irreducible quotient. We have an exact sequence

σ+
b,c,a + L(δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ])× σ) + σ−
b,c,a ↪→

δ([ν−bρ, νcρ])× δ([ν−aρ, ν−
1
2 ρ])⋊ σ

/(L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c))

↠ L(δ([ν−bρ, νcρ])⋊ σa).

13. Composition series of δ([ν−aρ, νcρ])⋊ σb

Here we determine composition series of the kernelK3
∼= δ([ν−cρ, νaρ])⋊ σb

from Section 4. First we determine subrepresentations.
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Proposition 13.1. We have a unique subrepresentation

σ+
b,c,a ↪→ δ([ν−aρ, νcρ])⋊ σb.

Proof. Compare Theorem 3.6 and Proposition 11.2 with

δ([ν−aρ, νcρ])⋊ σb ↪→ δ([ν
1
2 ρ, νbρ])× δ([ν−aρ, νcρ])⋊ σ.

Now we determine position of L(δ([ν−bρ, νcρ])⋊ σa).

Lemma 13.2. We have in R(G), with maximum multiplicities

δ([ν
1
2 ρ, νcρ])× δ([ν 1

2 ρ, νbρ])⋊ σa ≥ 1 · σ+
b,c,a + 1 · σ−

b,c,a + 1 · L(δ([ν−bρ, νcρ])⋊ σa),

δ([ν
1
2 ρ, νcρ])⋊ σ+

a,b ≥ 1 · σ+
b,c,a + 0 · σ−

b,c,a + 1 · L(δ([ν−bρ, νcρ])⋊ σa).

Proof. By Proposition 3.2, σ±
b,c,a appears in the first formula. For the

multiplicity one use (2.1), (3.3) and (5.2) to search for δ([ν
1
2 ρ, νaρ]) ⊗ σ±

b,c.
For the third summand use Lemmas 3.4 and 9.1. Similarly show the second
formula.

Lemma 13.3. We have an embedding

δ([ν−aρ, νcρ])⋊ σb ↪→ δ([ν
1
2 ρ, νcρ])⋊ σ+

a,b.

Proof. By Lemma 3.4 we have composition of an embedding and an
epimorphism

δ([ν−aρ, νcρ])⋊ σb ↪→ δ([ν
1
2 ρ, νcρ])× δ([ν−aρ, ν−

1
2 ρ])⋊ σb

↠ δ([ν
1
2 ρ, νcρ])⋊ σ+

a,b.

Lemmas 3.4 and 3.5, Theorem 3.6, and Lemma 13.2, imply that all representa-
tions here have σ+

b,c,a as a subquotient, with multiplicity one. By Proposition

13.1, σ+
b,c,a is a unique irreducible subrepresentation of δ([ν−aρ, νcρ]) ⋊ σb.

The claim follows.

Lemma 13.4. We have an embedding

δ([ν−bρ, νcρ])⋊ σa/σ
−
b,c,a ↪→ δ([ν

1
2 ρ, νcρ])⋊ σ+

a,b.

Proof. Consider a composition of an embedding and an epimorphism

δ([ν−bρ, νcρ])⋊ σa ↪→ δ([ν
1
2 ρ, νcρ])× δ([ν−bρ, ν−

1
2 ρ])⋊ σa

↠ δ([ν
1
2 ρ, νcρ])⋊ σ+

a,b.

By Proposition 3.2 δ([ν−bρ, νcρ])⋊σa = σ+
b,c,a+σ

−
b,c,a+L(δ([ν

−bρ, νcρ])⋊σa),
with discrete series being subrepresentations. Apply Lemma 13.2.

The next proposition gives a position of L(δ([ν−bρ, νcρ])⋊ σa).



24 I. CIGANOVIĆ

Proposition 13.5. We have an embedding

δ([ν−bρ, νcρ])⋊ σa/σ
−
b,c,a ↪→ δ([ν−aρ, νcρ])⋊ σb.

Proof. By Proposition 3.2 and Theorem 3.6 we have in R(G)

δ([ν−bρ, νcρ])⋊ σa/σ
−
b,c,a ≤ δ([ν−aρ, νcρ])⋊ σb.

By Lemmas 13.3 and 13.4, these representations embed into
δ([ν

1
2 ρ, νcρ])⋊ σ+

a,b, which has irreducible subquotiens of the first representa-
tions with multiplicity one, by Lemma 13.2.

Finally we determine position of L(δ([ν−aρ, νbρ])⋊ σc).

Proposition 13.6. We have an embedding

δ([ν−aρ, νbρ])⋊ σc/σ
−
a,b,c ↪→ δ([ν−aρ, νcρ])⋊ σb.

Proof. By Proposition 11.2 we have

δ([ν−aρ, νbρ])⋊ σc/σ
−
a,b,c ↪→ δ([ν

1
2 ρ, νbρ])⋊ σ+

a,c, so

δ([ν−aρ, νbρ])⋊ σc/σ
−
a,b,c ↪→δ([ν−aρ, νcρ])× δ([ν 1

2 ρ, νbρ])⋊ σ, and

δ([ν−aρ, νcρ])⋊ σb ↪→δ([ν−aρ, νcρ])× δ([ν 1
2 ρ, νbρ])⋊ σ.

The claim follows, since by Theorem 10.3 the representation on the right is
multiplicity one, and by Proposition 3.2 and Theorem 3.6 we have in R(G)

δ([ν−aρ, νbρ])⋊ σc/σ
−
b,a,c ≤ δ([ν−aρ, νcρ])⋊ σb.

Now we write composition series for δ([ν−aρ, νcρ])⋊ σb.

Proposition 13.7. Induced representation δ([ν−aρ, νcρ])⋊σb has a unique
irreducible subrepresentation. We have an exact sequence

L(δ([ν−bρ, νcρ])⋊ σa) + L(δ([ν−aρ, νbρ])⋊ σc) ↪→
δ([ν−aρ, νcρ])⋊ σb/σ

+
a,b,c ↠ L(δ([ν−aρ, νcρ])⋊ σb).

Proof. Composition factors are determined by Theorem 3.6. Positions
of irreducible subquotients are determined by Propositions 3.2, 13.1, 13.5 and
13.6.

By Theorem 4.1, we have

Corollary 13.8. Induced representation δ([ν−cρ, νaρ])⋊σb has a unique
irreducible quotient. We have an exact sequence

L(δ([ν−bρ, νcρ])⋊ σa) + L(δ([ν−aρ, νbρ])⋊ σc) ↪→
δ([ν−cρ, νaρ])⋊ σb/L(δ([ν

−aρ, νcρ])⋊ σb) ↠ σ+
a,b,c.
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14. The main result

Here we give the main result, a composition series of the representation ψ.

Theorem 14.1. Let ψ = δ([ν−aρ, νcρ]) × δ([ν
1
2 ρ, νbρ]) ⋊ σ and define

representations

W1 =σ+
b,c,a + L(δ([ν

1
2 ρ, νaρ])⋊ σ−

b,c),

W2 =L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν−aρ, νbρ])⋊ σc)+

L(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c) + L(δ([ν−bρ, νcρ])⋊ σa),

W3 =L(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c) + L(δ([ν−aρ, νcρ])⋊ σb)+

σ−
b,c,a + L(δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ])⋊ σ),

W4 =L(ψ).

Then there exists a sequence {0} = V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ V4 = ψ, such that

Vi/Vi−1
∼=Wi, i = 1, . . . , 4.

Further, W1 is chosen to be the largest possible, then W2, and so on.

Proof. We use the notation Ki, Hi, and fi from Section 4. Composition
series of K1,K2 and K3 are determined by Propositions 11.6, 11.8, 12.1,
and Corollary 13.8. Composition series of H1, H2 and H3 are determined by
Proposition 13.7 and Corollaries 12.2, 11.9 and 11.7. For all i ≥ 1 denote

ki = Ki ∩ Im(fi−1 ◦ · · · ◦ f0), hi = Hi ∩ Im(gi−1 ◦ · · · ◦ g0).
Set K0 = k0 = {0}. Let π be an irreducible subquotient of ψ, and 1 ≤ i ≤ 3.
Obviously

π ≤ Im(fi−1 ◦ · · · ◦ f0) ⇐⇒ ∀j < i π ≰ Kj .

This implies that if π ≤ Kj , for some (0 <)j < i, taking j minimal, we have
π ∈ Im(fj−1 ◦ · · · ◦ f0). Thus π ≤ kj for some j < i. Now we have

∃j < i π ≤ Kj ⇐⇒ ∃j < i π ≤ kj and so

π ≤ Im(fi−1 ◦ · · · ◦ f0) ⇐⇒ ∀j < i π ≰ kj .

We conclude that ki consists of irreducible subquotients of Ki that do not
appear in any of ki−1, . . . , k0. It is clear that we can write this in R(G) as

ki = ⌊Ki − ki−1 − · · · − k0⌋R+
0 (G).

where for π ∈ R(G), π =
∑

imiπi, mi ∈ Z, πi ≇ πj ∈ IrrG for i ̸= j, we
define

⌊π⌋R+
0 (G) =

∑

{i|mi≥0}
miπi.
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Now we have in R(G)

k1 = K1, k2 =⌊K2 − k1⌋R+
0 (G), k3 =⌊K3 − k2 − k1⌋R+

0 (G),

h1 = H1, h2 =⌊H2 − h1⌋R+
0 (G), h3 =⌊H3 − h2 − h1⌋R+

0 (G).

We have k1 ∼= K1 and h1 ∼= H1. Further, calculating composition factors of
k2 and h2 and comparing with composition series of K2 and H2, we see that
k2 and h2 have exactly two irreducible quotients. Similarly, we determine k3
and h3. So we have exact sequences, and no irreducible subquotient can go
on lower position:

L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν−aρ, νbρ])⋊ σc) + L(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c) ↪→
k1/(σ

+
a,b,c + L(δ([ν

1
2 ρ, νaρ])⋊ σ−

b,c)) ↠ L(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c),

(14.1)

k2/L(δ([ν
−bρ, νcρ])⋊ σa) ∼= σ−

b,c,a + L(δ([ν−bρ, νcρ])× δ([ν 1
2 ρ, νaρ])⋊ σ),

(14.2)

k3 ∼= L(δ([ν−aρ, νcρ])⋊ σb),

(14.3)

L(δ([ν−bρ, νcρ])⋊ σa) + L(δ([ν−aρ, νbρ])⋊ σc) ↪→
h1/σ

+
a,b,c ↠ L(δ([ν−aρ, νcρ])⋊ σb),

(14.4)

h2/(L(δ([ν
1
2 ρ, νaρ])⋊ σ+

b,c) + L(δ([ν
1
2 ρ, νaρ])⋊ σ−

b,c))
∼=

σ−
b,c,a + L(δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ])⋊ σ),

(14.5)

h3 ∼= L(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c) + L(δ([ν
1
2 ρ, νbρ])⋊ σ−

a,c).

(14.6)

We define representations Vi, i = 1, . . . , 4 as follows. By (14.1) W1 ↪→ ψ. Let
V1 be its image. Further, (14.1) and (14.4) show W2 ↪→ ψ/V1. Let V2 be the
preimage of W2 in ψ. Denote representations

ζ =L(δ([ν
1
2 ρ, νbρ])⋊ σ+

a,c),

ν =L(δ([ν−aρ, νcρ])⋊ σb),

M =σ−
b,c,a + L(δ([ν−bρ, νcρ])× δ([ν 1

2 ρ, νaρ])⋊ σ),

τ =ψ/V2.

By (14.1) and (14.4) we have embeddings

ζ ↪→ τ ←↩ ν.(14.7)
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By (14.1) and (14.2) we have an embedding and an epimorphism

M ↪→ τ/ζ
Pζ↞ τ, thus P−1

ζ (M)/ζ ∼=M.

By (14.4) and (14.5) we have an embedding and an epimorphism

M ↪→ τ/ν
Pν↞ τ, thus P−1

ν (M)/ν ∼=M.

We have in R(G)

(14.8) P−1
ζ (M) =M + ζ and P−1

ν (M) =M + ν.

We claim that in R(G)

P−1
ζ (M) ∩ P−1

ν (M) =M.

Inclusions P−1
ζ (M) ↪→ τ and P−1

ν (M) ↪→ τ induce an embedding

P−1
ζ (M)/(P−1

ζ (M) ∩ P−1
ν (M)) ↪→ τ/P−1

ν (M).

This shows that in R(G)

P−1
ζ (M)− P−1

ζ (M) ∩ P−1
ν (M) ≤ τ − P−1

ν (M), and by (14.8)

M + ζ − P−1
ζ (M) ∩ P−1

ν (M) ≤ τ −M − ν.
So, we consider in R(G)

(14.9) M + ζ + ν ≤ P−1
ζ (M) ∩ P−1

ν (M) + (τ −M)

By Proposition 10.2, ψ is a multiplicity one, and so is τ . Also, in R(G)

τ = ψ − V2 = ψ −W1 −W2 ≥M.

Now, any irreducible subquotient ofM does not appear in τ−M , so by (14.9),
it must appear in P−1

ζ (M) ∩ P−1
ν (M). We conclude that in R(G)

P−1
ζ (M) ∩ P−1

ν (M) ≥M.

Thus (14.8) shows that in R(G)

P−1
ζ (M) ∩ P−1

ν (M) =M.

Now, since τ/ζ is a multiplicity one, and Pζ is injective on P−1
ζ (M)∩P−1

ν (M),
both compositions

M
i
↪→τ/ζ ↠ (τ/ζ)/Pζ(P

−1
ζ (M) ∩ P−1

ν (M)) and

P−1
ζ (M) ∩ P−1

ν (M)
Pζ

↪→τ/ζ ↠ (τ/ζ)/i(M)

are zero. Thus i(M) = Pζ(P
−1
ζ (M) ∩ P−1

ν (M)).

We conclude M ∼= P−1
ζ (M) ∩ P−1

ν (M), and have an embedding

M ↪→ τ.(14.10)



28 I. CIGANOVIĆ

Combining (14.7) and (14.10) we have an embedding

W3 ↪→ ψ/V2.

Let V3 be the preimage of W3 in ψ. We see that in R(G):

ψ
R(G)
= W1 +W2 +W3 + L(ψ).

We proved the filtration formula. Now we show the last claim, about maximal-
ity. Decompositions of k1 and h1, (14.1) and (14.4), show that no irreducible
subquotient of W2, can be a subrepresentation of ψ. They also show that
L(δ([ν

1
2 ρ, νbρ]) ⋊ σ+

a,c) and L(δ([ν
−aρ, νcρ]) ⋊ σb) can not be embedded into

ψ/V1. To see the same for factors of M , first assume that σ−
b,c,a ↪→ ψ/V1.

Since k1/V1 ↪→ ψ/V1, and k1 doesn’t contain σ−
b,c,a, we obtain σ−

b,c,a ↪→ ψ/k1.

On the other hand k2 ↪→ ψ/k1, and k2 contains σ−
b,c,a, but not as a subrepre-

sentation. Since ψ is a multiplicity one, we got a contradiction. Similarly for
the other factor of M .
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Department of Mathematics

University of Zagreb
10 000 Zagreb

Croatia

E-mail : igor.ciganovic@math.hr


