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Abstract. For a fixed T and k ≥ 2, a k-dimensional vector stochastic

differential equation dXt = µ(Xt, θ) dt+ ν(Xt) dWt, is studied over a time
interval [0, T ]. Vector of drift parameters θ is unknown. The dependence in

θ is in general nonlinear. We prove that the difference between approximate

maximum likelihood estimator of the drift parameter θn ≡ θn,T obtained
from discrete observations (Xi∆n , 0 ≤ i ≤ n) and maximum likelihood

estimator θ̂ ≡ θ̂T obtained from continuous observations (Xt, 0 ≤ t ≤
T ), when ∆n = T/n tends to zero, converges stably in law to the mixed

normal random vector with covariance matrix that depends on θ̂ and on
path (Xt, 0 ≤ t ≤ T ). The uniform ellipticity of diffusion matrix S(x) =

ν(x)ν(x)T emerges as the main assumption on the diffusion coefficient

function.

1. Introduction

Let X = (Xt, t ≥ 0) be a multidimensional diffusion with values in an
open and convex state space E ⊆ Rk which satisfies Itô stochastic differential
equation (SDE)

(1.1) dXt = µ(Xt, θ) dt+ ν(Xt) dWt, X0 = x0, t ≥ 0,

where W = (Wt, t ≥ 0) is a k-dimensional Brownian motion and x0 ∈ E
is a known nonrandom initial state of X. Componentwise, it is a system of
differential equations of the following form

Xi
t = xi0 +

∫ t

0

µi(Xs, θ) ds+
k∑

j=1

∫ t

0

νij(Xs) dW
j
s , for i = 1, 2, . . . , k.
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For d = 1, let θ ∈ Θ ⊆ Rd be a drift parameter, or a vector of drift parameters
if d ≥ 2. Let us denote by θ0 its true value, and P ≡ Pθ0 . Function µ(x, θ)
is called drift function and S(x) = ν(x)ν(x)T diffusion matrix. Diffusion
coefficient function ν(x) may contain parameters that we consider known.

Let T > 0 be fixed. For a fixed n ∈ N, let 0 =: t0 < t1 < · · · < tn := T be
such a subdivision of the time interval [0, T ] that for i = 1, . . . , n, ti = i∆n

and ∆n = T/n. For a given discrete observation (Xti , 0 ≤ i ≤ n) of X
over time interval [0, T ], our goal is to estimate the vector of parameters θ
belonging to Θ. We assume that Θ is an open, relatively compact and con-
vex set in Rd. In this paper, we use the Euler approximation of Riemann
and Itô integrals in (1.1) to obtain the set of difference equations whose solu-
tion is an approximation of the diffusion X. A similar estimation technique
has been used in the case of a one-dimensional diffusion ([17, 26]). In this
one-dimensional case it has been proved the existence of a sequence of so-
called approximate maximum likelihood estimator (AMLE) which converges
in probability to the maximum likelihood estimator with respect to a continu-
ous observation (MLE) when n goes to infinity [16]. This result was obtained
under smoothness assumptions of log-likelihood functions of the initial process
and the approximation process, and under conditions that these log-likelihood
functions as well as their first and second derivatives were in some sense close.
The same result can also be stated in a multidimensional framework.

In this paper we consider multidimensional diffusion (k ≥ 2). We aim to
prove that the difference between AMLE based on a discrete observation θn
and MLE based on continuous observations θ̂ over [0, T ] scaled by

√
∆n is

asymptotically mixed normal when ∆n tends to zero. The covariance matrix
of the resulting random vector depends on the MLE and the path (Xt, t ∈
[0, T ]).

The same result has been proved in [26] for one-dimensional diffusion.
In the multidimensional domain, the idea of the proof is similar, but the
techniques are different. Advanced knowledge of linear algebra simplifies the
notation and analysis. The components of k-dimensional Brownian motion
are independent by definition, which often comes into play in the calculations
in the proofs. There is also a new regularity condition for the diffusion matrix.
It is a so-called uniform ellipticity condition ([3, 22, 13, 14]). This condition
actually means that the noise in the system is non-degenerate in any dimension
and the process is somehow controlled ([10], [15]). Most of the main results
are first proved for a compact state space E and then for an open E ⊆ Rk.

There are also other approaches to obtain an approximate maximum like-
lihood estimator in a multidimensional setting ([2], [23], [32]). In these works,
the initial expression is a log-likelihood function for a discretely observed
process defined by a transition density function. Its maximum is called the
maximum likelihood estimator and is usually not computable in practise. The
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main task is to approximate the transition density function using certain ex-
pansions. In the work of Aı̈t-Sahalia [2], a Hermite polynomial expansion is
used. This is a generalized version of the approach used in the one-dimensional
case ([1], [9]). In this way, the approximated log-likelihood function is ob-
tained, whose point of maximum is called an approximate maximum likeli-
hood estimator. Such an estimator behaves asymptotically in the same way
as the maximum likelihood estimator and has good properties with respect
to the real value of the parameters under certain conditions (Theorem 3 in
[2]). Similar results are obtained in [23] and [32] using Taylor-like expansions
of the transition density function. Our approach is slightly different, but it
is equivalent to a simple approximation of the transition density. In fact, in
such a way obtained criterion function can also be interpreted as a simple ap-
proximation of the log-likelihood function based on the continuously observed
process. This simplicity makes analysis of local mixed normality of the cor-
responding AMLE somehow straightforward and clear. We believe that our
approach can also be applied for analyzing local asymptotic behavior of more
complex approximate maximum likelihood estimators such as those analyzed
in e.g. [2], [32] and [23].

Notice that it can be shown that a recurrent ergodic diffusion such that
assumptions (A1-2) and (A4) of Section 4 hold, and that is parameterized in a
way that is regular enough and identifiability holds, also satisfies assumption
(A6) for large enough T > 0. A diffusion is regular enough if (A3) and (A5)
are satisfied, and there exists a positive definite Fisher information matrix.
Then it can be shown that MLE is consistent and asymptotically efficient
estimator when T → +∞ (see e.g. [5]). This implies (A6).

The paper is organized as follows. In the next section we introduce the
notation and give necessary definitions and known auxiliary results. Section
3 describes the estimation method. The assumptions and main theorems are
stated in Section 4. The proofs of the main results are in Section 5, and an
example and simulations are presented in Section 6. The Appendix consists
of proofs of the lemmas.

2. Preliminaries

For two matrices A and B of the same dimension m × n, the Hadamard
product A ◦ B is the matrix of the same dimension, with elements given by
(A ◦B)ij = AijBij [12]. We denote by 〈·|·〉 the scalar product in Euclidean

space Rk and by ‖·‖2 the induced norm. We say that the Frobenius norm of
a square matrix A ∈ Rk, ‖A‖F , is consistent with the Euclidean norm ‖x‖2
if ‖Ax‖2 ≤ ‖A‖F ‖x‖2. Let f : E ×Θ→ Rk be a vector valued function. We
denote by Dm

j f(x, θ) a partial derivative of m-th order of f(x, θ) with respect
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to the vector of parameters θ, ie.

Dm
j f(x, θ) :=

[
∂mf1

∂θj11 · · · θjdd
(x, θ), · · · , ∂mfk

∂θj11 · · · θjdd
(x, θ)

]T

where j = [j1, j2, . . . , jd]
T

and m = j1 + · · · + jd. ∇xf(x, θ) denotes a k-
dimensional matrix of partial derivatives of f with respect to the space vector
x. If function f is such that f : E → Rk, ∇f is the Jacobian matrix of f , and
for every component function fi, ∇ (∇fi) denotes a matrix of second partial
derivative of fi. If function f is such that f : Θ → R, then Df(θ) denotes
a d-dimensional vector of partial derivatives with respect to θ and D2f(θ) a
matrix of second partial derivatives with respect to θ. Briefly, ∂jf(θ) denotes
partial derivative ∂f(θ)/∂θj for j = 1, . . . , d. Vector ep is a unit vector that
has one at p-th place and zeros elsewhere.

Lemma 2.1. For C2-function F : Rk → Rk and random process (Xt)0≤t≤T
that satisfies (1.1), Itô formula on [s1, s2] yields [21]:

F (Xs2)− F (Xs1) =

=

∫ s2

s1

(
∇F (Xu)µ(Xu, θ0) +

1

2
∇2F (Xu)

)
du+

+

∫ s2

s1

∇F (Xu)ν(Xu) dWu,

where ∇2F denotes vector [Tr [S(·)∇ (∇F1(·))], . . . ,Tr [S(·)∇ (∇Fk(·))]]T .

For a scalar function F the previous lemma has the following form.

Lemma 2.2. For C2-function F : Rk → R and random process (Xt)0≤t≤T
that satisfies (1.1) Itô formula yields:

F (Xs2)− F (Xs1) =

=

∫ s2

s1

(
〈∇F (Xu) |µ(Xu, θ0)〉+

1

2
Tr [S(Xu)∇(∇F (Xu))]

)
du

+

∫ s2

s1

〈∇F (Xu) | ν(Xu) dWu〉 .

In the proofs of this paper we often use Itô isometry [27, Corollary 3.1.7],
but for vector and matrix random processes. For this reason we formulate it
here.

Lemma 2.3. If M : [0, T ] × Ω → Rk×k is a matrix random process and
V : [0, T ] × Ω → Rk is a vector random process, both adapted to the natural
filtration of Brownian motion W , then the following holds.

(i) E
[∥∥∥
∫ T

0
Mt dWt

∥∥∥
2

2

]
= E

[∫ T
0
‖Mt‖2F dt

]
,
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(ii) E
[(∫ T

0
V Tt dWt

)2
]

= E
[∫ T

0
‖Vt‖22 dt

]
.

We also use the generalized version of the mean value theorem given in
the following lemma.

Lemma 2.4. Let n,m ∈ N. Let U ⊆ Rn be an open set and f : U → Rm
be a continuously differentiable function. Let x ∈ U and h ∈ Rn be vectors
such that for all t ∈ [0, 1] the line segment x + th lies inside the set U . It
follows that

f(x+ h)− f(x) =

(∫ 1

0

∇f(x+ th) dt

)
· h,

where the integral of a matrix is taken componentwise.

For fixed T > 0, let (Ω,FT , (F)0≤t≤T ,P) be a given filtered probability

space and
(

Ω̃, F̃T , (F̃)0≤t≤T , P̃
)

be an extension of this space. The extension

is called very good if all martingales on the initial space are also martingales
on the extension [18]. Let D be a Polish space. In this paper D will be
the Skorokhod space D([0, T ],Rd) or d-dimensional Euclidean space Rd. Let
(Zn)n∈N be a sequence of random vectors with values in D, defined on the
initial space (Ω,FT , (F)0≤t≤T ,P), and let Z be a random vector also with
values in D defined on the extension. We say that (Zn)n converges stably in

law to Z, Zn
st⇒ Z, if

lim
n→+∞

E [Y f(Zn)] = Ẽ [Y f(Z)]

for all bounded continuous functions f : D → R and all bounded random
variable Y on (Ω,FT , (F)0≤t≤T ,P) [19].

We say that an Rd-valued random vector Y has mixed normal distribution
with FT -measurable random covariance matrix C = (Cjl) and write Y ∼
MN(0, C) if

E
[
ei〈t |Y 〉|FT

]
= e−

1
2

∑
j,l=1,...,d tjtlCjl .

Moreover, if Y ∼MN(0, C), then Y has the same distribution as
√
CZ where√

C is a square symmetric root of C and Z is a standard normal random vector
independent of FT .

Let us denote by Atn = max{j; 0 ≤ j ≤ n and tj ≤ t} and Fn,i := Fti , i =
0, 1, . . . , n.

For a Rd-valued process (Yt)1≤t≤T we say that it is a centered Gauss-
ian process if for every 0 ≤ t1 < t2 < · · · < tl ≤ T the random vector
(Yt1 , . . . , Ytl) ∈ Rdl has dl-dimensional normal distribution, and E [Yt] =
0d, t ∈ [0, T ] [27].

The decisive role in the future analysis is played by Theorem 3-2 in [18],
which has been adapted in its notation for our paper.
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Theorem 2.5. Let W be a k-dimensional Brownian motion on [0, T ] and
χni be Fn,i-measurable square-integrable random vectors in Rd. Assume that
C = (Cjl) is a continuous adapted process defined on (Ω,FT ,F = (Ft)0≤t≤T ,P),
and (Cjl(t)) is a positive semidefinite symmetric d × d matrix for every t ∈
[0, T ]. Assume also that:

(i) sup0≤t≤T

∥∥∥
∑At

n
i=1 E [χni |Fn,i−1]

∥∥∥
2

P→ 0,

(ii)
∑At

n
i=1

(
E
[
χn,ji χn,li |Fn,i−1

]
− E

[
χn,ji |Fn,i−1

]
E
[
χn,li |Fn,i−1

])
P→ Cjl(t),

∀t ∈ [0, T ], j, l = 1, . . . , d,

(iii)
∑At

n
i=1 E

[
χni
(
Wti −Wti−1

)T |Fn,i−1

]
P→ 0d×k,∀t ∈ [0, T ],

(iv)
∑n
i=1 E

[
‖χni ‖22 1‖χn

i ‖2>ε|Fn,i−1

]
P→ 0,∀ε > 0,

(v)
∑At

n
i=1 E

[
χni
(
Nti −Nti−1

)
|Fn,i−1

] P→ 0d,∀t ∈ [0, T ],

where N is a bounded Ft-martingale orthogonal to W , i.e. N0 = 0 and for all
m = 1, 2, . . . , k, [N,Wm]t ≡ 0.

Then there is a very good extension
(

Ω̃, F̃ , F̃ = (F̃t)0≤t≤T , P̃
)

of the space

(Ω,FT ,F = (Ft)0≤t≤T ,P) and a continuous process Y defined on that exten-
sion that is, conditionally on FT , centered Gaussian process with independent

increments satisfying Ẽ
[
Y jt Y

l
t |FT

]
= Cjl(t), t ∈ [0, T ], j, l = 1, . . . , d, and

such that
At

n∑

i=1

χni
st⇒ Y on D([0, T ],Rd).

Let (γn)n∈N be a sequence of positive numbers and let (Yn)n be a sequence
of random vectors defined on some probability space. We say that (Yn)n is of
order OP(γn), and write Yn = OP(γn), if the sequence (Yn/γn)n∈N is bounded
in probability, i.e. if

lim
A→+∞

lim
n

P{γ−1
n ‖Yn‖2 > A} = 0.

3. Estimation method

Using the Euler discretization scheme, for l = 1, 2, . . . , k we obtain the
system of stochastic difference equations [21]:

Zlti − Zlti−1
= µl(Zti−1 , θ)(ti − ti−1) +

k∑

j=1

νlj(Zti−1)
(
W j
ti −W

j
ti−1

)
.

If we denote by ∆W j
i := W j

ti −W
j
ti−1
∼ N(0,∆n), then ∆W j1

i1
and ∆W j2

i2
are independent for every pair of indices j1 and j2 such that j1 6= j2, and for
every i1 and i2 such that i1 6= i2 in case when j1 = j2. If matrix S is a regular
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matrix and Hermitian, then the log-likelihood function of the process Z is

lnLn(θ) := − ln

(
n∏

i=1

√
2π∆n

k
√

det(S(Zti−1))

)
−

− 1

2∆n

n∑

i=1

〈
S−1(Zti−1

)
(
Zti − Zti−1

−∆nµ(Zti−1
, θ)
)
|

Zti − Zti−1
−∆nµ(Zti−1

, θ)
〉
.

If we substitute Zi with Xi ≡ Xti , for every i = 0, 1, . . . , n, use the fact that
matrix S is Hermitian, and omit the constant that does not depend on θ, we
get an approximate log-likelihood function of the form

`n(θ) :=
n∑

i=1

〈
S−1(Xi−1)µ(Xi−1, θ) |Xi −Xi−1

〉
−(3.2)

− 1

2
∆n

n∑

i=1

〈
S−1(Xi−1)µ(Xi−1, θ) |µ(Xi−1, θ)

〉
.

If there is a point of global maximum θn of function `n, we call it an approx-
imate maximum likelihood estimator (AMLE) of parameter θ.

4. Assumptions and main theorems

Let OΘ ⊆ Rd be an open set such that Cl(Θ) ⊆ OΘ. We assume the
following hypothesis:

A1 (uniform ellipticity on compact sets) For every compact set K ⊆ E
there exists a real constant λK > 0 such that for all x ∈ K and ξ ∈ Rk

〈S(x)ξ | ξ〉 ≥ λK ‖ξ‖22 .
In particular, matrix S(x) is positive definite (and so regular) for every
x ∈ E.

A2 For all p, r = 1, 2, . . . , k and all (x, θ) ∈ E × OΘ there exist partial

derivatives ∂
∂xp

µ(x, θ) and ∂2

∂xp∂xr
µ(x, θ). Moreover, functions (x, θ) 7→

µ(x, θ), (x, θ) 7→ ∂
∂xp

µ(x, θ), (x, θ) 7→ ∂2

∂xp∂xr
µ(x, θ) are continuous

functions on E × Cl(Θ), for all p, r = 1, 2, . . . , k.
A3 For all i, j = 1, 2, . . . , d, all p, r = 1, 2, . . . , k and all (x, θ) ∈ E × OΘ

there exist partial derivatives ∂
∂θi
µ(x, θ), ∂2

∂xp∂θi
µ(x, θ), ∂3

∂xr∂xp∂θi
µ(x, θ),

and ∂2

∂θi∂θj
µ(x, θ), ∂3

∂xp∂θi∂θj
µ(x, θ). Moreover, functions (x, θ) 7→

∂
∂θi
µ(x, θ), (x, θ) 7→ ∂2

∂xp∂θi
µ(x, θ), (x, θ) 7→ ∂3

∂xr∂xp∂θi
µ(x, θ), and

(x, θ) 7→ ∂2

∂θi∂θj
µ(x, θ), (x, θ) 7→ ∂3

∂xp∂θi∂θj
µ(x, θ) are continuous on

E × Cl(Θ), for all p, r = 1, 2, . . . , k and all i, j = 1, 2, . . . , d.
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A4 For all p, r = 1, 2, . . . , k and all x ∈ E there exist partial deriva-

tives ∂
∂xp

ν(x), and ∂2

∂xr∂xp
ν(x). Moreover, functions x 7→ ν(x), x 7→

∂
∂xp

ν(x), and x 7→ ∂2

∂xr∂xp
ν(x) are continuous on E, for all p, r =

1, 2, . . . , k.

Assumptions (A1-2) and (A4) imply that there exists a strong and by-path-
unique solution to the SDE (1.1) on time-interval [0, T ] (see [20]), and (A2-4)
enable applications of the Itô formula on the drift and diffusion coefficient
functions. Notice that (A2-3) implies that all other partial derivatives of
orders less or equal 3 exists and among them all partial derivatives with
respect to the same set of variable directions are mutually equal. For example,
it turns out that

∂3

∂θi∂xp∂θj
µ(x, θ) =

∂3

∂θi∂θj∂xp
µ(x, θ) =

∂3

∂xp∂θi∂θj
µ(x, θ)

for all (x, θ) ∈ E×Cl(Θ) and all p = 1, . . . , k and all i, j = 1, 2, . . . , d, and all
these functions are continuous on E × Cl(Θ).

Since matrix S(x) is regular by (A1), the log-likelihood function of (1.1)
is given by [29, Theorem 6.4.3]

`(θ) :=

∫ T

0

〈
S−1(Xs)µ(Xs, θ) | dXs

〉
−

− 1

2

∫ T

0

〈
µ(Xs, θ) |S−1(Xs)µ(Xs, θ)

〉
ds.

By the next assumption we will be able to prove that log-likelihood function
` is two-times continuously differentiable on Θ, i.e. ` ∈ C2(Θ) (see Theorem
4.1 below).

A5 For all (x, θ) ∈ E × OΘ and m ≤ d + 3 there exist Dm
j µ(x, θ) and

∂
∂xp

Dm
j µ(x, θ), for all p = 1, . . . , k and all j = [j1, j2, . . . , jd]

T
such

that m = j1 + · · · + jd. Moreover, these functions are continuous on
E × Cl(Θ).
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Theorem 4.1. Assume that (A1) and (A4-5) hold. Then the log-likelihood
function ` ∈ C2(Θ), and

∂

∂θi
`(θ) =

∫ T

0

〈
S−1(Xs)

∂

∂θi
µ(Xs, θ) | dXs

〉
−

−
∫ T

0

〈
∂

∂θi
µ(Xs, θ) |S−1(Xs)µ(Xs, θ)

〉
ds

∂2

∂θi∂θj
`(θ) =

∫ T

0

〈
S−1(Xs)

∂2

∂θi∂θj
µ(Xs, θ) | dXs

〉
−

−
∫ T

0

〈
∂2

∂θi∂θj
µ(Xs, θ) |S−1(Xs)µ(Xs, θ)

〉
ds−

−
∫ T

0

〈
∂

∂θi
µ(Xs, θ) |S−1(Xs)

∂

∂θj
µ(Xs, θ)

〉
ds

for all i, j = 1, 2, . . . , d.

Now, we can formulate the last assumption:

A6 For all ω ∈ Ω, the log-likelihood function `(θ) ≡ `T (θ, ω) based on
continuous observations of X over [0, T ], as a function ` : Θ → R,

has a unique point of global maximum θ̂ ≡ θ̂T (ω), and D2`(θ̂) is a
negatively definite matrix.

Since Θ is a convex space, using the mean value theorem, we get that for
all θ ∈ Θ

D`n(θ) = D`n(θ̂) +

∫ 1

0

D2`n(θ̂ + (θ − θ̂)z) dz · (θ − θ̂).

In particular, on event {D`n(θn) = 0}, we have

1√
∆n

∫ 1

0

D2`n(θ̂ + (θn − θ̂)z) dz · (θn − θ̂) =

=
1√
∆n

(
D`(θ̂)−D`n(θ̂)

)
(4.3)

since D`(θ̂) = 0 by (A6). We are interested in the behavior of the difference
between the derivative of the log-likelihood function for continuous observa-
tions and its discretized version.
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Let us fix θ ∈ Θ. For 1 ≤ j ≤ d, we have

1√
∆n

(D`(θ)−D`n(θ))j =
1√
∆n

n∑

i=1

∫ ti

ti−1

〈
S−1(Xs)∂jµ(Xs, θ)−

(4.4)

− S−1(Xi−1)∂jµ(Xi−1, θ) |µ(Xs, θ0)
〉
ds−(4.5)

− 1√
∆n

n∑

i=1

∫ ti

ti−1

(〈
∂jµ(Xs, θ) |S−1(Xs)µ(Xs, θ)

〉
−

−
〈
∂jµ(Xi−1, θ) |S−1(Xi−1)µ(Xi−1, θ)

〉)
ds+(4.6)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

〈
S−1(Xs)∂jµ(Xs, θ)−

− S−1(Xi−1)∂jµ(Xi−1, θ) | ν(Xt) dWs

〉
.(4.7)

We introduce the following notation:

(4.8) gj(x, θ) := S−1(x)∂jµ(x, θ), (x, θ) ∈ E ×Θ.

First, the difference in (4.4) can be decomposed into two parts. One part is
negligible in probability and the other part determines the resulting limit.

Lemma 4.2. Assume that (A1-5) hold and that E is a compact set. For
arbitrary θ ∈ Θ the standardized difference

1√
∆n

(D`(θ)−D`n(θ))

is equal to

Vn(θ) +
1√
∆n




∑n
i=1

∫ ti
ti−1

〈∫ s
ti−1
∇xg1(Xu, θ)ν(Xu) dWu | ν(Xs) dWs

〉

...∑n
i=1

∫ ti
ti−1

〈∫ s
ti−1
∇xgd(Xu, θ)ν(Xu) dWu | ν(Xs) dWs

〉


 ,

where Vn(θ)
P→ 0d when n→ +∞.

Theorem 4.3. Assume that (A1-5) hold. For arbitrary θ ∈ Θ the stan-
dardized difference

1√
∆n

(D`(θ)−D`n(θ))
st⇒ Y (θ)

where Y (θ) ∼MN(0,Σ(θ)) and for j, l = 1, . . . , d,

Σjl(θ) =
1

2

∫ T

0

k∑

p,r=1

Spr(Xs)
〈
eTr ∇xgj(Xs, θ)ν(Xs) | eTp∇xgl(Xs, θ)ν(Xs)

〉
ds.
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Compactness of Cl(Θ) implies that is possible to pass MLE θ̂ in the
limiting equation in the preceding theorem.

Theorem 4.4. Assume that (A1-6) holds. Assume that E is an open
convex set and Θ is a convex and relatively compact set. Then, we have

1√
∆n

(
D`(θ̂)−D`n(θ̂)

)
st⇒ Y (θ̂)

where Y is the same as in Theorem 4.3.

To analyze the difference between the AMLE and MLE, we need to ob-
tain the uniform bound on the difference between the derivative of the log-
likelihood and the discretized log-likelihood. The following lemma serves this
purpose.

Lemma 4.5. Assume that (A1-5) hold. Let Θ be a relatively compact set.
Then for r = 0, 1, 2

sup
θ∈Θ
‖Dr`n(θ)−Dr`(θ)‖2 = OP(

√
∆n), n ∈ N.

Using Lemma 4.5 and assumption (A6), it can be proved (exactly as in
[16]) that there exists a sequence of AMLEs. Namely, the following theorem
holds.

Theorem 4.6. Assume that (A1-6) hold. Then there exists a sequence
(θn)n∈N ⊆ Θ of FT -measurable random vectors such that

(i) limn→+∞ P
(
D`n(θn) = 0

)
= 1,

(ii) θn
P→ θ̂, n→ +∞,

(iii) if (θ̃n)n∈N is another sequence of random vectors which satisfies (i)

and (ii), then P(θ̃n = θn) = 1,

(iv)

(
1√
∆n

∥∥∥θn − θ̂
∥∥∥

2

)

n

is bounded in probability.

The core of our paper is the following theorem, which gives the limit of
the standardized difference between the AMLE and MLE in terms of stable
convergence. From now on we assume that the vector θn is such that (i)-(iv)
from Theorem 4.6 hold.

Theorem 4.7. Let Θ be a convex and relatively compact set. Assume
(A1-6). Then

1√
∆n

(
θn − θ̂

)
st⇒MN

(
0,
(
D2`(θ̂)

)−1

Σ(θ̂)
(
D2`(θ̂)

)−1
)
.
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5. Proofs

For proving Theorem 4.1 and Lemma 4.5 we need help of Fourier analysis.
Let U ⊂ OΘ be an open and bounded set such that the following holds:

U ⊂ Cl(U) ⊂ U ′ ⊂ Cl(U ′) ⊂ OΘ

for some d-dimensional rectangular U ′ =
∏d
i=1〈ai, bi〉. Since OΘ ⊂ Rd is an

open and locally compact set, for every θ ∈ OΘ there exists such an open
neighborhood U of θ in OΘ. On the other hand, if K is a relatively compact
open set in Θ, then it can be covered by a finite number of such open sets Uj
(j from a finite set). If f : E × OΘ → Rk is a bounded function such that
f(x, ·) ∈ Cm(Cl(Θ)) for some m and all x ∈ E, then there exists a bounded

function f̃ : E × Rd → Rk and a regular linear mapping A : Rd → Rd such
that f̃(x, ·) ∈ Cm(Rd) for all x ∈ E and A(Cl(U ′)) = [−π, π]d, and

(∀(x, θ) ∈ E × Cl(K)) f(x, θ) = f̃(x,Aθ)

(∀θ ∈ ∂([−π, π]d)) (∀x ∈ E) f̃(x, θ) = 0

where ∂S denotes boundary of a set S. Such a function f̃ can be constructed
from f by use of an appropriate test-function (see [17]). For all of above
reasons it is enough to prove the following two technical theorems for neigh-

borhoods and relative compacts of the form K0 := 〈−π, π〉d and functions
that satisfy assumptions (P1) and (P2) below.

Let k = [k1, . . . , kd]
T ∈ Zd, j = [j1, . . . , jd]

T ∈ Nd0 and m = |j| :=
j1 + · · ·+ jd ≤ d+ 1. For function f : E ×Rd → Rk we assume the following:

P1 For all j ∈ Nd0 such that |j| = m ≤ d + 1, and all (x, θ) ∈ E × Rd
there exist ∂f

∂xp
(x, θ), Dm

j f(x, θ) and ∂
∂xp

Dm
j f(x, θ) for p = 1, . . . , k.

Additionally, f , ∂f
∂xp

(x, θ), Dm
j f(x, θ) and ∂

∂xp
Dm

j f(x, θ), m ≤ d + 1,

p = 1, . . . , k, are continuous and uniformly bounded functions on E ×
Rd.

P2 For all x ∈ E and all j ∈ Nd0 such that |j| = m ≤ d + 1, f(x, ·) ≡
0k×kand Dm

j f(x, ·) ≡ 0kon ∂K0.

Fourier coefficients of function f are defined (componentwise) as vectors

Ck(x) :=
1

(2π)d

∫

Cl(K0)

f(x, θ)e−i〈k|θ〉 dθ,

C
(j)
k (x) :=

1

(2π)d

∫

Cl(K0)

Dm
j f(x, θ)e−i〈k|θ〉 dθ.

Let us denote kj := kj11 · · · kjdd . Under assumptions (P1) and (P2) using partial
integration it is easy to see that for all x ∈ E, we have [30]

(5.9) C
(j)
k (x) = imkjCk(x).
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Remark 5.1. If assumption (P2) does not hold for function f , we can
easily calculate the relation similar to (5.9), and it is of the form

Fk(x) + C
(j)
k (x) = imkjCk(x),

where Fk(x) is a linear combination of functions Dm−1
θ f(x, θ), for 1 ≤ m ≤

d + 1, on ∂K0. Since these functions are bounded on E × Rd by (P1), ex-
pression Fk(x) can be bounded by a constant so it may be ignored in further
considerations (see the proof of Lemma 5.3).

The following is a list of technical statements essential for proving the
uniform (in θ) L2-bounds of sum of certain Riemann and Itô integrals as well
as absolute convergence of Fourier series

(5.10)
∑

k∈Zd

Ck(x)ei〈k|θ〉

for (x, θ) ∈ E × Cl(K0).

Lemma 5.2. Let functions µ(·, θ0) and ν are bounded and continuous on
E. There exists a constant K > 0 such that for s1, s2, 0 ≤ s1 ≤ s2 ≤ T

E
[
‖Xs2 −Xs1‖22

]
≤ 2K

(
(s2 − s1)

2
+ (s2 − s1)

)
.

Lemma 5.3. Let E ⊆ Rk be an open and convex set and x, y ∈ E, and let
f : E × Rd → Rk be a function that satisfies (P1) and (P2). Then for every
k ∈ Zd there exist constants k1, k2 > 0 such that

(5.11) ‖Ck(x)− Ck(y)‖2 ≤ k1Km(k) ‖x− y‖2 ,

(5.12) ‖Ck(x)‖2 ≤ k2Km(k),

where Km(k) =
(

d+1
1+|k1|+···+|kd|

)m
.

Lemma 5.4.
∑

k∈Zd
1

(1+|k1|+···+|kd|)d+1 < +∞.

If f satisfies (P1) and (P2), then

∑

k∈Zd

∥∥∥Ck(x)ei〈k|θ〉
∥∥∥

2
≤
∑

k∈Zd

‖Ck(x)‖2 ≤ k2

∑

k∈Zd

Kd+1(k) =

= k2(d+ 1)d+1
∑

k∈Zd

1

(1 + |k1|+ · · ·+ |kd|)d+1
< +∞,

by Lemma 5.3 and Lemma 5.4, i.e. Fourier series (5.10) absolutely converges
and hence it converges to f(x, θ) since f(x, ·) is continuous by (P1) (see [30],
pp. 197-206).
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Theorem 5.5. Let Θ ⊆ Rd be an open set and let f : E × Θ → R be a
uniformly bounded function such that for all x ∈ E ⊆ Rk, f(x, ·) ∈ Cd+2(Θ),
and all partial derivatives of f of the orders m ≤ d+2 are uniformly bounded.
Moreover, let (Xt)1≤t≤T be a random process that satisfies (1.1) and let B
be a standard Brownian motion defined on the same filtered probability space.
Then there exists random function F : Ω × Θ → R such that for all ω ∈ Ω,
F (ω, ·) ∈ C1(Θ), and for all θ ∈ Θ (with F (θ) ≡ F (·, θ))

F (θ) =

∫ T

0

f(Xt, θ) dBt a.s.

∂

∂θj
F (θ) =

∫ T

0

∂

∂θj
f(Xt, θ) dBt a.s. for j = 1, 2, . . . , d.

Proof of Theorem 5.5. Let θ′ ∈ Θ be an arbitrary point. Since Θ
is an open set, there exists open neighborhood U ′ ⊂ Θ of θ′ which is d-
dimensional rectangular such that Cl(U ′) ⊂ Θ. Without loss of generality, let
us assume that U ′ = K0, and that f can be extended on E ×Rd such that it
satisfies (P1) and (P2).
Let Ck(x) = (1/(2π)d)

∫
Cl(K0)

f(x, θ)e−i〈k|θ〉dθ be a Fourier coefficient of a

scalar function f for k ∈ Zd such that |k| ≤ m = d + 1 < d + 2. Then Ck(·)
is a bounded and continuous function on E by Lemma 5.3 that implies that

stochastic integral
∫ T

0
Ck(Xt) dBt is well defined. It follows that

E


∑

k∈Zd

∣∣∣∣∣

∫ T

0

Ck(Xt) dBt

∣∣∣∣∣


 ≤

∑

k∈Zd

∥∥∥∥∥

∫ T

0

Ck(Xt) dBt

∥∥∥∥∥
L2

=

=
∑

k∈Zd

(
E
∫ T

0

C2
k(Xt) dt

) 1
2

≤

≤
√
Tk2

∑

k∈Zd

Kd+1(k) < +∞

by Lemmas 5.3 and 5.4 implying that

∑

k∈Zd

∣∣∣∣∣

∫ T

0

Ck(Xt) dBt · ei〈k|θ〉
∣∣∣∣∣ ≤

∑

k∈Zd

∣∣∣∣∣

∫ T

0

Ck(Xt) dBt

∣∣∣∣∣ < +∞ a.s.

Hence series
∑

k∈Zd

∫ T
0
Ck(Xt) dBt ·ei〈k|θ〉 converges absolutely and uniformly

for all θ ∈ K0 on event Ω0 := {∑k∈Zd

∣∣∣
∫ T

0
Ck(Xt) dBt

∣∣∣ < +∞} of probability

1. Then for all fixed ω ∈ Ω0, its sum

F (ω, θ) :=
∑

k∈Zd

∫ T

0

Ck(Xt) dBt(ω) · ei〈k|θ〉, θ ∈ K0,
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is a continuous function on K0. Moreover,

∑

k∈Zd

∣∣∣∣∣
∂

∂θj

(∫ T

0

Ck(Xt) dBt · ei〈k|θ〉
)∣∣∣∣∣ =

∑

k∈Zd

∣∣∣∣∣

∫ T

0

iCk(Xt)kj dBt

∣∣∣∣∣
(5.9)
=

=
∑

k∈Zd

∣∣∣∣∣

∫ T

0

C
(ej)
k (Xt) dBt

∣∣∣∣∣

for all j = 1, 2, . . . , d, and hence functional series
∑

k∈Zd
∂
∂θj

(
∫ T

0
Ck(Xt) dBt ·

ei〈k|θ〉) converges absolutely and uniformly on event

Ωj :=




∑

k∈Zd

∣∣∣∣∣

∫ T

0

C
(ej)
k (Xt) dBt

∣∣∣∣∣ < +∞



 .

Since C
(ej)
k (x) = (1/(2π)d)

∫
Cl(K0)

∂
∂θj

f(x, θ)e−i〈k|θ〉dθ and ∂
∂θj

f is a bounded

function, it follows that P(Ωj) = 1, and hence F (ω, ·) ∈ C1(K0) and

∂

∂θj
F (ω, θ) =

∑

k∈Zd

∫ T

0

C
(ej)
k (Xt) dBt(ω) · ei〈k|θ〉

for all ω ∈ Ω0 ∩
⋂d
j=1 Ωj that is an event of probability 1.

Let S
(0)
N (x, θ) :=

∑
|k|≤N Ck(x)ei〈k|θ〉 and S

(j)
N (x, θ) :=

∑
|k|≤N C

(ej)
k (x)ei〈k|θ〉

(N ∈ N) be partial sums of corresponding Fourier series (j = 1, 2, . . . , d).

Since S
(0)
N (Xt, θ)−f(Xt, θ) and S

(j)
N (Xt, θ)− ∂

∂θj
f(Xt, θ) are uniformly bounded

with constants by Lemmas 5.3 and 5.4, and

lim
N→+∞

S
(0)
N (Xt, θ) = f(Xt, θ), and lim

N→+∞
S

(j)
N (Xt, θ) =

∂

∂θj
f(Xt, θ),

for all (t, θ) ∈ [0, T ]×K0, it follows that
∫ T

0

S
(0)
N (Xt, θ) dBt

P→
∫ T

0

f(Xt, θ) dBt, N → +∞,
∫ T

0

S
(j)
N (Xt, θ) dBt

P→
∫ T

0

∂

∂θj
f(Xt, θ) dBt, N → +∞,

by the dominated convergence theorem for stochastic integrals [28, Theorem

2.12]. On the other hand, since
∫ T

0
S

(0)
N (Xt, θ) dBt and

∫ T
0
S

(j)
N (Xt, θ) dBt are

partial sums of functional series that a.s. converge to F (·, θ) and ∂
∂θj

F (·, θ)
respectively, it follows that

F (·, θ) =

∫ T

0

f(Xt, θ) dBt a.s., and
∂

∂θj
F (·, θ) =

∫ T

0

∂

∂θj
f(Xt, θ) dBt a.s.

We can extend definition of F on Θ in the following way. Let {Uj : j ∈
N} be a countable open covering of Θ such that Uj ⊂ Cl(Uj) ⊂ Θ be an
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open rectangular. If FUj
is the function defined by Fourier series like above,

then F (ω, θ) := FUj
(ω, θ) if θ ∈ Uj and for ω from the probability-one-event

obtained as countable intersections of probability-one-events like above. If

there exists j′ 6= j such that θ ∈ Uj ∩ Uj′ , then FUj′ (θ) =
∫ T

0
f(Xt, θ) dBt =

FUj
(θ) a.s. This implies that F is correctly defined.

Proof of Theorem 4.1. The conclusions follow directly by applying
(1.1) for θ = θ0 and then Theorem 5.5 on Itô stochastic integrals with respect
to components of k-dimensional Brownian motion W , and from the fact that
integrals with respect to the time variable and partial derivatives with respect
to θ commute.

Theorem 5.6. Let (Xt)1≤t≤T be a random process that satisfies (1.1). Let

E ⊆ Rk and Θ ⊆ Rd be open and convex sets. Moreover, let f : E ×Θ→ Rk
be a function that satisfies (P1). We assume that µ(·, θ0) and ν are bounded
and continuous on E.
Let a : E → Rk be a bounded vector valued function. For every relatively
compact set K ⊂ Θ there exist constants C1, C2 > 0 such that:

(5.13)

∥∥∥∥∥sup
θ∈Θ

∣∣∣
n∑

i=1

∫ ti

ti−1

〈
f(Xt, θ)− f(Xi−1, θ)

∣∣ a(Xt)
〉
dt
∣∣∣
∥∥∥∥∥
L2

≤ C1

√
∆n

(5.14)

∥∥∥∥∥sup
θ∈K

∣∣∣
n∑

i=1

∫ ti

ti−1

〈
f(Xt, θ)− f(Xi−1, θ)

∣∣ ν(Xt) dWt

〉 ∣∣∣
∥∥∥∥∥
L2

≤ C2

√
∆n.

Proof of Theorem 5.6. Let c20, . . . , c24 denote positive constants oc-
curring in the proof. Using Cauchy-Schwarz inequality for integrals and vec-
tors, Lemma 2.4 and boundedness of functions ∇xf and a, we have that there
exists a constant c20 such that

E



(

sup
θ∈Θ

∣∣∣
n∑

i=1

∫ ti

ti−1

〈
f(Xt, θ)− f(Xi−1, θ)

∣∣ a(Xt)
〉
dt
∣∣∣
)2

 ≤

≤ c20E

[
n∑

i=1

∫ ti

ti−1

‖Xt −Xi−1‖22 dt
]
.
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For final step, we use Lemma 5.2.

c20

n∑

i=1

∫ ti

ti−1

E
[
‖Xt −Xi−1‖22

]
dt ≤ c20

n∑

i=1

∫ ti

ti−1

2K
(
(t− ti−1)2+

+ (t− ti−1)
)
dt ≤

≤ c20K

(
2

3
T 2 + T

)
∆n =

=: C2
1∆n(5.15)

so inequality (5.13) is proved.
Next, we prove inequality (5.14) by following the arguments from part

of the proof of Theorem 6.1 in [17]. The first main difference is that Brow-
nian motion W is multidimensional, so the first part of the proof is derived
componentwise, and then the continuous mapping theorem is used. Also, the
observed time interval is fixed compared to the proof of Theorem 6.1 in [17],
where this is not the case. For this reason, it is easier to justify the appli-
cation of the dominated convergence theorem for stochastic integrals to the
integrals defined below. Moreover, for the same reason, it is easier to obtain
the L2-bound of the right-hand side of the inequality in (5.17). To clarify the
arguments presented and to distinguish details due to multidimensionality, we
provide the entire proof.

Without loss of generality, it is sufficient to prove it for K = K0.
Let SN (x, θ) =

∑
|k|≤N Ck(x)ei〈k|θ〉 be N -th partial sum of Fourier’s series

of functions f(x, θ). For fixed θ ∈ K0 and N ∈ N, let us define the following
random processes

Vt :=
k∑

l=1

n∑

i=1

〈
f(Xt, θ)− f(Xi−1, θ)

∣∣ ν(Xt)el
〉
1〈ti−1, ti](t), t ∈ [0, T ],

V
(N)
t :=

k∑

l=1

n∑

i=1

〈
SN (Xt, θ)− SN (Xi−1, θ)

∣∣ ν(Xt)el
〉
1〈ti−1, ti](t), t ∈ [0, T ].

Moreover, let us define MN := supx∈E,θ∈Cl(K0) ‖SN (x, θ)− f(x, θ)‖2 and

M := supx∈E
∑

k∈Zd ‖Ck(x)‖2. For m = d + 1, using (5.12) in Lemma 5.3
and Lemma 5.4 we conclude that M is finite.
For every N ∈ N

∣∣∣V (N)
t

∣∣∣ ≤
k∑

l=1

n∑

i=1

∥∥∥∥∥∥
∑

|k|≤N
(Ck(Xt)− Ck(Xi−1))

∥∥∥∥∥∥
2

‖ν(Xt)el‖2 1〈ti−1,ti](t) ≤

≤ 2Mc21(5.16)

where c21 = maxl=1,...,k ‖ν(Xt)el‖2.
Because of smoothness of function f , it can be shown that for fixed x ∈ E,
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limN→+∞ supθ∈Cl(K0) ‖SN (x, θ)− f(x, θ)‖2 = 0 holds (see [30]). Moreover,

using (5.12) in Lemma 5.3 and Lemma 5.4, for all x ∈ E we have

‖SN (x, θ)− f(x, θ)‖2 ≤
∑

k>N

‖Ck(x)‖2 ≤ k2

∑

k>N

Kd+1(k) < +∞.

From the previous inequality we can easily determine that MN → 0.
In the same manner as in (5.16), we obtain

sup
t∈[0,T ]

|V (N)
t − Vt| ≤ 2MNc21 → 0, N → +∞.

The dominated convergence theorem for stochastic integrals [28, Theorem
2.12] applied on Itô integrals with respect to each component of Brownian
motion (Wt)t yields

∫ T

0

V
(N)
t dW l

t
P→
∫ T

0

Vt dW
l
t , for l = 1, . . . , k,

when N → +∞. Let us denote

IN (θ) :=

k∑

l=1

∫ T

0

V
(N)
t dW l

t =

n∑

i=1

∫ ti

ti−1

〈
SN (Xt, θ)− SN (Xi−1, θ)

∣∣ ν(Xt) dWt

〉
,

I(θ) :=
k∑

l=1

∫ T

0

Vt dW
l
t =

n∑

i=1

∫ ti

ti−1

〈
f(Xt, θ)− f(Xi−1, θ)

∣∣ ν(Xt) dWt

〉
.

Using continuous mapping theorem [31, Theorem 2.3], it follows that IN (θ)
P→

I(θ) when N → +∞.
Hence, for every θ ∈ K0∩Qd exists a subsequence (Np) ≡ (Np(θ)) and an event
A(θ), P(A) = 1, such that for all ω ∈ A(θ), limp→+∞ INp(θ)(ω) = I(θ)(ω).
We define A0 := ∩θ∈K0∩QdA(θ) and it is also the events of probability one.

On event A0, for θ ∈ K0 ∩Qd we have that
∣∣I(θ)

∣∣ ≤
∣∣I(θ)− INp

(θ)
∣∣+

+
∣∣∣
n∑

i=1

∫ ti

ti−1

〈 ∑

|k|≤Np

(Ck(Xt)− Ck(Xi−1)) e−i〈k|θ〉
∣∣∣ ν(Xt) dWt

〉∣∣∣ ≤

≤
∣∣I(θ)− INp(θ)

∣∣+
∑

k∈Zd

∣∣∣
n∑

i=1

∫ ti

ti−1

〈
Ck(Xt)− Ck(Xi−1)

∣∣ ν(Xt) dWt

〉 ∣∣∣.

After letting p→ +∞, it follows

∣∣I(θ)
∣∣ ≤

∑

k∈Zd

∣∣∣
n∑

i=1

∫ ti

ti−1

〈
Ck(Xt)− Ck(Xi−1)

∣∣ ν(Xt) dWt

〉 ∣∣∣.

For g(Xt, θ) =
∑n
i=1 (f(Xt, θ)− f(Xi−1, θ))1〈ti−1, ti](t) using Theorem 5.5

the mapping θ 7→ I(θ) is almost surely a continuous function. There is an
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event B0 of probability one such that for every ω ∈ B0, supθ∈K0

∣∣I(θ)(ω)
∣∣ =

supθ∈K0∩Qd

∣∣I(θ)(ω)
∣∣. Accordingly, on event C0 := A0∩B0 of probability one,

we have that

(5.17) sup
θ∈K0

∣∣I(θ)
∣∣ ≤

∑

k∈Zd

∣∣∣
n∑

i=1

∫ ti

ti−1

〈
Ck(Xt)− Ck(Xi−1)

∣∣ ν(Xt) dWt

〉 ∣∣∣.

In analysing the squared L2-norm of the right-hand side in (5.17), we use
Lemma 2.3 (ii), the norm consistency, (5.11) from Lemma 5.3 (m = d + 1),
and Lemma 5.2. The last inequality is obtained in the same way as in (5.15).

E

[∣∣∣
n∑

i=1

∫ ti

ti−1

〈
Ck(Xt)− Ck(Xi−1)

∣∣ ν(Xt) dWt

〉 ∣∣∣
2
]

=

=

n∑

i=1

E



(∫ ti

ti−1

(Ck(Xt)− Ck(Xi−1))
T
ν(Xt) dWt

)2



+ 2
∑

1≤i<l≤n
E

[∫ ti

ti−1

〈
Ck(Xt)− Ck(Xi−1)

∣∣ ν(Xt) dWt

〉
·

∫ tl

tl−1

〈
Ck(Xt)− Ck(Xl−1)

∣∣ ν(Xt) dWt

〉
]

=

=
n∑

i=1

E

[∫ ti

ti−1

∥∥ν(Xt)
T (Ck(Xt)− Ck(Xi−1))

∥∥2

2
dt

]
≤

≤ c22E

[
n∑

i=1

∫ ti

ti−1

‖Ck(Xt)− Ck(Xi−1)‖22 dt
]
≤

≤ c22E

[
n∑

i=1

∫ ti

ti−1

k2
1

(
d+ 1

1 + |k1|+ · · ·+ |kd|

)2(d+1)

‖Xt −Xi−1‖22 dt
]
≤

≤ c23

(
d+ 1

1 + |k1|+ · · ·+ |kd|

)2(d+1) n∑

i=1

∫ ti

ti−1

E
[
‖Xt −Xi−1‖22

]
dt ≤

≤ c24(d+ 1)2(d+1) 1

(1 + |k1|+ · · ·+ |kd|)2(d+1)
∆n

Since series
∑

k∈Zd

(
1

1+|k1|+···+|kd|

)d+1

converges, we have

∑

k∈Zd

∥∥∥∥∥
n∑

i=1

∫ ti

ti−1

〈
Ck(Xt)− Ck(Xi−1)

∣∣ ν(Xt) dWt

〉
∥∥∥∥∥
L2

< +∞.

Therefore, the series on the right hand side of (5.17) converges in L2 and
almost sure to the same limits that are equal almost sure [8, Proposition
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2.10.1]. Finally, we obtain
∥∥∥∥ sup
θ∈K0

|I(θ)|
∥∥∥∥
L2

≤ C2

√
∆n.

Proof of Theorem 4.3. Let us assume that E is a compact set. Let
c8, . . . , c19 be positive constants occurring in the proof.

Using abbreviation in (4.8) we define a random vector χni := [χn,1i , . . . , χn,di ]T

where each component is equal to

χn,ji :=
1√
∆n

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣ ν(Xs) dWs

〉
.

We also introduce matrix functions R(j) and column vectors

J (i,j) =
[
J

(i,j)
1 , . . . , J

(i,j)
k

]T
in the following form.

R(j)(t, θ) := ∇gj(Xt)ν(Xt), j = 1, 2, . . . , d

J (i,j)(s) :=

∫ s

ti−1

R(j)(u, θ) dWu

Let C = (Cjl(t))0≤t≤T be a continuous adapted process given by

Cjl(t) =
1

2

∫ t

0

k∑

p,r=1

Spr(Xs)
〈
eTr R

(j)(s, θ) | eTpR(l)(s, θ)
〉
ds, j, l = 1, . . . , d.

We will prove that all conditions of Theorem 2.5 are fulfilled. Since E is a com-
pact set, the matrix function R(j)(t, θ) is bounded for every j = 1, 2, . . . , d,
and for every i = 1, 2, . . . , n vectors χni are square-integrable random vec-
tors. Using the definition of the scalar product, it follows that for all i =
1, 2, . . . , n, χni is a sum of Itô integrals, hence it is a martingale. The equality

E
[
χn,ji |Fn,i−1

]
= 0 trivially implies the statement of condition (i).

To satisfy condition (iii), it is sufficient to prove that for 1 ≤ j ≤ d and
1 ≤ m ≤ k

At
n∑

i=1

E
[
χn,ji

(
Wm
ti −Wm

ti−1

) ∣∣∣∣Fn,i−1

]
P→ 0.

Using the product formula, we have

At
n∑

i=1

E
[
χn,ji

(
Wm
ti −Wm

ti−1

) ∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

k∑

p=1

E

[∫ ti

ti−1

(
J (i,j)(s)

)T
ν(Xs)ep dW

p
s ·
∫ ti

ti−1

dWm
s

∣∣∣∣Fn,i−1

]
=
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=
1√
∆n

At
n∑

i=1

k∑

p=1

E
[∫ ti

ti−1

∫ s

ti−1

(
J (i,j)(u)

)T
ν(Xu)ep dW

p
u dW

m
s +

+

∫ ti

ti−1

∫ s

ti−1

dWm
u

(
J (i,j)(s)

)T
ν(Xs)ep dW

p
s +

+

〈∫ ti

ti−1

(
J (i,j)(s)

)T
ν(Xs)ep dW

p
s ,

∫ ti

ti−1

dWm
s

〉∣∣∣∣Fn,i−1

]
.

Using the martingale property and the independence of the components of
Brownian motion, we have

At
n∑

i=1

E
[
χn,ji

(
Wm
ti −Wm

ti−1

) ∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

E

[∫ ti

ti−1

(
J (i,j)(s)

)T
ν(Xs)em ds

∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

E

[∫ ti

ti−1

(
J (i,j)(s)

)T
(ν(Xs)− ν(Xi−1)) em ds

∣∣Fn,i−1

]
+

+
1√
∆n

At
n∑

i=1

E

[∫ ti

ti−1

(
J (i,j)(s)

)T
ν(Xi−1)em ds

∣∣Fn,i−1

]
.

We denote by ν̃m(x) the m-th column of matrix ν(x). Using Lemma 2.1 for
function ν̃m on interval [ti−1, s], we have

At
n∑

i=1

E
[
χn,ji

(
Wm
ti −Wm

ti−1

) ∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

E
[(
J (i,j)(s)

)T
(ν̃m(Xs)− ν̃m(Xi−1)) ds

∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

E
[∫ ti

ti−1

(
J (i,j)(s)

)T ∫ s

ti−1

(
∇ν̃m(Xu)µ(Xu, θ0)+

+
1

2
∇2ν̃m(Xu)

)
du ds

∣∣Fn,i−1

]
+

(5.18)

+
1

∆n

At
n∑

i=1

E

[∫ ti

ti−1

(
J (i,j)(s)

)T ∫ s

ti−1

∇ν̃m(Xu)ν(Xu) dWu ds
∣∣Fn,i−1

]
.

(5.19)
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Next, we analyze the L1-norm of (5.18). There exists a constant c8 such that

E

[∣∣∣∣∣
1√
∆n

At
n∑

i=1

E

[∫ ti

ti−1

〈
J (i,j)(s)

∣∣∣∣
∫ s

ti−1

(
∇ν̃m(Xu)µ(Xu, θ0)+

+
1

2
∇2ν̃m(Xu)

)
du
〉
ds
∣∣Fn,i−1

]∣∣∣∣∣

]
≤

≤ c8
√

∆nTE[M ],

where M := sup0≤s≤T
∥∥∫ s

0
R(j)(u, θ) dWu

∥∥
2
. Using Doob’s maximal inequal-

ity for vector martingale, we have that (5.18) converges to 0 in L1 norm, so
it also converges to 0 in probability.
Let us denoteHm(x) := ∇ν̃m(x)ν(x). Using Itô formula for function F (x, y) =
〈x | y〉, we have

1

∆n

At
n∑

i=1

E

[∫ ti

ti−1

〈∫ s

ti−1

R(j)(u, θ) dWu

∣∣∣∣
∫ s

ti−1

Hm(Xu) dWu

〉
ds
∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

E
[∫ ti

ti−1

∫ s

ti−1

〈∫ u

ti−1

Hm(Xv) dWv

∣∣∣∣R(j)(u, θ) dWu

〉
ds
∣∣Fn,i−1

]
+

+
1√
∆n

At
n∑

i=1

E
[∫ ti

ti−1

∫ s

ti−1

〈∫ u

ti−1

R(j)(v, θ) dWv

∣∣∣∣Hm(Xu) dWu

〉
ds
∣∣Fn,i−1

]
+

+
1√
∆n

At
n∑

i=1

k∑

p,r=1

E
[∫ ti

ti−1

∫ s

ti−1

(
R(j)(u, θ) ◦Hm(Xu)

)
pr
du ds

∣∣Fn,i−1

]
.

Using the well-known characterization of L1 random variables, it is easy to
prove that the integral sign and expectation can be interchanged so that the
first two summands are zero. For the third one there is a constant c9 such
that
∣∣∣∣∣

1√
∆n

At
n∑

i=1

k∑

p,r=1

E
[∫ ti

ti−1

∫ s

ti−1

(
R(j)(u, θ) ◦Hm(Xu)

)
pr
du ds

∣∣Fn,i−1

]∣∣∣∣∣ ≤

≤ c9T
√

∆n.

We conclude that expression (5.19) converges almost surely to 0, so it also
converges to zero in probability.

To prove (v), it is enough to show that for arbitrary j, 1 ≤ j,≤ d
At

n∑

i=1

E
[
χn,ji

(
Nti −Nti−1

) ∣∣Fn,i−1

]
P→ 0, ∀N ∈Mb

(
W⊥

)
.
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In a similar way as before, we have

At
n∑

i=1

E
[
χn,ji

(
Nti −Nti−1

) ∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

E

[∫ ti

ti−1

〈
J (i,j)(s, θ)

∣∣∣∣ ν(Xs) dWs

〉
·
∫ ti

ti−1

dNs
∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

k∑

p=1

E

[∫ ti

ti−1

∫ s

ti−1

〈
J (i,j)(u, θ)

∣∣∣∣ ν(Xu)ep

〉
dW p

u dNs
∣∣Fn,i−1

]
+

+
1√
∆n

At
n∑

i=1

k∑

p=1

E

[∫ ti

ti−1

∫ s

ti−1

dNu

〈
J (i,j)(s, θ)

∣∣∣∣ ν(Xs)ep

〉
dW p

s

∣∣Fn,i−1

]
+

+
1√
∆n

At
n∑

i=1

k∑

p=1

E

[〈∫ ti

ti−1

〈
J (i,j)(u, θ)

∣∣∣∣ ν(Xu)ep

〉
dW p

u ,

∫ ti

ti−1

dNu

〉
∣∣Fn,i−1

]
=

=
1√
∆n

At
n∑

i=1

k∑

p=1

E

[∫ ti

ti−1

〈
J (i,j)(u, θ)

∣∣ ν(Xu)ep

〉
d [W p, N ]u

∣∣Fn,i−1

]
=

= 0.

We use the fact that the conditional expectation of the martingale difference
is zero [28, Theorem 2.2]. In the last equality we use the orthogonality of the
process N on the components of Brownian motion.

Next, we prove (iv). Let ε > 0. Using Cauchy-Schwarz and Markov
inequality [11, Theorem 1.6.4], we have

E
∣∣∣
n∑

i=1

E
[
‖χni ‖22 · 1{‖χn

i ‖2>ε}
∣∣Fn,i−1

] ∣∣∣ ≤
n∑

i=1

E
[
‖χni ‖42

] 1
2 · P (‖χni ‖2 > ε)

1
2 ≤

≤
n∑

i=1

E
[
‖χni ‖42

] 1
2



E
[
‖χni ‖42

]

ε4




1
2

=

=
1

ε2

n∑

i=1

E
[
‖χni ‖42

]
=

≤ d

ε2

n∑

i=1

E




d∑

j=1

(χn,ji )4


 .
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To satisfy condition (iv), it is sufficient to prove that

lim
n→+∞

1

ε2

n∑

i=1

E
[(
χn,ji

)4
]

= 0.

If we denote by

H(i,j)(s) :=

∫ s

ti−1

〈
J (i,j)(u)

∣∣∣∣ ν(Xu) dWu

〉
,

there exist a constant c10 such that

1

ε2

n∑

i=1

E
[(
χn,ji

)4
]

=

=
1

∆2
nε

2

n∑

i=1

E
[(
H(i,j)(ti)

)4
]

=

=
1

∆2ε2

n∑

i=1

E

[
4

∫ ti

ti−1

(
H(i,j)(s)

)3 (
J (i,j)(s)

)T
ν(Xs) dWs

]
+

+
1

∆2
nε

2

n∑

i=1

E

[
6

∫ ti

ti−1

(
H(i,j)(s)

)2

d
〈
H(i,j)

〉
s

]
=

=
6

∆2
nε

2

n∑

i=1

k∑

p=1

E

[∫ ti

ti−1

(
H(i,j)(s)

)2 〈
J (i,j)(s) | ν(Xs)ep

〉2

ds

]
≤

≤ c10

∆2
nε

2

n∑

i=1

k∑

r=1

E

[∫ ti

ti−1

(
H(i,j)(s)

)2

·
(
J (i,j)
r (s)

)2

ds

]
.(5.20)

To analyze the expression under the integral sign, we apply Itô formula for
the function F (x, y) = x2y2. The independence of the components of Brow-
nian motion is essential for the calculation of the quadratic covariance and
variances.

(
H(i,j)

)2

·
(
J (i,j)
r

)2

=

= 2

∫ s

ti−1

H(i,j)(u)
(
J (i,j)
r (u)

)2

dH(i,j)(u)+

+ 2

∫ s

ti−1

(
H(i,j)(u)

)2

J (i,j)
r (u) dJ (i,j)

r (u)+

+
1

2

∫ s

ti−1

2
(
J (i,j)
r (u)

)2

d
〈
H(i,j), H(i,j)

〉
u

+

+
1

2
· 2
∫ s

ti−1

4H(i,j)(u)J (i,j)
r (u) d

〈
H(i,j), J (i,j)

r

〉
u

+



AN AMLE OF DRIFT PARAMETERS IN A MULTIDIMENSIONAL DIFF. MODEL 25

+
1

2

∫ s

ti−1

2
(
H(i,j)

)2

d
〈
J (i,j)
r , J (i,j)

r

〉
u

=

= 2

∫ s

ti−1

H(i,j)(u)
(
J (i,j)
r (u)

)2 (
J (i,j)(u)

)T
ν(Xu) dWu+

+ 2

∫ s

ti−1

(
H(i,j)(u)

)2

J (i,j)
r (u)eTr R

(i,j)(u, θ) dWu+

+

∫ s

ti−1

(
J (i,j)
r (u)

)2 ∥∥∥ν(Xu)TJ (i,j)(u)
∥∥∥

2

2
du+

+ 4

∫ s

ti−1

H(i,j)(u)J (i,j)
r (u)

〈(
J (i,j)(u)

)T
ν(Xu)

∣∣∣∣ eTr R(j)(u, θ)

〉
du+

+

∫ s

ti−1

(
H(i,j)(u)

)2 ∥∥∥eTr R(j)(u, θ)
∥∥∥

2

2
du(5.21)

Considering equality (5.21), we conclude that

1

ε2

n∑

i=1

E
[(
χn,ji

)4
]
≤

≤ 12c10

∆2
nε

2

n∑

i=1

k∑

r=1

E

[∫ ti

ti−1

∫ s

ti−1

(
J (i,j)
r (u)

)2 ∥∥∥ν(Xu)TJ (i,j)(u)
∥∥∥

2

2
du ds

]
+

+
48c10

∆2
nε

2

n∑

i=1

k∑

r=1

E
[∫ ti

ti−1

∫ s

ti−1

H(i,j)(u)J (i,j)
r (u)·

·
〈(

J (i,j)(u)
)T

ν(Xu)

∣∣∣∣ eTr R(j)(u, θ)

〉
du ds

]
+

+
12c10

∆2
nε

2

n∑

i=1

k∑

r=1

E

[∫ ti

ti−1

∫ s

ti−1

(
H(i,j)(u)

)2 ∥∥∥eTr R(j)(u, θ)
∥∥∥

2

2
du ds

]
.

By a similar reasoning as before (using norm consistency, Itô formula, Lemma
2.3 (i) and (ii)), there exist constants c12 and c14 such that

12c10

∆2
nε

2

n∑

i=1

k∑

r=1

E

[∫ ti

ti−1

∫ s

ti−1

(
J (i,j)
r (u)

)2 ∥∥∥ν(Xu)TJ (i,j)(u)
∥∥∥

2

2
du ds

]
≤

≤ 12c11

∆2
nε

2

n∑

i=1

k∑

p,r=1

∫ ti

ti−1

∫ s

ti−1

∫ u

ti−1

[
E
[(
J (i,j)
p (v)

)2
]

+ 4E
[
J (i,j)
p (v)J (i,j)

r (v)
]

+

+ E
[(
J (i,j)
r (v)

)2
]]
dv du ds ≤ c12∆nT,
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and

12c10

∆2
nε

2

n∑

i=1

k∑

r=1

∫ ti

ti−1

∫ s

ti−1

E
[(
H(i,j)(u)

)2 ∥∥∥eTr R(j)(u, θ)
∥∥∥

2

2

]
du ds ≤

≤ c13

∆2
nε

2

n∑

i=1

∫ ti

ti−1

∫ s

ti−1

E
[(
H(i,j)(u)

)2
]
du ds ≤ c14∆nT.

Using the previous two bounds, there is a constant c16 such that

∣∣∣48c10

∆2
nε

2

n∑

i=1

k∑

r=1

E
[∫ ti

ti−1

∫ s

ti−1

H(i,j)(u)J (i,j)
r (u)·

·
〈(

J (i,j)(u)
)T

ν(Xu)

∣∣∣∣ eTr R(j)(u, θ)

〉
du ds

]∣∣∣ ≤

≤ c15

∆2
nε

2

n∑

i=1

k∑

r=1

∫ ti

ti−1

∫ s

ti−1

E
[ (
J (i,j)
r (u)

)2
∥∥∥∥
(
J (i,j)(u)

)T
ν(Xu)

∥∥∥∥
2

2

] 1
2 ·

· E
[(
H(i,j)

)2 ∥∥∥eTr R(j)(u, θ)
∥∥∥

2

2

] 1
2

du ds ≤
≤ c16∆nT.

Hence, expression in (5.20) is bounded above by c17∆nT so it converges to
zero when n→ +∞.

Lastly, we show that assumption (ii) is fulfilled. For arbitrary and fixed
j, l such that 1 ≤ j ≤ l ≤ d we consider

At
n∑

i=1

(
E
[
χn,ji χn,li

∣∣Fn,i−1

]
− E

[
χn,ji

∣∣Fn,i−1

]
· E
[
χn,li

∣∣Fn,i−1

])
=

=
1

∆n

At
n∑

i=1

k∑

p,r=1

E
[∫ ti

ti−1

〈
J (i,j)(s) | ν(Xs)ep

〉
dW p

s ·

·
∫ ti

ti−1

〈
J (i,l)(s) | ν(Xs)er

〉
dW r

s

∣∣Fn,i−1

]
.

Using the product formula and independence of the components of Brownian
motion, we have

At
n∑

i=1

(
E
[
χn,ji χn,li

∣∣Fn,i−1

]
− E

[
χn,ji

∣∣Fn,i−1

]
· E
[
χn,li

∣∣Fn,i−1

])
=

=
1

∆n

At
n∑

i=1

k∑

p=1

E

[∫ ti

ti−1

〈
J (i,j)(s) | ν(Xs)ep

〉
·
〈
J (i,l)(s) | ν(Xs)ep

〉
ds
∣∣Fn,i−1

]
.

(5.22)
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Using simple relations of linear algebra it results that (5.22) is equal to

1

∆n

At
n∑

i=1

k∑

p,r=1

E

[∫ ti

ti−1

Spr(Xs)J
(i,j)
r (s)J (i,l)

p (s) ds
∣∣Fn,i−1

]
.

Again, the main tool is Itô formula and independence of the components of
Brownian motion.

1

∆n

At
n∑

i=1

k∑

p,r=1

E

[∫ ti

ti−1

Spr(Xs)J
(i,j)
r (s)J (i,l)

p (s) ds
∣∣Fn,i−1

]
=

=
1

∆n

At
n∑

i=1

k∑

p,r=1

E

[∫ ti

ti−1

Spr(Xs)

∫ s

ti−1

J (i,j)
r (u)eTpR

(l)(u, θ) dWu ds
∣∣Fn,i−1

]
+

(5.23)

+
1

∆n

At
n∑

i=1

k∑

p,r=1

E

[∫ ti

ti−1

Spr(Xs)

∫ s

ti−1

J (i,l)
p (u)eTr R

(j)(u, θ) dWu ds
∣∣Fn,i−1

]
+

(5.24)

+
1

∆n

At
n∑

i=1

k∑

p,r=1

E

[∫ ti

ti−1

Spr(Xs)

∫ s

ti−1

〈
eTr R

(j)(u, θ)|eTpR(l)(u, θ)
〉
duds

∣∣Fn,i−1

]
(5.25)

Since the matrix S is symmetric, it is enough to consider one of the terms

(5.23) and (5.24). Let h̃
(i,j,l)
r,p (u, θ) := J

(i,j)
r (u)eTpR

(l)(u, θ). Using Jensen’s
inequality for conditional expectation, Cauchy-Schwarz inequality and some
simple inequalities, and Lemma 2.2, it can be shown that there is a constant
c18 such that

E





 1

∆n

At
n∑

i=1

k∑

p,r=1

E

[∫ ti

ti−1

Spr(Xs)

∫ s

ti−1

h̃(i,j,l)
r,p (u, θ) dWu ds

∣∣Fn,i−1

]


2

 =

=
1

∆2
n

E



At

n∑

i=1

(
E

[
k∑

p,r=1

∫ ti

ti−1

Spr(Xs)

∫ s

ti−1

h̃(i,j,l)
r,p (u, θ) dWu ds

∣∣Fn,i−1

])2

+

+
1

∆2
n

E
[ At

n∑

i,m=1,i6=m

(
k∑

p,r=1

E

[∫ ti

ti−1

Spr(Xs)

∫ s

ti−1

h̃(i,j,l)
r,p (u, θ) dWuds

∣∣Fn,i−1

])
·

·
(

k∑

p,r=1

E

[∫ tm

tm−1

Spr(Xs)

∫ s

tm−1

h̃(m,j,l)
r,p (u, θ) dWu ds

∣∣Fn,m−1

])]
≤

≤ c18(T∆n + T 2∆n),
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so (5.23) converges to zero in L2. Hence, it converges to zero in probability,
too.
To analyze (5.25) we introduce the following notation

D
(i,j,l)
t :=

k∑

p,r=1

∫ t

ti−1

Spr(Xs)

∫ s

ti−1

〈
eTr R

(j)(u, θ) | eTpR(l)(u, θ)
〉
du ds.

Then, we have that (5.25) equals

1

∆n

At
n∑

i=1

E
[
D

(i,j,l)
ti

∣∣Fn,i−1

]
=

1

∆n

At
n∑

i=1

(
E
[
D

(i,j,l)
ti

∣∣Fn,i−1

]
−D(i,j,l)

ti

)
(5.26)

+
1

∆n

At
n∑

i=1

D
(i,j,l)
ti .(5.27)

It can be shown that (5.26) converges to 0 in L2 because there exists a constant
c19 such that

E





 1

∆n

At
n∑

i=1

(
E
[
D

(i,j,l)
ti |Fn,i−1

]
−D(i,j,l)

ti

)



2

 ≤ c19T∆n.

There is only left to show that (5.27) converges in probability to

Cjl(t) =
1

2

k∑

p,r=1

∫ t

0

Spr(Xs)
〈
eTr R

(j)(s, θ) | eTpR(l)(s, θ)
〉
ds.

It is sufficient to show that for arbitrary p, r = 1, 2, . . . , k the following con-
vergence holds

1

∆n

At
n∑

i=1

∫ ti

ti−1

Spr(Xs)

∫ s

ti−1

〈
eTr R

(j)(u, θ) | eTpR(l)(u, θ)
〉
du ds

P→

1

2

∫ t

0

Spr(Xs)
〈
eTr R

(j)(s, θ) | eTpR(l)(s, θ)
〉
ds,

when n→ +∞.
Let us denote m(u, s)(ω) := Spr(Xs(ω))

〈
eTr R

(j)(u, θ) | eTpR(l)(u, θ)
〉
. For fixed

ω ∈ Ω, using assumptions (A3), (A4) and compactness of E functionm(u, s)(ω)
is bounded and continuous on [0, T ]× [0, T ]. Hence, there exist u∗i (ω), s∗i (ω) ∈
[ti−1, ti] such that u∗i (ω) ≤ s∗i (ω) and

∫ ti

ti−1

∫ s

ti−1

m(u, s) du ds =
∆2
n

2
m(u∗i , s

∗
i ), i = 1, 2, . . . , n.
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We have

1

∆n

At
n∑

i=1

∫ ti

ti−1

∫ s

ti−1

m(u, s) du ds− 1

2

∫ t

0

m(s, s) ds =

=
∆n

2

At
n∑

i=1

m(u∗i , u
∗
i )−

1

2

∫ t

0

m(s, s) ds+(5.28)

+
∆n

2

At
n∑

i=1

(m(u∗i , s
∗
i )−m(u∗i , u

∗
i )) .

Since function given by (u, s) 7→ m(u, s) is continuous, there exists t∗ ∈[
tAt

n
, t
]

such that 1
2

∫ t
tAt

n

m(s, s) ds = 1
2

(
t− tAt

n

)
m(t∗, t∗). Hence,

∆n

2

At
n∑

i=1

m(u∗i , u
∗
i )−

1

2

∫ t

0

m(s, s) ds =

=
∆n

2

At
n∑

i=1

m(u∗i , u
∗
i ) +

1

2

(
t− tAt

n

)
m(t∗, t∗)− 1

2

∫ t

0

m(s, s) ds−

− 1

2

∫ t

tAt
n

m(s, s) ds.(5.29)

The first two terms of (5.29) forms Riemann integral sum so they converge

almost surely to 1
2

∫ t
0
m(s, s) ds. Boundedness of function m assures that

1
2

∫ t
At

n
m(s, s) ds converges almost surely to zero so (5.28) converges almost

surely to zero.
Let ε > 0. The function given by t 7→ Spr(Xt) is continuous on [0, T ].
Moreover, it is uniformly continuous so there exists δ > 0 such that for all
s, t ∈ [0, T ], |s− t| < δ implies that |Spr(Xs)− Spr(Xt)| < ε. Since ∆n tends
to 0, there exists n0 ∈ N such that for every n ≥ n0, ∆n < δ holds.
Therefore, for n ≥ n0 we have that

∣∣∣∣∣
∆n

2

At
n∑

i=1

(m(u∗i , s
∗
i )−m(u∗i , u

∗
i ))

∣∣∣∣∣ ≤ ε
T

2
.

So (5.27) converges almost surely to Cjl(t) so it converges in probability.
Finally, we proved that conditions of Theorem 2.5 are satisfied, hence

the conclusion of theorem holds. We denote by πT the projection function
πT : D([0, T ],Rd) → Rd, defined by πT ((Xt, t ∈ [0, T ])) := XT . Then by [6,
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Theorem 12.5] it is a continuous function. Since we have the following relation

1√
∆n

(D`(θ)−D`n(θ)) = Vn(θ) + πT





At

n∑

i=1

χni




1≤t≤T


 ,

the statement of Theorem 4.3 holds in the case of compact set E.
In general, when E ⊆ Rk is open, there exists a set of open and bounded

sets (EN )N∈N such that for every N ∈ N, Cl(EN ) ⊂ EN+1 and E = ∪+∞
N=1EN .

Without loss of generality, let x0 ∈ E1. There exists a sequence of C∞(E)-
functions (φN )N∈N such that φN (x) ∈ [0, 1] for all x ∈ E, φN (x) = 1 on

Cl(EN ) and φN (x) = 0, on Cl(EN+1)C [7]. Let us define µ(N)(x, θ) :=
φN (x)µ(x, θ). Let ν(N) be continuous functions on E such that ν(N)(x) :=
ν(x) on Cl(EN ) and ν(N)(x) = K on E\Cl(EN+1) where K is a square root
of some constant positive definite k×k matrix. Moreover, for N ∈ N we define
TN := inf{t ≥ 0 : Xt ∈ ECN}. Since X is a continuous process, (TN )N∈N is an
increasing sequence of stopping times and TN ↗ +∞ a.s.
Let N ∈ N be fixed. Let process X(N) = (XN

t ; 0 ≤ t ≤ T ) be a diffusion pro-
cess given as a strong solution of the following system of stochastic differential
equations

(5.30) X
(N)
t = x0+

∫ t

0

µ(N)(X(N)
s , θ0) ds+

∫ t

0

ν(N)(X(N)
s ) dWs, 0 ≤ t ≤ T.

Under assumptions (A2) and (A4) functions µ(N)(·, θ0) and ν(N)(·) are bounded
on E. They are also Lipschitz continuous. Using [29, Corollary 5.1.2] diffusion

process (5.30) exists and it is unique a.s. Let 1√
∆n

(
D`(N)(θ)−D`(N)

n (θ)
)

be

the term from the statement of the theorem for diffusion (5.30). Then, first

part of the proof implies that 1√
∆n

(
D`(N)(θ)−D`(N)

n (θ)
)

st⇒ Y (N)(θ), n →
+∞ where Y (N)(θ) ∼ MN(0,Σ(N)(θ)), and Σ(N) is a random matrix Σ(θ)
that is applied on process X(N) and functions µ(N) and ν(N). Let us denote

Vn(θ) := 1√
∆n

(D`(θ)−D`n(θ)) and V
(N)
n (θ) := 1√

∆n

(
D`(N)(θ)−D`(N)

n (θ)
)

.

Let f : Rd → R be a bounded and continuous function, and let U be arbi-
trary bounded FT -measurable random variable. For almost all ω ∈ Ω and

t ∈
[
0, T (N)

]
, processes Xt(ω) and X

(N)
t (ω) are equal so we have:

∣∣∣E [f(Vn(θ))U ]− Ẽ [f(Y (θ))U ]
∣∣∣ ≤

∣∣∣E
[
f(V (N)

n (θ))U1{T (N)>T}
]
− Ẽ

[
f(Y (N)(θ))U1{T (N)>T}

] ∣∣∣+
∣∣∣E
[
f(Vn(θ))U1{T (N)≤T}

]
− Ẽ

[
f(Y (θ))U1{T (N)≤T}

] ∣∣∣.(5.31)
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Using boundedness (5.31) is bounded by B P
(
T (N) ≤ T

)
where B is some

positive constant. Using first part of the proof we have that

lim
n

∣∣∣E [f(Vn(θ))U ]− Ẽ [f(Y (θ))U ]
∣∣∣ ≤ B P

(
T (N) ≤ T

)
.

Letting N → +∞ we have

lim
n

∣∣∣E [f(Vn(θ))U ]− Ẽ [f(Y (θ))U ]
∣∣∣ = 0

that implies the statement of the theorem.

Proof of Theorem 4.4. The idea of the proof is similar to the case
when k = 1 (see [26, Theorem 5.4]). We denote by Zn(θ) ≡ Zn(ω, θ) :=

1√
∆n

(D`(θ)−D`n(θ)). Since we assumed that certain functions are smooth

enough, using [16, Lemma 4.1], we have that function (ω, θ) 7→ Zn(ω, θ) is
FT ⊗B(Θ), for all n ∈ N. Since MLE is a FT -measurable random vector [16],

functions ω 7→ Zn(θ̂) ≡ Zn(ω, θ̂(ω)) are FT -measurable.
Let v ∈ Rd be an arbitrary fixed vector and let U be an arbitrary and

almost surely bounded FT -measurable random variable. Let B > 0 be a
constant such that |U | ≤ B a.s. Using [25, Lemma 4.3], it is sufficient to
prove that

lim
n→+∞

∣∣∣E
[
ei〈v |Zn(θ̂)〉U

]
− E

[
e−

1
2

∑d
p,r=1 vpvrΣpr(θ̂)U

] ∣∣∣ = 0.

For every n ∈ N we define functions: hn,1(ω, θ) := cos (〈v |Zn(ω, θ)〉),
hn,2(ω, θ) := sin (〈v |Zn(ω, θ)〉) and hn,3(ω, θ) := e−

1
2

∑d
p,r=1 vpvrΣpr(ω,θ). For

m = 1, . . . , d we denote by ∂mhn,l m-th partial derivative of hn,l with respect
to θm for l = 1, 2, 3. Under assumption (A3), for every ω ∈ Ω, functions
θ 7→ hn,1(θ) ≡ hn,1(ω, θ), θ 7→ hn,2(θ) ≡ hn,2(ω, θ) and θ 7→ hn,3 ≡ hn,3(ω, θ)
are of class C1(Θ). Using mean value theorem, we obtain

(5.32) |hn,l(θ1)− hn,l(θ2)| ≤
(

d∑

m=1

sup
θ∈Θ
|∂mhn,l(θ)|

)
‖θ2 − θ1‖2 .

It is easy to see that in order to bound ∂mhn,l, we have to bound ∂mZn,j (for
hn,1 and hn,2) and ∂mΣbc (for hn,3). After a tedious calculation, we have

∂mZn,j(θ) =
1√
∆n

n∑

i=1

∫ ti

ti−1

〈
S−1(Xs)∂m∂jµ(Xs, θ)−

− S−1(Xi−1)∂m∂jµ(Xi−1, θ)
∣∣µ(Xs, θ0)

〉
ds−(5.33)

− 1√
∆n

n∑

i=1

∫ ti

ti−1

(〈
∂jµ(Xs, θ)

∣∣S−1(Xs)∂mµ(Xs, θ)
〉
−

−
〈
∂jµ(Xi−1, θ)

∣∣S−1(Xi−1)∂mµ(Xi−1, θ)
〉)
ds−(5.34)
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− 1√
∆n

n∑

i=1

∫ ti

ti−1

(〈
∂m∂jµ(Xs, θ)

∣∣S−1(Xs)µ(Xs, θ)
〉
−

−
〈
∂m∂jµ(Xi−1, θ)

∣∣S−1(Xi−1)µ(Xi−1, θ)
〉)
ds+(5.35)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

〈
S−1(Xs)∂m∂jµ(Xs, θ)−

− S−1(Xi−1)∂m∂jµ(Xs, θ)
∣∣ ν(Xs) dWs

〉
.(5.36)

Under assumption (A3), there exist ∂m∇gj(x) for every m, j = 1, . . . , d so
there exists

∂mΣbc(θ) =
1

2

∫ T

0

k∑

p,r=1

Spr(Xs)∂m
(〈
eTr ∇gb(Xs)ν(Xs) |

eTp∇gc(Xs)ν(Xs)
〉)
ds.(5.37)

Assume for the moment that E is a compact set, so all partial derivatives that
appear in lines (5.33)-(5.37) are bounded functions on E.
Using (5.13) in Theorem 5.6, there exists a constant K1,j,m > 0 such that

E
[
sup
θ∈Θ

∣∣ 1√
∆n

n∑

i=1

∫ ti

ti−1

〈
S−1(Xs)∂m∂jµ(Xs, θ)−

− S−1(Xi−1)∂m∂jµ(Xi−1, θ)
∣∣µ(Xs, θ0)

〉
ds
∣∣
]
≤ K1,j,m.

Then, let us denote f̃(x, θ) :=
〈
∂jµ(x, θ)

∣∣S−1(x)∂mµ(x, θ)
〉
.

We construct a vector function f = [f̃ , · · · , f̃ ]T and a vector function a(x) ≡
[ 1
k , · · · , 1

k ]T . Using (5.13) in Theorem 5.6, there exists a constant K2,j,m > 0
such that

E
[
sup
θ∈Θ

∣∣ 1√
∆n

n∑

i=1

∫ ti

ti−1

(〈
∂jµ(Xs, θ)

∣∣S−1(Xs)∂mµ(Xs, θ)
〉
−

−
〈
∂jµ(Xi−1, θ)

∣∣S−1(Xi−1)∂mµ(Xi−1, θ)
〉)
ds
∣∣
]
≤ K2,j,m.

In the same manner, we conclude that there exists a constant K3,j,m > 0 such
that

E
[
sup
θ∈Θ

∣∣ 1√
∆n

n∑

i=1

∫ ti

ti−1

(〈
∂m∂jµ(Xs, θ)

∣∣S−1(Xs)µ(Xs, θ)
〉
−

−
〈
∂m∂jµ(Xi−1, θ)

∣∣S−1(Xi−1)µ(Xi−1, θ)
〉)
ds
∣∣ ≤ K3,j,m.

Using (5.14) in Theorem 5.6, there exists a constant K4,j,m > 0 such that

E
[
sup
θ∈Θ

∣∣ 1√
∆n

n∑

i=1

∫ ti

ti−1

〈
S−1(Xs)∂m∂jµ(Xs, θ)−
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− S−1(Xi−1)∂m∂jµ(Xs, θ)
∣∣ ν(Xs) dWs

〉∣∣
]
≤ K4,j,m.

Hence, for every j,m = 1, 2, . . . , d we have that

E
[
sup
θ∈Θ

∂mZn,j(θ)

]
≤ K1,j,m +K2,j,m +K3,j,m =: Kj,m.

Moreover, there exists a constant Lm,b,c > 0 such that

E
[
sup
θ∈Θ

∂mΣbc(θ)

]
≤ Lm,b,c.

For l = 1, 2, 3 let us denote Hn,l :=
∑d
m=1 supθ∈Θ |∂mhn,l(θ)| and Hn :=

Hn,1 +Hn,2 +Hn,3. Let us also denote Fn := hn,1 + ihn,2−hn,3. Using (5.32),
we can easily see that for every n ∈ N we have

|Fn(θ1)− Fn(θ2)| ≤ |hn,1(θ1)− hn,1(θ2)|+ |hn,2(θ1)− hn,2(θ2)|+
+ |hn,3(θ1)− hn,3(θ2)| ≤
≤ (Hn,1 +Hn,2 +Hn,3) ‖θ1 − θ2‖2 =

= Hn ‖θ1 − θ2‖2 ,
where

E [Hn] ≤ 2 ‖v‖2
d∑

m=1

d∑

j=1

Kj,m +
1

2
‖v‖22

d∑

m=1

d∑

b,c=1

Lm,b,c := K

and constant K does not depend on n.
Using previously introduced notation, it is sufficient to prove that

lim
n→+∞

∣∣∣E
[
Fn(θ̂)U

] ∣∣∣ = 0.

Let ε > 0 be arbitrary and fixed. We define δ := ε
2KB . Since Cl(Θ) is compact

set, there exists its finite cover, i.e. there exist finitely many balls K(θl, δ),
l = 1, . . . , N , such that θl ∈ Θ and Θ ⊆ Cl(Θ) ⊆ ∪Nl=1K(θl, δ). We define a
finite partition {K1, . . . ,KN} of set Θ in the following way:

K1 := K(θ1, δ) ∩Θ,

K2 := K(θ2, δ) ∩Θ ∩KC
1 ,

...

KN := K(θN , δ) ∩Θ ∩KC
1 · · · ∩KC

N−1.

∣∣∣E
[
Fn(θ̂)U

] ∣∣∣ ≤
∣∣∣
N∑

l=1

E
[
(Fn(θ̂)− Fn(θl))U1{θ̂∈Kl}

] ∣∣∣+(5.38)

+
∣∣∣
N∑

l=1

E
[
Fn(θl)U1{θ̂∈Kl}

] ∣∣∣
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On the event {θ̂ ∈ Kl} holds
∥∥∥θ̂ − θl

∥∥∥
2
< δ so for the first summand in (5.38)

we have that

∣∣∣
N∑

l=1

E
[
(Fn(θ̂)− Fn(θl))U1{θ̂∈Kl}

] ∣∣∣ ≤
N∑

l=1

E
[
|Fn(θ̂)− Fn(θl)||U |1{θ̂∈Kl}

]
≤

≤ B
N∑

l=1

E
[
Hn

∥∥∥θ̂ − θl
∥∥∥

2
1{θ̂∈Kl}

]
<

< Bδ
N∑

l=1

E
[
Hn1{θ̂∈Kl}

]
= BKδ =

ε

2
.

Since θ̂ is a FT -measurable random vector, U1{θ̂∈Kl} is bounded a FT -

measurable random variable for every l = 1, . . . , N . For the second summand
in (5.38) Theorem 4.3 and [25, Lemma 4.3] imply

lim
n→+∞

E
[
Fn(θl)U1{θ̂∈Kl}

]
= 0.

Moreover,

lim
n→+∞

∣∣∣
N∑

l=1

E
[
Fn(θl)U1{θ̂∈Kl}

] ∣∣∣ = 0

holds.
Finally, now we may choose n0 = n0(ε) ∈ N such that for all n ≥ n0

∣∣∣
N∑

l=1

E
[
Fn(θl)U1{θ̂∈Kl}

] ∣∣∣ < ε

2
.

For all n ≥ n0 it follows that

∣∣∣E
[
Fn(θ̂)U

] ∣∣∣ ≤ ε

2
+
ε

2
= ε.

The statement of the theorem holds when E is compact. Using the same
construction with stopping times (TN )N∈N as in Theorem 4.3, we achieve the
general statement.
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Proof of Lemma 4.5. Without loss of generality, we prove the asser-
tion for r = 0. The difference between `n and ` equals

`n(θ)− `(θ) =
n∑

i=1

∫ ti

ti−1

〈
S−1(Xi−1)µ(Xi−1, θ)−

− S−1(Xs)µ(Xs, θ)
∣∣ dXs

〉
−(5.39)

− 1

2

n∑

i=1

∫ ti

ti−1

(〈
µ(Xi−1, θ) |S−1(Xi−1)µ(Xi−1, θ)

〉
−

−
〈
µ(Xs, θ) |S−1(Xs)µ(Xs, θ)

〉)
ds.(5.40)

Let us assume for the moment that E is compact set. Relations (5.13) and
(5.14) in Theorem 5.6 and (1.1) imply that for (5.39) there exists a constant
C > 0 such that∥∥∥∥∥sup

θ∈Θ

∣∣∣
n∑

i=1

∫ ti+1

ti

〈
S−1(Xi−1)µ(Xi−1, θ)− S−1(Xs)µ(Xs, θ)

∣∣ dXs

〉 ∣∣∣
∥∥∥∥∥
L2

is bounded above by C
√

∆n. Constructing a vector function in the same way
as in the proof of Theorem 4.4, we may use Theorem 5.6 again for (5.40).
Finally, there exists a constant CX (which depends on process X) such that

∥∥∥∥sup
θ∈Θ
|`n(θ)− `(θ)|

∥∥∥∥
L2

≤ CX
√

∆n.

In the case when E is an open set or functions that appear in calculations
are not bounded, the same construction from proof of Theorem 4.3 has been
imposed. For an open set E there exists a sequence of open and bounded
sets (EN )N∈N such that for all N ∈ N, Cl(EN ) ⊂ EN+1, E = ∪+∞

N=1EN , and
x0 ∈ E1. Also, there exists a sequence of C∞-functions (φN )N∈N such that
φN (x) ∈ [0, 1] for all x ∈ E, and φN (x) = 1 on Cl(EN ) and φN (x) = 0 on
Cl(EN+1)C .
As before, we define functions µ(N)(x, θ) := φN (x)µ(x, θ) and ν(N)(x) := ν(x)
on Cl(EN ) and ν(N)(x) = K on E\Cl(EN+1) where K is a square root of
some constant positive definite k × k matrix. Also, we define a sequence
of stopping times (TN )N∈N and observe the diffusion process X(N) that is
connected to TN .
By the same reasoning as in the proof of Theorem 4.3, the diffusion process
(5.30) exists and it is unique a.s. Let us denote the diffusion matrix of X(N)

by S(N)(x) := ν(N)(x)ν(N)(x)T . Under assumptions (A2-4) function (x, θ) 7→
(S(N))−1(x)µ(N)(x, θ) satisfies the assumptions of Theorem 5.6. Using first
part of this proof, it follows that

∥∥∥∥sup
θ∈Θ
|`(N)
n (θ)− `(N)(θ)|

∥∥∥∥
L2

≤ CX(N)

√
∆n,
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where constant CX(N) depends on process
(
X

(N)
t

)
0≤t≤T

.

Let P
(N)
x0 be a distribution of solution (5.30), and Px0

a distribution of solution

(1.1). It follows that P
(N)
x0 (·) = Px0(·) on σ-algebra σ (Xs∧TN

: s ≥ 0) [29,
Corollary 10.1.2]. Hence,

P
(

sup
θ∈Θ
|`n(θ)− `(θ)| > A

√
∆n

)
≤

≤ P
(
{sup
θ∈Θ
|`n(θ)− `(θ)| > A

√
∆n, TN ≤ T}

)
+

+ P
(

sup
θ∈Θ
|`(N)
n (θ)− `(N)(θ)| > A

√
∆n

)
≤

≤ P (TN ≤ T ) +
1

A
√

∆n

E
[
| sup
θ∈Θ
|`(N)
n (θ)− `(N)(θ)|

]
≤

≤ P (TN ≤ T ) +
1

A
√

∆n

∥∥∥∥sup
θ∈Θ
|`(N)
n (θ)− `(N)(θ)|

∥∥∥∥
L2

≤

= P (TN ≤ T ) +
1

A
CX(N) .

Let first n→ +∞, then A→ +∞ and finally N → +∞. We conclude that

lim
A→+∞

lim
n→+∞

P
(

sup
θ∈Θ

|`n(θ)− `(θ)|√
∆n

> A

)
= 0.

Lemma 5.7. Let Θ be a convex and relatively compact set. Assume (A1-
6). Then

∫ 1

0

D2`n(θ̂ + (θn − θ̂)z) dz ·
1√
∆n

(
θn − θ̂

)
st⇒ Y (θ̂),

where Y (θ̂) ∼MN(0,Σ(θ̂)).

Lemma 5.8. Let Θ be a convex and relatively compact set. Assume (A1-
6). Then

sup
z∈[0,1]

∥∥∥D2`(θ̂)−D2`(θ̂ + z(θn − θ̂))
∥∥∥
F

P→ 0.

Lemma 5.9. Let Θ be a convex and relatively compact set. Assume (A1-
6). Then

D2`(θ̂)
1√
∆n

(
θn − θ̂

)
st⇒MN(0,Σ(θ̂)).

The last three lemmas are the same as in the case of a one-dimensional diffu-
sion [26] and so are their proofs.
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Proof of Theorem 4.7. Considering Theorem 4.3, Theorem 4.4 and
Theorem 4.6 and using the equality (4.3), the conclusion of this theorem

follows easily from the last three lemmas. Since D2`(θ̂) is a negatively definite

matrix (A6), it is a regular matrix, so its inverse exists.
(
D2`(θ̂)

)−1

is also a

symmetric matrix. Finally, the desired result follows from Lemma 5.9.

6. Example and simulations

The stochastic model that we used for simulations is the Heston model
analyzed in [4]. The model is used for the analysis of financial data and is
given by

dYt = (a− bYt) dt+ σ1

√
Yt dW

1
t(6.41)

dXt = (α− βYt) dt+ σ2

√
Yt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
,

where a > 0, b, α, β ∈ R, σ1 > 0, σ2 > 0, ρ ∈ 〈−1, 1〉 and
(
W 1
t ,W

2
t

)
t≥0

is

a two-dimensional standard Wiener process. Although this model does not
satisfy the assumption of uniform ellipticity, it is shown in [4, Proposition 2.1]
that there exists a pathwise unique strong solution of (6.41) for t ≥ 0, and
that the log-likelihood function can be written using results from [24, Section
7, p. 296], as was done in Section 3 of [4]. For simulation purposes, a version

of Theorem 4.7 is used in which Σ(θ̂) and D2`(θ̂) are replaced by Σn(θn) and
D2`n(θn), respectively. Matrix Σn(θn) whose elements are given by

Σn(θ)jl =
∆n

2

n∑

i=1

k∑

p,r=1

Spr(Xi−1)
〈
eTr ∇gj(Xi−1)ν(Xi−1)

∣∣

eTp∇gl(Xi−1)ν(Xi−1)
〉

can be understood as the discretized version of matrix Σ(θ). Since the drift
function in (6.41) is linear in θ, matrices Σ(θ) and Σn(θ) do not depend on θ.
The proof of such a version of Theorem 4.7 is similar to the proofs of Lemma
5.9 and 5.11 in [26].

MLE θ̂ of the process in (6.41) is explicitly given by

(6.42)




â

b̂
α̂

β̂


 =

1
∫ T

0
Ys ds

∫ T
0

ds
Ys
− T 2




∫ T
0
Ys ds

∫ T
0

dYs

Ys
− T (YT − y0)

T
∫ T

0
dYs

Ys
− (YT − y0)

∫ T
0

ds
Ys∫ T

0
Ys ds

∫ T
0

dXs

Ys
− T (XT − x0)

T
∫ T

0
dXs

Ys
− (XT − x0)

∫ T
0

ds
Ys




if
∫ T

0
Ys ds

∫ T
0
ds/Ys > T 2. This condition is satisfied if the parameters of the

model are such that a ∈
[
σ2

1/2, +∞
〉
, b ∈ R, σ1 > 0 and y0 > 0. Moreover,

MLE in (6.42) is unique when α, β and x0 are real numbers, σ2 > 0 and
ρ ∈ 〈−1, 1〉[4].
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We define the vector function µ(x, y, a, b, α, β) and the matrix function ν(x, y)
as

µ(x, y, a, b, α, β) =

[
a− by
α− βy

]
, ν(x, y) =

[
σ1
√
y 0

σ2ρ
√
y σ2

√
(1− ρ2)y

]
.

As explained in Section 3, we simulate M realizations of discrete random
sample (Yti , Xti)i, for i = 1, 2, . . . , N and N = 2l, with parameters a = 2,
b = −0.8, α = 0.02, β = 2, σ1 = 0.7, σ2 = 0.6, ρ = −0.8, x0 = ln 100 and
y0 = 0.5. The time interval is [0, T ] for T = 1 and the subdivision of points
is equidistant, ti = T

N i for i = 0, . . . , N .
Because of the linearity of the function µ in the parameters and the second
summand in (3.2) the discrete log-likelihood is a quadratic function in a, b, α
and β, thus it has a maximum. Using the abbreviations Xti = Xi and Yti =
Yi, the AMLE for the vector of drift parameters θn is given by

(6.43)




an
bn
αn
βn


 = F ·




∆n

∑n
i=1 Yi−1

∑n
i=1

Yi−Yi−1

Yi−1
− T (Yn − y0)

T
∑n
i=1

Yi−Yi−1

Yi−1
−∆n(Yn − y0)

∑n
i=1

1
Yi−1

∆n

∑n
i=1 Yi−1

∑n
i=1

Xi−Xi−1

Yi−1
− T (Xn − x0)

T
∑n
i=1

Xi−Xi−1

Yi−1
−∆n(Xn − x0)

∑n
i=1

1
Yi−1




where F =
(

∆2
n

∑n
i=1 Yi−1

∑n
i=1

1
Yi−1

− T 2
)−1

. After long and tedious cal-

culation, we obtain the matrices Σn(θn) and D2ln(θn). The formulas are

Σn(θn) =
∆n

2

n∑

i=1

1

Y 2
i−1

·




1
1−ρ2 0 −σ1ρ

σ2(1−ρ2) 0

0 0 0 0
−σ1ρ

σ2(1−ρ2) 0
σ2
1

σ2
2(1−ρ2)

0

0 0 0 0


 ,

D2ln(θn) = G ·
[

σ2
2 −σ1σ2ρ

−σ1σ2ρ σ2
1

]
⊗
[−∆n

∑n
i=1

1
Yi−1

T

T −∆n

∑n
i=1 Yi−1

]
,

where G = 1/(σ2
1σ

2
2(1 − ρ2)) and ⊗ denotes the Kronecker product of two

matrices [12].
Since MLE can not be calculated using (6.42), we estimate it with the

formulas in (6.43). Then we compute AMLE also with (6.43), but with
fewer points than for MLE. More precisely, we take a subsample of length
n = 2k, k < l, and ∆n = T

n . Then we determine the percentage of val-

ues

∥∥∥∥ 1√
∆n

√
Σn(θn)

+

D2ln(θn)
(
θn − θ̂

)∥∥∥∥
2

2

that are in the interval
[
0, χ2

1−p(r)
]

where χ2
1−p(r) is (1−p)-quantile of χ2-distribution with r degrees of freedom.

The degrees of freedom r correspond to the rank of the covariance matrix
of the observed expression in the norm. The matrix Σn(θn) is a symmetric

and singular matrix (and Σ(θ̂) as well). From the fact that ρ ∈ 〈−1, 1〉, we
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conclude that its submatrix of nonzero elements is a strictly positive definite
matrix of rank 2. Since symmetric matrices are orthogonally diagonalizable,
the eigenvalue decomposition of the submatrix is the same as its singular value
decomposition (SVD) [12]. The SVD of the matrix Σn(θn) is then obtained
by placing zeros on the diagonal matrix of SVD of the submatrix and adding
vectors to the set of its eigenvectors to complete the basis of R4. Let us denote
the resulting SVD by UDUT . It is now easy to see that the generalized inverse
of the square root of Σn(θn) is given by UD̃UT where D̃ is such a diagonal

matrix that for all i ≤ 2, d̃ii = 1/
√
dii and for i > 2, d̃ii = 0. For this reason,

after a short calculation, we conclude that in our case the covariance matrix

of 1√
∆n

√
Σn(θn)

+

D2ln(θn)
(
θn − θ̂

)
is an identical matrix of rank r = 2.

Table 1. M = 1000, p = 0.025, l = 12

k 3 4 5 6 7 8

% 0.675 0.812 0.867 0.942 0.952 0.972

Table 2. M = 1000, p = 0.05, l = 14

k 3 4 5 6 7 8 9 10

% 0.589 0.740 0.826 0.884 0.911 0.935 0.944 0.95

Table 3. M = 1000, p = 0.05, l = 16

k 3 4 5 6 7 8 9 10 11

% 0.596 0.726 0.831 0.904 0.921 0.931 0.933 0.939 0.955

Tables 1, 2 and 3 show that an increase in k causes an increase in the
percentage so that the value, for a given p, approaches 1− p.

7. Appendix

Proof of Lemma 4.2. Let c1, . . . , c7 be positive constants occurring in
the proof. For function gj(x) ≡ gj(x, θ) ((x, θ) ∈ E × Θ) as in (4.8), under
(A2) and (A4) we use Lemma 2.1 in (4.5) and (4.7).

1√
∆n

n∑

i=1

∫ ti

ti−1

〈gj(Xs)− gj(Xi−1) |µ(Xs, θ0)〉 ds =

=
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

(
∇gj(Xu)µ(Xu, θ0)+
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+
1

2
∇2gj(Xu)

)
du

∣∣∣∣µ(Xs, θ0)
〉
ds+(7.44)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xs, θ0)

〉
ds.(7.45)

1√
∆n

n∑

i=1

∫ ti

ti−1

〈gj(Xs)− gj(Xi−1) | ν(Xs) dWs〉 =

=
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

(
∇gj(Xu)µ(Xu, θ0)+

+
1

2
∇2gj(Xu)

)
du

∣∣∣∣ ν(Xs) dWs

〉
+(7.46)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣ ν(Xs) dWs

〉

Also, under (A3) and (A4) we use Lemma 2.2 in (4.6) for function:

fj(x) ≡ fj(x, θ) :=
〈
S−1(x)µ(x, θ) | ∂jµ(x, θ)

〉
, (x, θ) ∈ E ×Θ.(7.47)

1√
∆n

n∑

i=1

∫ ti

ti−1

(fj(Xi−1)− fj(Xs)) ds =

= − 1√
∆n

n∑

i=1

∫ ti

ti−1

(fj(Xs)− fj(Xi−1)) ds =

= − 1√
∆n

n∑

i=1

∫ ti

ti−1

∫ s

ti−1

(
〈∇fj(Xu) |µ(Xu, θ0)〉+

+
1

2
Tr (S(Xu)∇ (∇fj(Xu))))

)
du ds−(7.48)

− 1√
∆n

n∑

i=1

∫ ti

ti−1

∫ s

ti−1

〈∇fj(Xu) | ν(Xu) dWu〉 ds(7.49)

For each j = 1, 2, . . . , d, we define a component of vector Vn as V jn (θ) =(7.44)+
+(7.45)+(7.46)+(7.48)+(7.49). We will prove that for all j = 1, 2, . . . , d V jn
converges in probability to zero, when n→ +∞. Obviously, then vector Vn(θ)
converges in probability to 0d, when n→ +∞.

For simplicity, we propose some new notation: Gj(x, θ) := ∇gj(x)µ(x, θ)+
1
2∇2gj(x). Using Cauchy-Schwartz inequality for vectors and boundedness of
functions we conclude that for (7.44) there exist constant c1 such that

∣∣∣∣∣
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

Gj(Xu, θ0) du

∣∣∣∣µ(Xs, θ0)

〉
ds

∣∣∣∣∣ ≤ c1
√

∆nT.
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In the same manner, we conclude that for (7.48) there exists constant c2 such
that∣∣∣∣∣−

1√
∆n

n∑

i=1

∫ ti

ti−1

∫ s

ti−1

(
〈∇fj(Xu) |µ(Xu, θ0)〉+

+
1

2
Tr (S(Xu)∇ (∇fj(Xu))))

)
du ds

∣∣∣∣∣ ≤ c2
√

∆nT.

In the sequel, we analyze (7.45) using Lemma 2.1 for function x 7→ µ(x, θ0).

1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xs, θ0)

〉
ds =

=
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xi−1, θ0)

〉
ds+(7.50)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣
∫ s

ti−1

∇µ(Xu, θ0)µ(Xu, θ0) du
〉
ds+(7.51)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣

1

2

∫ s

ti−1

∇2µ(Xu, θ0) du
〉
ds+(7.52)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣
∫ s

ti−1

∇µ(Xu, θ0)ν(Xu) dWu

〉
ds(7.53)

For (7.50) and (7.51) + (7.52) it is sufficient to prove that it converges to
zero in L2. Then it converges in probability to zero, too. The L2 convergence
of (7.50) is proved in the sequel.

E



(

1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xi−1, θ0)

〉
ds

)2

 =

=
1

∆n

n∑

i=1

E

(∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xi−1, θ0)

〉
ds

)2

+

+
2√
∆n

∑

1≤i<l≤n
E

[(∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xi−1, θ0)

〉
ds

)
·
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·
(∫ tl

tl−1

〈∫ s

tl−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xl−1, θ0)

〉
ds

)]

=
1

∆n

n∑

i=1

E

(∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xi−1, θ0)

〉
ds

)2

≤

≤ 1

∆n

n∑

i=1

E



∫ ti

ti−1

(〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣µ(Xi−1, θ0)

〉)2

ds


 ≤

≤ 1

∆n

n∑

i=1

E



∫ ti

ti−1

∥∥∥∥∥

∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∥∥∥∥∥

2

2

· ‖µ(Xi−1, θ0)‖22 ds


 ≤

≤ c3
∆n

n∑

i=1

∆n

∫ ti

ti−1

E



∥∥∥∥∥

∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∥∥∥∥∥

2

2


 =

=
c3
∆n

n∑

i=1

∆n

∫ ti

ti−1

E

(∫ s

ti−1

‖∇gj(Xu)ν(Xu)‖2F du

)
≤

≤ c4∆nT

Using Doob’s maximal inequality for vector martingale [28, Theorem 1.7] and
Lemma 2.3 (i) we conclude that there exists constant c5 such that (7.51) +
(7.52) is bounded in the following way

∣∣∣∣∣
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣
∫ s

ti−1

∇µ(Xu, θ0)µ(Xu, θ0) du

〉
ds

+
1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu) dWu

∣∣∣∣
1

2

∫ s

ti−1

∇2µ(Xu, θ0) du

〉
ds

∣∣∣∣∣ ≤

≤ c5
√

∆nT.

To prove convergence of (7.53) we use Itô formula for the function F : Rk ×
Rk → R, F (y, z) = 〈y | z〉 on [ti−1, s] and vector martingales

Ys :=

∫ s

ti−1

∇gj(Xu)ν(Xu) dWu, Zs :=

∫ s

ti−1

∇µ(Xu, θ0)ν(Xu) dWu.

When we calculate quadratic variation
〈
Y l, Zl

〉
s
, it is crucial to use indepen-

dence of components of Brownian motion. Then, (7.53) equals

1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

∇gj(Xu)ν(Xu)dWu

∣∣∣∣
∫ s

ti−1

∇µ(Xu, θ0)ν(Xu)dWu

〉
ds =
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+
1√
∆n

n∑

i=1

∫ ti

ti−1

∫ s

ti−1

〈∫ u

ti−1

∇µ(Xv, θ0)ν(Xv) dWv

∣∣∣∣∇gj(Xu)ν(Xu) dWu

〉
ds+

(7.54)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

∫ s

ti−1

〈∫ u

ti−1

∇gj(Xv)ν(Xv) dWv

∣∣∣∣∇µ(Xu, θ0)ν(Xu) dWu

〉
ds+

(7.55)

+
1√
∆n

n∑

i=1

∫ ti

ti−1

∫ s

ti−1

k∑

p,r=1

((∇gj(Xu)ν(Xu)) ◦ (∇µ(Xu, θ0)ν(Xu)))pr du ds.

(7.56)

Expressions (7.49), (7.54) and (7.55) we treat in the same manner as (7.50).
Because of boundedness of function in (7.56), it is bounded by c6

√
∆nT .

By a similar reasoning as for (7.50) there exists constant c7 such that

E



(

1√
∆n

n∑

i=1

∫ ti

ti−1

〈∫ s

ti−1

Gj(Xu, θ0) du

∣∣∣∣ ν(Xs) dWs

〉)2

 ≤ c7∆nT.

Hence, we can conclude that (7.46) converges in L2 to zero so it converges
also in probability to zero.
In the end, every component of Vn(θ) converges in probability to zero so we

can conclude that the whole vector Vn(θ)
P→ 0d, n→ +∞.

Proof of Lemma 5.2.

E
[
‖Xs2 −Xs1‖22

]
≤ 2E

[∥∥∥∥
∫ s2

s1

µ(Xt, θ0) dt

∥∥∥∥
2

2

]
+ 2E

[∥∥∥∥
∫ s2

s1

ν(Xt) dWt

∥∥∥∥
2

2

]

For the first integral we use Cauchy-Schwarz inequality for integrals, and for
the second one we use Lemma 2.3 (i). Finally, we have

E
[
‖Xs2 −Xs1‖22

]
≤ 2(s2 − s1)E

[∫ s2

s1

‖µ(Xt, θ0)‖22 dt
]

+

+ 2E
[∫ s2

s1

‖ν(Xt)‖2F dt

]
≤

≤ 2K
(

(s2 − s1)
2

+ (s2 − s1)
)
.

Proof of Lemma 5.3. Without loss of generality (Remark 5.1) we can
assume that assumption (P2) is fulfilled for function f . We prove (5.11).
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When m = k1 + · · ·+ kd and εj = sign(kj), j = 1, . . . , d, we have

(1 + |k1|+ |k2|+ · · ·+ |kd|)m ‖Ck(x)− Ck(y)‖2 =

= (1 + ε1k1 + · · ·+ εdkd)
m ‖Ck(x)− Ck(y)‖2 =

=
∑

j0+···+jd=m

(
m

j0, j1, . . . , jd

)
εj11 · · · εjdd kj ‖Ck(x)− Ck(y)‖2 ≤

≤ (d+ 1)
m
∥∥∥C(j)

k (x)− C(j)
k (y)

∥∥∥
2
.(7.57)

Here we use the multinomial theorem and the property of Fourier coefficients,

namely C
(j)
k (x) = imkjCk(x). Using the definition of Fourier coefficient and

Lemma 2.4, inequality (7.57) yields

‖Ck(x)− Ck(y)‖2 ≤

≤ Km(k)
∥∥∥C(j)

k (x)− C(j)
k (y)

∥∥∥
2
≤

≤ Km(k)
1

(2π)d

∫

Cl(K0)

∥∥Dm
j f(x, θ)−Dm

j f(y, θ)
∥∥

2
dθ ≤

≤ Km(k)
1

(2π)d

∫

Cl(K0)

∫ 1

0

∥∥∇xDm
j f (x+ s(y − x), θ)

∥∥
F
ds · ‖x− y‖2 dθ ≤

≤ k1Km(k) ‖x− y‖2 .
The beginning of proving (5.12) is the same as in (7.57). Afterwards we
analyze it in the following way.

‖Ck(x)‖2 ≤
(

d+ 1

1 + |k1|+ · · ·+ |kd|

)m
1

(2π)d

∫

Cl(K0)

∥∥Dm
j f(x, θ)

∥∥
2
dθ ≤

≤ k2Km(k)

Proof of Lemma 5.4. The proof is the same as one part of proof of
Lemma 6.7 in [17].
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