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Alexander A. Ivanov1, 2

The non-existence of a super-Janko group

To the memory of Zvonimir Janko

ABSTRACT

Locally projective graphs in Mathieu–Conway–Monster series appear in thin–thick pairs. A possible thick extension

of a thin locally projective graph associated with the fourth Janko group was questioned for a while. Such an

extension could lead if not to a new sporadic simple group, to something equally exciting. This paper resolves this

issue ultimately in the non-existence form confirming that the list of 26 sporadic simple groups although mysterious,

is now stable. The result in fact concludes the classification project of locally projective graphs, which was running

for some twenty years.

1 Locally projective graphs

The paper is devoted to the study and the classification of locally projective graphs defined in the following
way.

Definition 1. Let Φ be a connected (locally finite) graph and let F be a vertex- and edge-transitive
automorphism group of Φ. Then Φ is locally projective in dimension n with respect to F if

(a) there is a collection of complete subgraphs in Φ, called lines, such that every edge is in a unique line;

(b) every line contains α vertices, where α is 2 (thin graph) or 3 (thick graph), and the stabiliser of a
line induces on its vertices the symmetric group of degree α;

(c) if x is a vertex of Φ and F (x) is the stabiliser of x in F , then F (x) induces on the set of lines
containing x the natural action of Ln(2) of degree 2n − 1 on a projective space πx, in particular the
valency of Φ is (α− 1)(2n − 1).

Classical examples of locally projective graphs come from symplectic and orthogonal dual polar spaces
over GF (2) along the following construction.

Let V2n be a 2n-dimensional GF (2)-space, let f be a non-singular symplectic form, and let q be a quadratic
form of maximal Witt index n, whose associated bilinear form is f :

f(u, v) = q(u) + q(v) + q(u+ v) for all u, v ∈ V2n.

Let Sp2n(2) and O+
2n(2) be the corresponding symplectic and orthogonal groups, which are the automor-

phism groups of (V2n, f) and (V2n, f, q), respectively.

Let Vn be a maximal totally isotropic subspace in V2n with respect to q (that is q(u) = 0 for all u ∈ Vn).
Then Vn is also maximal totally singular with respect to f (that is f(u, v) = 0 for all u, v ∈ Vn). Notice
that some of the totally singular subspaces are not totally isotropic. The geometries whose elements are
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the images under Sp2n(2) and O+
2n(2) of the non-zero subspaces from Vn are the dual polar spaces with

the following diagrams:

G(Sp2n(2)) :
n−1

2
◦ n−2

2
◦ · · · 2

2
◦ 1

2
◦ 0

2
◦

G(O+
2n(2)) :

n−1

2
◦ n−2

2
◦ · · · 2

2
◦ 1

2
◦ K3,3 0

1
◦,

where the (n−i)-dimensional subspaces have type i and the incidence relation is the symmetrised inclusion.
The elements of types 0 and 1 are also called points and lines, respectively. Let Γ(n) and ∆(n) be the
point–line graphs of G(Sp2n(2)) and G(O+

2n(2)), respectively. These are thick and thin locally projective
graphs in dimension n with respect to Sp2n(2) and O+

2n(2), respectively. The orthogonal dual polar graph
is densely embedded in the symplectic dual polar graph according to the following definition, where G(x)
denotes the stabiliser of a vertex x in G, G1(x) is the joint stabiliser of the vertices adjacent to x, and
G 1

2
(x) is the stabiliser in G(x) of all the lines containing x (in the thin case G 1

2
(x) = G1(x), while in the

thick case G 1
2
(x)/G1(x) is a 2-group).

Definition 2. Suppose that G acts locally projectively on a thick graph Γ in dimension n ≥ 2, and let
∆ be a connected subgraph in Γ. Then ∆ is said to be densely embedded in Γ if the following conditions
hold:

(i) ∆ is thin and the subgroup H of G which stabilises ∆ as a whole induces on it a locally projective
action in dimension n, possibly with a non-trivial kernel;

(ii) if x ∈ ∆, then H(x) contains G1(x), and H(x)/G1(x) is an Ln(2)-complement to G 1
2
(x)/G1(x) in

G(x)/G1(x).

An important role in the study of locally projective graphs is played by geometric subgraphs defined as
follows.

Definition 3. A connected subgraph Ξ in a locally projective graph Φ in dimension n is called geometric
at level k, where 1 ≤ k ≤ n− 1 whenever together with an edge it contains the line on this edge, and the
following conditions hold:

(i) if a vertex x is in Ξ, then the set of neighbours Ξ(x) of x in Ξ is a k-dimensional subspace in the
projective space πx associated with x and the stabiliser of Ξ(x) in G(x) stabilises Ξ;

(ii) the subgraph Ξ is locally projective in dimension k with respect to the action on it of the setwise
stabiliser of Ξ in G.

In the symplectic and orthogonal graphs the geometric subgraphs at level k are those induced by the
vertices and edges incident to elements of type k in the corresponding dual polar space geometry. In
general, the existence of geometric subgraphs at all levels can only be guaranteed in the simply connected
case (that is, when the vertex-line incidence graph is a tree) and we will see the non-existing examples.
The geometric subgraphs at level 2 are called planes and a complete set of planes can be found in every
locally projective graph of dimension at least 3 (cf. Chapter 10 in [5]). Let X be the action on a plane Ξ
induced by the setwise stabiliser of Ξ. If the graph is thick, and Ξ contains a vertex x and a line l on x,
then the amalgam

A = {X(x), X(l)}
has index (3, 3) in the sense that [X(x) : X(x, l)] = [X(l) : X(x, l)] = 3. Such amalgams were classified
by D. Goldschmidt in 1980 [3]. Up to isomorphism there are 15 Goldschmidt amalgams.

In the orthogonal dual polar graph the action X on a plane is the orthogonal group O+
4 (2)

∼= S3 ≀ S2,
while in the symplectic graph X ∼= Sp4(2) ∼= S6 is a completion of the Goldschmidt amalgam

G1
3
∼= {S4 × 2, S4 × 2}.
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2 Mathieu groups and their graphs

Most of the exceptional locally projective graphs owe their existence to the exceptional cases in the
following well known [13] proposition.

Proposition 4. Let M ∼=
∧m Vn(2) : Ln(2) be the semidirect product with respect to the natural action

of the mth-exterior power of the natural module Vn(2) of Ln(2), where n ≥ 2 and 1 ≤ m ≤ n − 1. Then
all automorphisms of M are inner except for the following cases, where the outer automorphism group of
M is of order 2:

(i) n = 3 and m = 1 or 2;

(ii) n = 4 and m = 2.

Notice that
∧2 V3(2) is the dual of V3(2). An explicit form of the outer automorphisms can be constructed

as follows. There is a famous isomorphism between L4(2) and the alternating group A8 of degree 8. This
isomorphism sends

∧2 V4(2) onto the heart of the GF (2)-permutation module on 8 points. If V7 is the
quotient of the permutation module over the 1-dimensional submodule of constant functions, then V7 is
an indecomposable extension of

∧2 V4(2) and

A := V7 : A8
∼= Aut (

2∧
V4(2) : L4(2)).

Further on, if L(3) ∼= L3(2) denotes the Levi subgroup in L4(2) (the stabiliser of a decomposition of
V4(2) into the sum of 1- and 3-dimensional subspaces), then

∧2 V4(2), as a L(3)-module, is isomorphic
to the direct sum of the natural V3(2) and the dual natural V3(2)

∗ modules. The normalisers in A of
V3(2) : L

(3) and of V3(2)
∗ : L(3) are the full automorphism groups of the respective semidirect products.

An automorphism will be called special if it acts trivially on the largest normal 2-subgroup and on the
quotient over this subgroup.

To approach the Mathieu groups, we start with the locally projective action of H ∼= L5(2) on the Grass-
mannian with the following diagram, where under the nodes we indicate the structure of the maximal
parabolic subgroups.

G(L5(2)) :
3

L4(2)

24

◦ 2

S3×L3(2)

22⊗23

◦ 1

L3(2)×S3
23⊗22

◦ 0

L4(2)

24

◦

The locally projective graph is complete on 31 vertices and the structure of lines, planes etc. can only be
seen through the group action.

The locally projective amalgam is

B = {H(x), H(l)} ∼= {24 : L4(2), (2
2 ⊗ 23) : (S3 × L3(2))}.

A plane is isomorphic to the Fano plane on seven points, its stabiliser induces L3(2) on the plane, realising
the Goldschmidt amalgam

G3
∼= {S4, S4}.

Because of Proposition 4 (ii), the intersection

H(x) ∩H(l) ∼= (23 × 23) : (L3(2)× 2)

possesses an outer automorphism which can be used through Goldschmidt’s lemma to twist the amalgam
B to obtain the Mathieu amalgam corresponding to a locally truncated geometry with the following
diagram:

H(M24) : □
2

S6
26:3

◦ 1

L3(2)×S3
23⊗22

◦ 0

L4(2)

24

◦
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The details of this construction can be found in [5], where the twisted amalgam was taken as the starting
point to recover the whole theory of the Mathieu groups. As indicated on the above diagram, geometric
subgraphs at level 3 do not exist in the Mathieu geometry, while planes enjoy an action of S6, realising
the amalgam

G1
3 = {S4 × 2, S4 × 2}.

The non-existence of the geometric subgraphs at level 3 is due to the fact that the subamalgam

A = {H(x,Π), H(x,Π)} ∼= {21+6
+ : L3(2), [2

8] : (S3 × S3)}

(where Π is a hyperplane in the projective space associated with x) generates the whole group M24.
This means that A is a (faithful) locally projective amalgam and the geometrisation of the corresponding
locally projective graph has the following diagram:

G(M24) :
2

3·S6
26

◦ 1

S3×S3
22⊗22

[24]

◦ ∼ 0

L3(2)

21+6
+

◦

Here planes are triple covers of the generalised quadrangle of order (2, 2) with the action of 3 ·S6 realising
the same amalgam G1

3. The graph contains a densely embedded subgraph stabilised by the smaller
Mathieu group M22.2 and corresponding to the following diagram:

G(M22) :
2

S5
25

◦ 1

S3×2

26

◦ P 0

L3(2)

2×23

◦

The planes here are Petersen subgraphs with the natural action of S5 (isomorphic to O−
4 (2)). In this

paper the following result will prove crucial.

Proposition 5. Let X be a locally projective amalgam corresponding to a thick action in dimension 3
and suppose that X contains a densely embedded subamalgam

Y = {Y (x), Y (l)} ∼= {2× 23 : L3(2), 2
6.(S3 × 2)}

corresponding to the action of M22.2 on its thin locally projective graph in dimension 3. Then

(i) X is isomorphic to the amalgam corresponding to the action of M24 on its thick locally projective
graph in dimension 3 (this amalgam is also contained in the Held group He);

(ii) the involution in the direct factor of order 2 in Y (x) is fused in X(l) to an involution inside O2(2
3 :

L3(2)), where 23 : L3(2) is a direct factor of Y (x).

Proof. By Proposition 23 (i) in [7], we know that the chief X(x)-factors of O2(X(x)) are (a) the trivial
1-dimensional, (b) the natural and (c) the dual natural modules. Then the main result of [1] applies and
we obtain two possibilities for the isomorphism type of {X(x), X(l)}: the one realised in M24 and in the
Held group, and the one realised in the alternating group A16 of degree 16. In [15] it was shown that in
the latter amalgam the thin densely embedded subamalgam is completed in an index two subgroup of
the wreath product S8 ≀ 2 (and not in M22.2), which gives (i). To see (ii), let Ξ be the locally projective
graph associated with X and let Θ be its densely embedded subgraph associated with Y. To a vertex x
of Ξ we assign the unique involution ιx in Z(X(x)). Then the 14 involutions corresponding to u ∈ Ξ1(x)
are contained in X1(x) ∼= 23 × 2 and they are pairwise different, since the action of O2(X(x)) on X1(x)
is non-trivial. We have Y1(x) = X1(x), but only 7 involutions are assigned to vertices in Θ1(x). These
involutions must be diagonal in the direct product of L3(2)-modules, since ιx projects in M22 : 2 outside
the simple subgroup. Since

u 7→ ιu

is bijective on the set {x} ∪ Ξ1(x) of vertices, either y or z is contained in the 23-submodule (we assume
that it is y). Then the element in X(l) which induces the permutation (x y)(z) conjugates ιx onto ιy
confirming (ii).
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3 Fourth Janko group

A path to the fourth Janko group J4 lies through a twist of the locally projective amalgam of O+
10(2). The

dual polar space of this group is described by the following diagram indicating the structure of parabolic
subgroups:

G(O+
10(2)) :

4

O+
8 (2)

28

◦ 3

S3×S8

21+12
+

◦ 2

L3(2)×(S3≀S2)

23+12

◦ 1

L4(2)×2

24×24

26

◦ K3,3 0

L5(2)

210

◦

Let H = O+
10(2) = Aut (V +

10(2), f, q). Let V5 and U5 be two disjoint maximal totally isotropic subspaces
in V +

10(2) with bases {v1, ..., v5} and {u1, ..., u5}, such that f(vi, uj) = δij . Then V5 and U5 are vertices
in the corresponding locally projective graph at maximal distance 5 and their joint stabiliser L(5) in H
is isomorphic to L5(2) and it acts on the subspaces as on the natural and the dual natural modules,
respectively. The stabiliser H0 of V5 is the semidirect product of L(5) with the exterior square Q10 of V5

generated by the Siegel transformations associated with 2-dimensional subspaces in V5:

H0
∼= 210 : L5(2)

as on the diagram. A 4-dimensional subspace in V5 is an edge l containing V5, and we choose it to be V4

spanned by the leading four basis vectors in V5 and denote its stabiliser by H1. Then the second vertex on
l is the subspace W5 spanned by V4 together with u5. The structure of H1 is as follows. The largest normal

2-subgroup Q14 in H0 ∩H1 has order 214, it is a semidirect product of Q10 and Q
(a)
4 = O2(L

(5)(V4)). The
whole of H0 ∩ H1 is the semidirect product of Q14 and a Levi L4(2)-subgroup L(4) in L(5) which is the
stabiliser of the direct sum decomposition

V5 = V4 ⊕ ⟨v5⟩.

Finally, H0 is obtained by adjoining to H0 ∩H1 the symplectic transvection τ , associated with the vector
v5 + u5:

τ : v 7→ v + f(v, v5 + u5) (v5 + u5).

Notice that the vector v5 + u5 is non-isotropic, that is why τ belongs to the orthogonal group (but not to
its simple index 2 subgroup). In order to describe the automorphism of H0 ∩H1 induced by τ , we need
some more notation. Let Q6 be the subgroup of order 26 in Q10 generated by the Siegel transformations

associated with 2-subspaces in V4, so that Q6 is the exterior square of V4. Further, let Q
(b)
4 be the subgroup

of order 24 in Q10 generated by the Siegel transformations associated with 2-subspaces contained in V5

and containing v5. Then Q
(b)
4 is the natural module for L(4) and

Q10 = Q6 ⊕Q
(b)
4

as L(4)-modules. Finally, Q
(a)
4 is generated by the Siegel transformations associated with 2-subspace in

W5 containing u5. The following assertion follows from the definitions.

Lemma 6. In the above terms τ commutes with Q6 and with L(4), and swaps Q
(a)
4 and Q

(b)
4 , permuting

the Siegel transformations associated with ⟨v, v5⟩ and with ⟨v, u5⟩ for all v ∈ V #
4 .

Now we can apply a twist. Let σ be an involutory outer automorphism of Q6 : L(4), as in Proposition 4

(ii), which we extend to an automorphism of H0 ∩ H1 by requesting it centralises Q
(a)
4 and Q

(b)
4 . The

twisted amalgam is

A
(1)
5 = {H0, (H0 ∩H1) : ⟨τσ⟩}.

5



The fourth Janko group J4 is a completion of A
(1)
5 , which can be characterised either as the unique comple-

tion in which Q10 is self-centralised [14], or as the image of the minimal (1333-dimensional) representation
of the universal completion of the amalgam [11]. The corresponding geometry belongs to the following
diagram:

H(J4) : □
3

M22.2

21+12
+ :3

◦ 2

L3(2)×S5
23+12

◦ 1

L4(2)×2

24×24

26

◦ P 0

L5(2)

210

◦

The residue of an element of type 3 is the geometry of the Mathieu group M22 from the previous section, in
particular the edge on the right symbolises the geometry of the Petersen graph. The geometric subgraphs
at level 4 are missing, since the subamalgam (where τ and σ are assumed to be restricted to H0∩H1∩H4)

A
(4)
4 := {H0 ∩H4, (H0 ∩H1 ∩H4) : ⟨τσ⟩},

which is due to generate the stabiliser of such a subgraph, generates the whole of the Janko group J4.

Here H4 is the stabiliser in O+
10(2) of a vector in V4, say of v1. Therefore, the constructed amalgam A

(4)
4 is

faithful (the members contain no nontrivial normal subgroup in their intersection) and thus corresponds to
an action of J4 on a locally projective amalgam in dimension 3. The diagram of the geometric subgraphs
in that graph is the following:

G(J4) :
3

3·M22.2

21+12
+

◦ 2

S3×S5
23+12+2

◦ 1

L3(2)×2

[216]

◦ P 0

L4(2)

26

24

24

◦

The residue of an element of type 3 is the triple cover of the geometry of M22.2 associated with the
non-split extension by a normal subgroup of order 3. We follow notations for amalgams in Table 1 in [11].

The geometries H(M24) and G(M24) are subgeometries in H(J4) and G(J4) on elements with types 1, 2
and 3 constructed as follows. The edges of the Petersen graph are split into five antipodal triples. If we
define a graph on the edges of a locally projective graph of J4 where two edges are adjacent whenever
they are antipodal in a Petersen subgraph (which is geometric at level 2), then a connected component
of this graph is stabilised by a maximal 2-local subgroup in J4 isomorphic to 211 : M24, and leads to a
subgeometry as described above.

The structure of parabolics in A
(4)
4 will be analysed closely, but one of the properties we state right here

(cf. Section 9 in [11]).

Lemma 7. The point-line stabiliser H0 ∩H1 ∩H4 in A
(4)
4 is a semidirect product of a group Q19 of order

219 with centre Z of order 23 and a group L(3) ∼= L3(2) such that Z is the natural module for L(3).

The above lemma exhibits a possibility for a further twist. Indeed, by Proposition 4 and Lemma 7,
H0 ∩H1 ∩H4 possesses an involutory outer automorphism ρ which centralises Q19 and induces an outer
automorphism of Z : L(3). The corresponding amalgam

A
(5)
4 = {H0 ∩H4, (H0 ∩H1 ∩H4) : ⟨τσρ⟩}

was proved in [9] to embed in the alternating group A256 of degree 256. This embedding leads to the
following diagram of maximal parabolics:

G(A256) :
3

22×L6(2):2

21+12
+

◦ 2

S3×(S5×2)

23+12+2

◦ 1

L3(2)×2

[216]

◦ 2P 0

L4(2)

26

24

24

◦

where the edge on the right symbolises a double cover of the Petersen graph.
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It was shown in [8] that A
(1)
5 does not appear as a densely embedded thin subamalgam in a thick locally

projective amalgam in dimension 5. In the present paper we prove the non-existence result for the other
two amalgams.

Theorem 1. Neither A
(4)
4 nor A

(5)
4 appear as a densely embedded subamalgam in a thick locally projective

amalgam in dimension 4.

4 An explicit form of the two amalgams

We start by deducing the structure of the amalgams A
(4)
4 and A

(5)
4 . The vertex stabilisers are isomorphic

(we denote it by G(x)) and can be described as a parabolic subgroup in H ∼= O+
10(2). In fact, G(x) =

H0 ∩ H4 which is the stabiliser in H of a maximal isotropic subspace, say V5 = ⟨v1, ..., v5⟩ (giving H0)
and a vector in V5, say v1 (giving the intersection with H4). We have seen in the previous section that

H0
∼= Q10 : L

(5) ∼=
2∧
V5 : L5(2).

Let M (4) be the Levi subgroup in L(5) stabilising the decomposition

V5 = ⟨v1⟩ ⊕W4,

where W4 = ⟨v2, ..., v5⟩. Of course M (4) is a conjugate of L(4), which will reappear later on. As a module
for M (4), the subgroup Q10 splits into a direct sum

Q10 = R6 ⊕R
(b)
4 ,

where R6 is the exterior square of W4 generated by the Siegel transformations associated with the 2-

subspaces in W4, and R
(b)
4 is the natural module of M (4) generated by the Siegel transformations of the

2-subspaces ⟨v1, v⟩ taken for all v ∈ W4. The subgroup R
(a)
4 := O2(L

(5)(v1)) is generated by the Siegel
transformations associated with the subspaces ⟨v1, uj⟩ for 2 ≤ j ≤ 5, where as above U5 = ⟨u1, ..., u5⟩ is
an isotropic complement to V5 in V10 with f(vi, uj) = δij . The above description leads to the following
abstract characterisation.

Lemma 8. The group H0 ∩H4 is a semidirect product of O2(H0 ∩H4) and M (4) ∼= L4(2). Furthermore,

(i) O2(H0∩H4) = R
(b)
4 R6R

(a)
4 where R

(b)
4 , R6 and R

(a)
4 are the natural, the exterior square of the natural

and the dual natural modules for M (4);

(ii) R
(b)
4 is the centre of O2(H0 ∩H4) and

[R
(a)
4 , R6] = R

(b)
4

with [r(W3), r(W2)] = r(W3 ∩ W2), where W3, W2 are 3- and 2-subspaces in V4 corresponding to
elements in the commutator, which is non-trivial only when W3 ∩ W2 is 1-dimensional and hence

determines a vector from R
(b)
4 .

In order to refine further to obtain the vertex-edge stabiliser

G(x) ∩G(l) = H0 ∩H1 ∩H4,

along with V5 and v1, we stabilise a 4-subspace V4 = ⟨v1, v2, v3, v4⟩. Let L(3) ∼= L3(2) be the Levi subgroup
stabilising the direct sum decomposition

V5 = ⟨v1⟩ ⊕ V3 ⊕ ⟨v5⟩,

where V3 = V4 ∩ W4 = ⟨v2, v3, v4⟩ is the natural module of L(3). We summarise the structure in the
following lemma.
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Lemma 9. In the above terms the following assertions hold:

(i) there are the following decompositions of L(3)-modules:

R
(b)
4 = R

(b)
3 ⊕R

(b)
1 , R

(a)
4 = R

(a)
1 ⊕R

(a)
3 , R6 = R

(c)
3 ⊕R

(d)
3 ,

where R
(b)
3 is the natural module generated by the Siegel transformation associated with the 2-

subspaces ⟨v1, v⟩ for v ∈ V3, R
(b)
1 is the 1-dimensional trivial module generated by the Siegel trans-

formation of ⟨v1, v5⟩, R(a)
1 is the trivial module generated by the Siegel transformation of ⟨v1, u5⟩,

R
(a)
3 is the dual natural module generated by the Siegel transformations ⟨v1, uj⟩ for j = 2, 3, 4, R

(c)
3

is the dual natural module generated by Siegel transformations associated with the 2-subspace in V3,

R
(d)
3 is the dual natural module generated by Siegel transformations of the 2-subspaces ⟨v, v5⟩ for

v ∈ V3;

(ii) R
(e)
3 := O2(M

(4)(V3)) is the dual natural module generated by the Siegel transformations of the
subspaces ⟨v5, uj⟩ for j = 2, 3, 4;

(iii) the actions of R
(e)
3 on R

(b)
4 , R

(a)
4 and R6 can be seen by restricting the actions of M (4), in particular

R
(e)
3 centralises R

(b)
3 , R

(a)
1 and R

(c)
3 ;

(iv) Q6 = R
(b)
3 ⊕R

(c)
3 , Q

(b)
4 = R

(b)
1 ⊕R

(d)
3 , Q

(a)
4 = R

(e)
3 ⊕R

(a)
1 .

Now the automorphisms τ , σ and ρ can be described rather explicitly.

Lemma 10. Each of the automorphisms τ , σ and ρ of G(x) ∩G(l) = H0 ∩H1 ∩H4 commutes with the
action of L(3) ∼= L3(2); furthermore,

(i) τ permutes R
(b)
1 with R

(a)
1 and R

(d)
3 with R

(e)
3 and centralises the other R’s and L(3);

(ii) σ acts as follows

(a) it induces special outer automorphisms of R
(b)
3 L(3) and R

(c)
3 L(3) as in Proposition 4 (i);

(b) it sends R
(a)
3 onto an L3(2)-invariant diagonal of R

(a)
3 and R

(b)
3 ;

(iii) ρ induces a special outer automorphism of R
(b)
3 : L(3) and centralises all the R’s.

Proof. The assertion (i) is by Lemma 6, since τ is the restriction of the symplectic transvection with
respect to v5+u5. In order to see (ii), we need to determine the action of a special outer automorphism of
Q6 : L

(4) on the intersection of the latter group with G(x)∩G(l). This intersection J contains the whole

of Q6 = R
(b)
3 ⊕R

(c)
3 and a maximal parabolic R

(a)
3 L(3) from L(4). It can be seen that J is a tri-extraspecial

group of plus type [12]. Now (ii) can be deduced either using the description of the automorphisms of
tri-extraspecial groups and/or using the description of the special outer automorpohisms of Q6 : L

4 in the

paragraph after Lemma 4. Notice that the diagonal in (ii) (b) does not split over R
(b)
3 as an L(3)-module,

but splits as a module for the image of L(3) under a special outer automorphism of R
(c)
3 L(3).

Finally, (iii) is by Lemma 7, since R
(b)
3 is the centre of O2(G(x) ∩ G(l)). Notice that instead of L(3) we

can take any other L3(2)-complement and that in a sense ρ partially compensates the action of σ on the
classes of such complements.

Lemma 11. The amalgams

A
(4)
4 = {H0 ∩H4, (H0 ∩H1 ∩H4) : ⟨τσ⟩} and A

(5)
4 = {H0 ∩H4, (H0 ∩H1 ∩H4) : ⟨τσρ⟩}

are faithful.
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Proof. The amalgam {H0∩H4, (H0∩H1∩H4) : ⟨τ⟩} is contained in H ∼= O+
10(2) and generates Q8 : O

+
8 (2),

where Q8 is the radical of the amalgam, which is the largest normal subgroup in the intersection of the
members of the amalgam. The subgroup Q8 is elementary abelian of order 28, generated by the Siegel
transformations associated with the subspaces ⟨v1, vj⟩ and ⟨v1, uj⟩ for 2 ≤ j ≤ 5. Therefore, it is sufficient
to show that Q8 is not normalised by σ. In fact, by Lemma 10 (ii) (b), σ sends the element S(⟨v1, u2⟩)
contained in Q8 onto the product S(⟨v1, u2⟩) ·S(⟨v3, v4⟩), which is not in Q8 (of course S(U2) is the Siegel
transformation associated with a 2-subspace U2).

It can be seen from the structure of the parabolic subgroups in H = O+
10(2) indicated on a diagram of

G(O+
10(2)) in Section 3 that the radical of the subamalgam

{H0 ∩H3 ∩H4, (H0 ∩H1 ∩H3 ∩H4) : ⟨τ⟩}

is an extraspecial group Q13 of order 213 of plus type: Q13
∼= 21+12

+ . This subgroup is generated by
the Siegel transformations commuting with S(⟨v1, v2⟩) (which itself generates the centre of Q13). The
subgroup Q13 is normalised by σ and by ρ, and the following holds.

Lemma 12. The subgroup Q13
∼= 21+12

+ is the vertex-wise stabiliser of a geometric subgraph at level 3

associated with the locally projective action of A
(i)
4 for i = 4 and 5. If I(i) denotes the image in Out (Q13)

of the stabiliser of this geometric subgraph as a whole, then

I(4) ∼= 3 ·M22 : 2, I(5) ∼= L6(2) : 2.

Proof. The stabiliser of a geometric subgraph at level 3 is the centraliser of an involution in the fourth

Janko group J4, which is a completion of A
(4)
4 [4]. In the case of A

(5)
4 the action was identified in the

A256-completion in [9]. Notice that Q13 is self-centralised in J4, while in A256 its centraliser is elementary
abelian of order 23.

5 Possibilities for thick extensions

Towards the proof of Theorem 1 we assume that Φ is a thick locally projective graph in dimension 4 with
respect to a group F , and that Φ contains a densely embedded subgraph Γ with respect to G, where G is

a completion of amalgam A
(4)
4 or A

(5)
4 . Then G is a quotient of the stabiliser of Γ in F over its vertex-wise

stabiliser. In order to exclude the unwanted cycles, we assume that Φ is simply connected, that is the
vertex-line incidence graph is a tree. In this case Γ is just a tree and G is the universal completion of the
corresponding amalgam.

Let x be a vertex of Φ and let l = {x, y, z} be a line containing x, with l ∩ Γ = {x, y}. We start with an
analysis of the stabiliser G(x) in order the recover the possible structure of F (x). The following lemma
follows directly from Lemmas 9 and 10 (compare Section 9 in [10]).

Lemma 13. Let Gi(x) denote the joint stabiliser in G of the vertices at distance at most i from x in Γ.
Then

G4(x) = 1, G3(x) = R
(b)
4 , G2(x) = R

(b)
4 R

(a)
4 , G1(x) = R

(b)
4 R

(a)
4 R6, G(x) = R

(b)
4 R

(a)
4 R6L

(4).

Let Fi(x) be the joint stabiliser in F of the vertices at distance at most i from x in Φ. Let F 1
2
(x) be the

largest subgroup in F (x) which stabilises as a whole every line containing x. We follow Section 3 in [7]
for methods and results in reconstructing thick stabiliser. The next result is Lemma 13 in [7].

Lemma 14. The following assertions hold:
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(i) F 1
2
(x) = O2(F (x)) and F (x)/F 1

2
(x) ∼= L4(2);

(ii) the quotient F 1
2
(x)/F1(x) is elementary abelian of order 24 isomorphic to the natural module for

F (x)/F 1
2
(x).

Further analysis heavily relies on the structure of the geometric subgraphs in Γ and Φ as described in the
next lemma.

Lemma 15. Let Ξ be a geometric subgraph at level 2 ≤ m ≤ 3 in Γ or Φ containing the flag (x, l). Let
X be an action of the stabiliser of Ξ in the relevant group on the subgraph, and let A = {X(x), X(l)} be
the corresponding locally projective amalgam. Then

(i) if m = 2, then A is the Djoković–Miller amalgam {S3 × 2, D8} contained in S5 in the thin case and
the Goldschmidt amalgam G1

3 = {S4 × 2, S4 × 2} contained in S6 in the thick case;

(ii) if m = 2, then A ∼= A
(5)
3 contained in M22.2 in the thin case and in the thick case

A ∼= {21+6
+ : L3(2), [2

8] : (S3 × S3)}

contained in M24;

(iii) Xm−1(x) induces on Ξ an action of order 2.

Proof. The level 3 case follows from the structure of the J4-parabolic subgroups for the A
(4)
4 -amalgam and

then also for the A
(5)
5 -amalgam, since the automorphism ρ does not affect the structure of the residual

amalgam A (ρ adjusts an L3(2)-complement by the centre of O2, so that the action is unchanged).
Then the thick case follows from Lemma 5 (i). The level 2 case now follows from the structure of the
residues in the M22.2- and M24-geometries. Finally, (iii) is a well-known property of the relevant residual
geometries.

The assertion (iii) in the above lemma is equivalent to the validity of the crucial condition (∗) (compare
the paragraph prior Proposition 17 in [7] and Section 9.3 in [10]).

The next result is Lemmas 18, 19 and 20 in [7], which relies on the validity of the (∗) condition we have
just established.

Lemma 16. The isomorphism
Fi(x)/Fi+1(x) ∼= Gi(x)/Gi+1(x)

holds for 1 ≤ i ≤ 2, and
F4(x) = 1.

Now it only remains to draw the connection between F3(x) and G3(x), where the latter is the dual
L4(2)-module by Lemma 13. The structure of F3(x) comes from Proposition 22 (iii) in [7].

Lemma 17. One of the following holds:

(i) F3(x) ∼= G3(x);

(ii) F3(x) is elementary abelian of order 25, F3(x) is in the centre of F1(x) and F (x)/F1(x) ∼= 24 : L4(2)
acts faithfully on F3(x) inducing the stabiliser of a hyperplane in GL(F3(x)).

The following proposition is a summary of this section.
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Proposition 18. The vertex stabiliser F (x) in a locally projective amalgam containing A
(i)
4 as a densely

embedded subamalgam for i = 4 or 5 has the following structure:

(i) O2(F (x)) has order 218 or 219;

(ii) F (x) possesses the normal series

F (x) > F 1
2
(x) > F1(x) > F2(x) > F3(x) ≥ [F (x), F3(x)] > 1,

whose factors are L4(2), the natural, the exterior square of the natural, the natural, trivial 1- or
0-dimensional and the natural module of L4(2).

Having Proposition 18 in hand, one can proceed to construct {F (x), F (l)} by accomplishing the following
steps:

(A) Recover the isomorphism type of F (x) from the structure of chief factors in Proposition 18 and from
the knowledge of the isomorphism type of its section G(x);

(B) lift the automorphisms τσ and/or τσρ to an automorphism α of F (x) ∩ F (l) inducing on l the
permutation (x, y)(z);

(C) reconstruct a preimage β in F (x) of an element from F 1
2
(x) which induces on l the permutation

(x)(yz) and commutes with the action of an L3(2)-complement in F (x) ∩ F (l);

(D) check that ⟨α, β⟩ maps onto an S3-subgroup in Out (F (x, y, z)).

This plan was partially realised leading to failures on step (D). Then we were returning back realising
that some fancy possibilities for F (x) are missed, like non-splitness, indecomposabilities and alike. Then
another failure. Eventually it has been realised that the obstacle is in the impossibility to realise the amal-
gam of the residual locally projective action at level 3 on the vertex-wise stabiliser of the corresponding
geometric subgraph. This led to the non-existence proof accomplished in the next section.

6 Acting on the kernel at level 3

We continue to use hypotheses and notations from the previous section. Let Ξ be a geometric subgraph
at level 3 in Φ containing the flag (x, l) and let Θ be the intersection of Ξ with Γ, so that Θ is a geometric
subgraph at level 3 in Γ. Let X and Y be the actions on Ξ and Θ of their respective stabilisers in F and
G, and let N and M be the kernels of the actions. The following lemma summarises what we know about
Θ, Y , N and M from Lemmas 12, 15 and 18 .

Lemma 19. The following holds:

(i) M ∼= 21+12
+ ;

(ii) (G(x) ∩G[Θ])/M ∼= 2× 23 : L3(2), (F (x) ∩ F [Ξ])/N ∼= 21+6
+ : L3(2);

(iii) the action of F (a) of F (x) ∩ F [Ξ] on Ξ possesses the following normal series:

F (a)(x) > F
(a)
1
2

(x) > F
(a)
1 (x) > F

(a)
2 (x) > F

(a)
3 (x) = 1

with factors isomorphic to L3(2), the natural module V3(2), the dual natural V3(2)
∗ module, and the trivial

1-dimensional module for F (a)(x)/F 1
2
(x) ∼= L3(2).
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Next we restrict the series in Proposition 18 (ii) to the intersection of F (x) with the stabiliser F [Ξ] of
the geometric subgraph Ξ at level 3 and decide which submodules fall into the vertex-wise stabiliser N ,
making use of Lemma 19 (iii).

Lemma 20. The kernel N has the following (F (x) ∩ F [Ξ])-factors as modules for an L3(3) ∼= (F (x) ∩
F [Ξ])/O2(F (x) ∩ F [Ξ])

(i) the whole of F3(x), which is the dual natural module extended by one or two trivial 1-dimensional;

(ii) a 3-dimensional submodule of F2(x)/F3(x) isomorphic to the natural module;

(iii) a 3-dimensional submodule of F1(x)/F2(x) isomorphic to the natural module;

(iv) a 1-dimensional submodule of F 1
2
(x)/F1(x);

(v) a 3-dimensional submodule which is O2((F (x) ∩ F [Ξ])/F 1
2
(x)).

Lemma 21. The kernel N is isomorphic to the central product of M ∼= 21+12
+ with a group of order 4 or

with a groups D8, depending on which of the possibilities is realised in Lemma 17.

Proof. By Lemma 20, the order of N is 214 or 215 depending on the possibilities in Lemma 17. The
subgroup M is a factor group of a subgroup of index 2 in N which misses the submodule in Lemma 20
(iv). The factor is over a subgroup of order 2 or 1. The action described in Lemma 17 (ii) gives the
structure of N in case it has order 215, and the case of smaller N is also clear.

Let a and b be elements in F stabilising x, Ξ and Θ whose actions ā and b̄ on Θ satisfy:

(1) ā is the only non-trivial element in Y2(x);

(2) b̄ is in the normal 2-subgroup of the direct factor of Y (x) ∼= 23 : L3(2)× 2 different from ⟨ā⟩;

(3) ā and b̄ are conjugate in X(l) as in Proposition 5 (ii).

In the next proposition we reach the final contradiction by showing that the elements a and b satisfying
(1) and (2) above have centralisers in N̄ := N/[N,N ] of different orders. This is in fact not surprising,
since b̄ maps into the commutator subgroups of I(4) and I(5) in Lemma 12, while ā does not. So, instead
of a rather explicit calculation, below we could refer to a classification of involutions in the orthogonal
groups. Notice that since the commutator subgroup of N is abelian, the orders of the centralisers do not
depend on the choice of representatives.

Proposition 22. The dimensions of CN̄ (a) and CN̄ (b) for elements satisfying (1) and (2) above are
different.

Proof. We count which part of the composition factors in Lemma 20 fall into the centralisers of a and b
in N . For a we have everything from (i), (ii) and (iv) and nothing else, giving dimension of CN̄ (a) equal
to 6 or 7 depending on the order of F3(x). On the other hand, for b we have everything from (i), (iii)
and (iv), a 2-subspace from (ii), giving the total dimension of CN̄ (b) of dimension 8 or 9, completing the
proof.

The final contradiction, showing that elements satisfying (1) and (2) cannot possibly satisfy (3), completes
the proof of Theorem 1.
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