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ON GROUPS WITH AVERAGE ELEMENT ORDERS EQUAL
TO THE AVERAGE ORDER OF THE ALTERNATING

GROUP OF DEGREE 5

Marcel Herzog, Patrizia Longobardi and Mercede Maj

Abstract. Let G be a finite group. Denote by ψ(G) the sum ψ(G) =∑
x∈G |x|, where |x| denotes the order of the element x, and by o(G) the

average element orders, i.e. the quotient o(G) =
ψ(G)
|G| . We prove that

o(G) = o(A5) if and only if G ' A5, where A5 is the alternating group of
degree 5.

This paper is dedicated to the memory of Professor Zvonimir Janko.

1. Introduction

Let G be a finite group. Denote by ψ(G) the sum

ψ(G) =
∑
x∈G
|x|,

where |x| denotes the order of the element x, and by o(G) the quotient

o(G) =
ψ(G)

|G|
.

Thus o(G) denotes the average element orders of G. Moreover, if S ⊆ G, then
we define ψ(S) =

∑
x∈S |x|.

Recently many authors studied the function ψ(G) and, more generally,
properties of finite groups determined by their element orders (see for example
[1]-[9], [11]-[18], [20]-[26], [30], [31], [33]-[37]). It is easy to see that ψ(A4) =
31 = ψ(D10), where A4 is the alternating group of degree 4 and D10 is the
dihedral group of order 10. Hence ψ(G) usually does not identify the group
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G. However, it is possible to prove that if ψ(G) = ψ(S3), then G ' S3, and
that if ψ(G) = ψ(A5), then G ' A5 (see [1], [4], [22] for more examples of
groups G identified by the function ψ(G)). Another problem that has been
recently studied by many authors is to find some bounds on ψ(G) that imply
that the group G belongs to some classes of groups, like the class of solvable,
or nilpotent, or supersolvable groups (see for example [4], [5], [9], [14], [18],
[34] and [35]).

In this paper we shall study similar problems for the function o(G).

If Cn denotes the cyclic group of order n, and we consider the groups
G1 = C8 × C2, and G2 = C8 o C2, where C2 = 〈a〉, C8 = 〈b〉, ba = b5,
then it is easy to prove that ψ(G1) = ψ(G2) = 87. Thus o(G1) = o(G2)
and of course G1 and G2 are not isomorphic. Hence usually the function
o(G) does not identify the group G. But again sometimes that happens, for
example o(G) = o(S3) if and only if G ' S3 (see Theorem A of [17]), and
o(G) = o(A4) if and only if G ' A4 (see [36]).

A. Jaikin-Zapirain started in his paper [27] the investigation of the func-
tion o(G). He proved that if G is a finite group, then o(G) ≥ o(Z(G)) (Lemma
2.7), and that o(G) ≤ k(G), the number of conjugacy classes in G (Lemma
2.9). He also posed the following question: let G be a finite (p-)group and N

a normal (abelian) subgroup of G, is it true that o(G) ≥ o(N)
1
2 ? Ten years

later, in their paper [19], E.I. Khukhro, A. Moretó and M. Zarrin provided
a negative answer to Jaikin-Zapirain’s question, in fact they proved that if
c > 0 is any real number and p ≥ 3

c a prime, then there exists a finite p-group
with a normal abelian subgroup N such that o(G) < o(N)c.

In the same paper they posed the following conjecture.

Conjecture 1.1. Let G be a finite group and suppose that

o(G) < o(A5).

Then G is solvable.

In the paper [17] we proved that the conjecture is true. In fact we proved
the following theorem.

Theorem 1.2. Let G be a finite group and suppose that

o(G) ≤ o(A5).

Then either G is solvable or G ' A5.

Notice that

o(A5) =
ψ(A5)

|A5|
=

211

60
= 3.51666...

The structure of a solvable group with o(G) ≤ o(A5) is still unknown.

In this paper we prove that there are no solvable groups with o(G) =
o(A5). In fact we prove the following theorem.
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Theorem 1.3. Let G be a finite group and suppose that

o(G) = o(A5) =
211

60
.

Then G ' A5.

In particular the group A5 is identified by its average order.
Notice that M. Tărnăuceanu in the paper [36] obtained a similar criterion

for supersolvability, showing that if o(G) < o(A4), then G is supersolvable.

Our notation in this paper is the usual one (see for example [10] and
[32]). If G is a finite group, then 1 will denote the identity element of G
and sometimes also the group {1}. We shall denote by i2(G) the number of
elements of G of order 2 and by i3(G) the number of elements of G of order 3.
Sometimes we shall use the shorter notation i2 and i3, if there is no ambiguity.
Moreover, if S ⊆ G, then we shall denote by i2(S) the number of elements of
S of order 2.

In Section 2 we shall recall some useful results concerning the function
o(G).

In Section 3 we shall prove Theorem 1.3.

2. Some results about the function o(G).

We start this section with some basic results concerning the function o(G).

Proposition 2.1. Let G be a finite group and G 6= 1. Then the following
statements hold.
(1) We have o(G) ≥ 2− 1

|G| ≥
3
2 . In particular, if G is an elementary abelian

2-group, then o(G) = 2 − 1
|G| and if G is not an elementary abelian 2-group,

then o(G) ≥ 2+ 1
|G| . Hence o(G) ≤ 2 if and only if G is an elementary abelian

2-group and o(G) = 2− 1
|G| .

(2) If G is of odd order, then o(G) ≥ 3− 2
|G| ≥ 3− 2

3 = 7
3 .

(3) If G = A×B with (|A|, |B|) = 1, then o(G) = o(A)o(B). In particular,
if A 6= 1 and B 6= 1, then

o(G) ≥ 7

2
.

Proof. See [17], Lemma 1.1.

For groups G of odd order and of exponent greater than 3, we have the
following stronger result.

Proposition 2.2. Let G be a group of odd order and of exponent greater
than 3. Then

o(G) ≥ 3.5− 2

|G|
≥ 3.1.
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Proof. If G is not a 3-group, then, by [28], i3(G) + 1 ≤ 3
4 |G|, thus

there exist at least 1
4 |G| elements of G of order > 3 and the rest of order

≥ 5. Then we have ψ(G) ≥ 1 + 3(|G| − 1) + 2 · 14 |G| = −2 + 3.5|G|, thus

o(G) ≥ 3.5− 2
|G| ≥ 3.5− 2

5 = 3.5− 0.4 = 3.1.

If G is a 3-group of exponent greater than 3, then, by [29], i3(G) + 1 ≤
7
9 |G|, thus there exist at least 2

9 |G| elements of G of order > 3 and the rest
(different from the identity) of order ≥ 9. Then we have ψ(G) ≥ 1 + 3(|G| −
1) + 6 · 29 |G| ≥ −2 + 4.3|G|, thus o(G) ≥ 4.3− 2

|G| ≥ 4.3− 2
9 ≥ 4.3− 0.2 = 4.1.

The function o(G) has a very good behavior with respect to factor groups.

Proposition 2.3. Let G be a finite group containing a non-trivial normal
subgroup H. Then the following statements hold.

(1) If x ∈ G \H, then the order |xH| of xH in G/H divides the order of
xh in G for every h ∈ H. In particular, |xh| ≥ |xH| for every h ∈ H.

(2) o(G/H) < o(G) .

Proof. See [17], Lemma 3.1.

Now we shall prove two very useful lemmas, which we shall use in our
proof of Theorem 3.1.

Lemma 2.4. Let G = N o 〈x〉, with |x| = 2, N of odd order and non-
abelian. Then the following holds

ψ(Nx) ≥ 2|N |+ 8

3
|N | = 4|N |+ 2

3
|N |.

Proof. Write I = {n ∈ N |nx = n−1}. Then i2(Nx) = |I|. Moreover
I ⊂ N , since N is not abelian. Also |I| = |N |/|CN (x)| (see [10], Lemma

10.4.1), thus |I| divides |N |, hence |I| ≤ |N |
3 , since |N | is odd. Then the

number of elements of Nx of order 2 is less or equal to |N |3 , hence there exist

at least 2|N |
3 elements of Nx of order bigger that 2 and then of order ≥ 6, by

Proposition 2.3(1). Therefore we have

ψ(Nx) ≥ 2|N |+ 2|N |
3

4 = 2|N |+ 8

3
|N | = 4|N |+ 2

3
|N |,

as required.

Lemma 2.5. Let G = N o 〈x〉, with |x| = 2, N of odd order. Then the
following hold:

(1) if 3 divides |CN (x)|, then ψ(Nx) ≥ 4.66|N |,
(2) if 5 divides |CN (x)|, then ψ(Nx) ≥ 5.2|N |.
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Proof. Write I = {n ∈ N |nx = n−1}. Then i2(Nx) = |I|. Moreover
|I| = |N |/|CN (x)|, by Lemma 10.4.1 of [10].

If 3 divides |CN (x)|, then |I| ≤ |N |3 . Then the number of elements of Nx

of order 2 is less or equal to |N |3 , hence there exist at least 2|N |
3 elements of Nx

of order bigger that 2 and then of order ≥ 6, by Proposition 2.3(1). Therefore

we have ψ(Nx) ≥ 2|N |+ 2|N |
3 4 = 2|N |+ 8

3 |N | = 4|N |+ 2
3 |N | ≥ 4.66|N |. That

proves (1).

If 5 divides |CN (x)|, then |I| ≤ |N |5 . Then the number of elements of Nx

of order 2 is less or equal to |N |5 , hence there exist at least 4|N |
5 elements of Nx

of order bigger that 2 and then of order ≥ 6, by Proposition 2.3(1). Therefore

we have ψ(Nx) ≥ 2|N |+ 4|N |
5 4 = 2|N |+ 16

5 |N | = 5.2|N |. Therefore (2) holds.

3. The proof of Theorem 1.3

In this section we shall study the structure of a finite group G such that
o(G) = o(A5). We start with an easy but interesting remark on the order of
G.

Lemma 3.1. Let G be a finite group with o(G) = o(A5). Then

|G| = 60k,

where k is an odd number.

Proof. We have ψ(G)
|G| = 211

60 = o(A5). Moreover ψ(G) is odd. Thus

211|G| = 60ψ(G), 60 divides |G| and |G| = 60k, with k odd.

By Lemma 3.1, if G is a finite group such that o(G) = o(A5), then a
Sylow 2-subgroup D of G has order 4. First we show that D is not cyclic.

Proposition 3.2. Let G be a finite group such that o(G) = o(A5). Then
a Sylow 2-subgroup D of G is not cyclic.

Proof. Suppose o(G) = o(A5) and that G has a cyclic 2-subgroup. Then
G is 2-nilpotent (see, for example, 10.1.9 of [32]). Therefore G = N o 〈y〉,
with |y| = 4 and |N | odd. We have ψ(G) = ψ(N) + ψ(Ny) + ψ(Ny2) +
ψ(Ny3), and, by Proposition 2.3(1), ψ(G) ≥ ψ(N) + 4|N | + 2|N | + 4|N |.
Then ψ(G) ≥ ψ(N) + 2|G| + |G|

2 = ψ(N) + 2.5|G|. Then o(G) ≥ o(N)
4 + 2.5,

and o(N) ≤ (3.52− 2.5)× 4 = 1.02× 4 = 4.08.
If N is abelian, there exists a cyclic quotient N/V of N of order 15. Then

we have o(N/V ) = 21
5

7
3 = 49

5 = 9.8, a contradiction, since, by Proposition
2.3(2), o(N/V ) ≤ o(N) ≤ 4.08.

Then N is not abelian, therefore, by Lemma 2.4, ψ(Ny2) ≥ 4|N |+ 2
3 |N |.

Therefore we have ψ(G) = ψ(N)+ψ(Ny)+ψ(Ny3)+ψ(Ny2) ≥ ψ(N)+4|N |+
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4|N |+ 4|N |+ 2
3 |N | = ψ(N) + 3|G|+ |G|

6 . Thus o(N) ≤ (o(G)− 3.166)× 4 ≤
(0.36)× 4 = 1.44, a contradiction with Proposition 2.2.

Now we shall prove that a finite group with o(G) = o(A5) is not 2-
nilpotent.

Proposition 3.3. Let G = N o V be a finite group, with |N | odd and
|V | = 4. Then

o(G) 6= o(A5).

Proof. Suppose o(G) = o(A5). Then V is not cyclic, by Proposition 3.2.
Then V is a Klein group. Hence G = N∪Nx1∪Nx2∪Nx3, with |x1| = |x2| =
|x3| = 2. Thus, by Proposition 2.3(1), ψ(G) ≥ ψ(N) + 2|N |+ 2|N |+ 2|N | =
ψ(N) + |G|+ |G|

2 . Then o(N) ≤ (o(G)− 1.5)× 4 ≤ (2.02)× 4 = 8.08.
If N is abelian, then N has a cyclic quotient N/V of order 15, thus, argu-

ing as in Proposition 3.2, o(N/V ) = 9.8, a contradiction, since, by Proposition
2.3(2), o(N/V ) ≤ o(N) ≤ 8.08.

Then N is not abelian. Hence, by Lemma 2.4, ψ(Nxi) ≥ 4|N |+ 2
3 |N |, for

every i ∈ {1, 2, 3}. Then ψ(G) ≥ ψ(N) + 4|N |+ 4|N |+ 4|N |+ 2|N | = ψ(N) +

3|G|+ |G|
2 = ψ(N) + 3.5|G| and o(N) ≤ (o(G)− 3.5)× 4 ≤ 0.017× 4 = 0.068,

a contradiction with Proposition 2.2.

We conclude this paper with the proof of Theorem 1.3.

Proof. (of Theorem 1.3) Suppose that there exists a finite groupG which
satisfies o(G) = o(A5) and it is not isomorphic to A5. Then G is a solvable
group, by Theorem B of [17].
Moreover, |G| = 60k, with k odd, by Lemma 3.1.

We shall reach a contradiction, which will indicate that if a finite group
G satisfies o(G) = o(A5), then G ' A5, as required.

By Hall’s theorem, there exists a subgroup H of G of index 4. Write
M = HG, the core of H in G. Then M is normal in G and G/M is a
subgroup of S4. Also |M | is odd, 4 divides |G/M | and 8 does not divide
|G/M |. Moreover |G/M | is not 4, by Proposition 3.3. Therefore |G/M | = 12
and G/M ' A4. Then there exists a normal subgroup N/M of G/M , with
|G/N | = 3, and N = M o V where V is a Klein group. Write G = N〈y〉. If
|yn| > 3, for every n ∈ N , then |yn| ≥ 6, for every n ∈ N , by Proposition
2.3(1). Then we have ψ(Ny) ≥ 6|N | and ψ(Ny2) ≥ 6|N |. Hence ψ(G) ≥
ψ(N) + 6|N |+ 6|N | = ψ(N) + 4|G|, and o(G) ≥ o(N)/3 + 4, a contradiction
since o(G) = o(A5) ≤ 3.52.

Therefore we can suppose that |y| = 3.
Then G = N o 〈y〉.
Now we prove that o(N) ≤ 4.56.
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In fact, we have ψ(G) ≥ ψ(N) + 3|N |+ 3|N | = ψ(N) + 2|G|, and o(G) ≥
o(N)/3 + 2. Hence o(N) ≤ (3.52− 2)× 3 = 1.52× 3 = 4.56, as required.

Recall that N = M o V , where V is a Klein group and |M | is odd.

Then 5 divides the order of M , since 5 divides the order of G.

We claim that there exists a non-trivial element a ∈ V such that 5 divides
|CM (a)|.

Suppose not. Write V = {1, x1, x2, x3}. By Theorem 6.2.2 of [10] there
exists a non-trivial V -invariant Sylow 5-subgroup P of M . Then CP (xi) =
{1}, otherwise there exists an element of order 5 in CM (xi), and 5 divides
CM (xi). Write Ji = {x ∈ P | xxi = x−1}. Then P = J1 = J2, since
|Ji| = |P |/|CP (xi)|, by Lemma 10.4.1 of [10]. But then x1 inverts all elements
of P and x2 inverts all elements of P and then x3 = x1x2 centralizes all
elements of P , i.e. CP (x3) = P , a contradiction since 5 does not divides
|CM (x3)|.

Let a be a non-trivial element of V such that 5 divides |CM (a)|. Then 5

divides also |(CM (a))y| = |CM (ay)|, and |(CM (a))y
2 | = |CM (ay

2

)|, since M
is normal in G.

Also N/M = {M,aM, ayM,ay
2

M}, since G/M is isomorphic to A4.

Then we have ψ(N) = ψ(M) +ψ(aM) +ψ(ayM) +ψ(ay
2

M). By Lemma

2.5(2), ψ(aM) ≥ 5.2|M |, ψ(ayM) ≥ 5.2|M | and ψ(ay
2

)M ≥ 5.2|M |. Hence
ψ(N) ≥ ψ(M) + 15.6|M | = ψ(M) + 3.9|N |, hence o(N) ≥ o(M)/4 + 3.9 and
o(M) ≤ (4.56−3.9)×4 = 0.66×4 = 2.64, contradicting Proposition 2.2, since
M is a group of odd order and 5 divides |M |.

The proof of Theorem 1.3 is now complete.
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