

## SERIJA III

www.math.hr/glasnik

Marcel Herzog, Patrizia Longobardi and Mercede Maj

On groups with average element orders equal to the average
order of the alternating group of degree 5

Manuscript accepted February 2, 2023.

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by Glasnik Production staff.

# ON GROUPS WITH AVERAGE ELEMENT ORDERS EQUAL TO THE AVERAGE ORDER OF THE ALTERNATING GROUP OF DEGREE 5

MARCEL HERZOG, PATRIZIA LONGOBARDI AND MERCEDE MAJ

ABSTRACT. Let G be a finite group. Denote by  $\psi(G)$  the sum  $\psi(G) = \sum_{x \in G} |x|$ , where |x| denotes the order of the element x, and by o(G) the average element orders, i.e. the quotient  $o(G) = \frac{\psi(G)}{|G|}$ . We prove that  $o(G) = o(A_5)$  if and only if  $G \simeq A_5$ , where  $A_5$  is the alternating group of degree 5.

This paper is dedicated to the memory of Professor Zvonimir Janko.

#### 1. Introduction

Let G be a finite group. Denote by  $\psi(G)$  the sum

$$\psi(G) = \sum_{x \in G} |x|,$$

where |x| denotes the order of the element x, and by o(G) the quotient

$$o(G) = \frac{\psi(G)}{|G|}.$$

Thus o(G) denotes the average element orders of G. Moreover, if  $S\subseteq G$ , then we define  $\psi(S)=\sum_{x\in S}|x|$ . Recently many authors studied the function  $\psi(G)$  and, more generally,

Recently many authors studied the function  $\psi(G)$  and, more generally, properties of finite groups determined by their element orders (see for example [1]-[9], [11]-[18], [20]-[26], [30], [31], [33]-[37]). It is easy to see that  $\psi(A_4) = 31 = \psi(D_{10})$ , where  $A_4$  is the alternating group of degree 4 and  $D_{10}$  is the dihedral group of order 10. Hence  $\psi(G)$  usually does not identify the group

<sup>2020</sup> Mathematics Subject Classification. Primary 20D60; Secondary 20F16, 20E34. Key words and phrases. Group element orders, alternating group.

G. However, it is possible to prove that if  $\psi(G) = \psi(S_3)$ , then  $G \simeq S_3$ , and that if  $\psi(G) = \psi(A_5)$ , then  $G \simeq A_5$  (see [1], [4], [22] for more examples of groups G identified by the function  $\psi(G)$ ). Another problem that has been recently studied by many authors is to find some bounds on  $\psi(G)$  that imply that the group G belongs to some classes of groups, like the class of solvable, or nilpotent, or supersolvable groups (see for example [4], [5], [9], [14], [18], [34] and [35]).

In this paper we shall study similar problems for the function o(G).

If  $C_n$  denotes the cyclic group of order n, and we consider the groups  $G_1 = C_8 \times C_2$ , and  $G_2 = C_8 \times C_2$ , where  $C_2 = \langle a \rangle$ ,  $C_8 = \langle b \rangle$ ,  $b^a = b^5$ , then it is easy to prove that  $\psi(G_1) = \psi(G_2) = 87$ . Thus  $o(G_1) = o(G_2)$  and of course  $G_1$  and  $G_2$  are not isomorphic. Hence usually the function o(G) does not identify the group G. But again sometimes that happens, for example  $o(G) = o(S_3)$  if and only if  $G \simeq S_3$  (see Theorem A of [17]), and  $o(G) = o(A_4)$  if and only if  $G \simeq A_4$  (see [36]).

A. Jaikin-Zapirain started in his paper [27] the investigation of the function o(G). He proved that if G is a finite group, then  $o(G) \geq o(Z(G))$  (Lemma 2.7), and that  $o(G) \leq k(G)$ , the number of conjugacy classes in G (Lemma 2.9). He also posed the following question: let G be a finite (p-)group and N a normal (abelian) subgroup of G, is it true that  $o(G) \geq o(N)^{\frac{1}{2}}$ ? Ten years later, in their paper [19], E.I. Khukhro, A. Moretó and M. Zarrin provided a negative answer to Jaikin-Zapirain's question, in fact they proved that if c > 0 is any real number and  $p \geq \frac{3}{c}$  a prime, then there exists a finite p-group with a normal abelian subgroup N such that  $o(G) < o(N)^c$ .

In the same paper they posed the following conjecture.

Conjecture 1.1. Let G be a finite group and suppose that

$$o(G) < o(A_5).$$

Then G is solvable.

In the paper [17] we proved that the conjecture is true. In fact we proved the following theorem.

Theorem 1.2. Let G be a finite group and suppose that

$$o(G) \leq o(A_5).$$

Then either G is solvable or  $G \simeq A_5$ .

Notice that

$$o(A_5) = \frac{\psi(A_5)}{|A_5|} = \frac{211}{60} = 3.51666...$$

The structure of a solvable group with  $o(G) \leq o(A_5)$  is still unknown.

In this paper we prove that there are no solvable groups with  $o(G) = o(A_5)$ . In fact we prove the following theorem.

Theorem 1.3. Let G be a finite group and suppose that

$$o(G) = o(A_5) = \frac{211}{60}.$$

Then  $G \simeq A_5$ .

In particular the group  $A_5$  is identified by its average order.

Notice that M. Tărnăuceanu in the paper [36] obtained a similar criterion for supersolvability, showing that if  $o(G) < o(A_4)$ , then G is supersolvable.

Our notation in this paper is the usual one (see for example [10] and [32]). If G is a finite group, then 1 will denote the identity element of G and sometimes also the group  $\{1\}$ . We shall denote by  $i_2(G)$  the number of elements of G of order 2 and by  $i_3(G)$  the number of elements of G of order 3. Sometimes we shall use the shorter notation  $i_2$  and  $i_3$ , if there is no ambiguity. Moreover, if  $S \subseteq G$ , then we shall denote by  $i_2(S)$  the number of elements of G of order 2.

In Section 2 we shall recall some useful results concerning the function o(G).

In Section 3 we shall prove Theorem 1.3.

#### 2. Some results about the function o(G).

We start this section with some basic results concerning the function o(G).

Proposition 2.1. Let G be a finite group and  $G \neq 1$ . Then the following statements hold.

- (1) We have  $o(G) \geq 2 \frac{1}{|G|} \geq \frac{3}{2}$ . In particular, if G is an elementary abelian 2-group, then  $o(G) = 2 \frac{1}{|G|}$  and if G is not an elementary abelian 2-group, then  $o(G) \geq 2 + \frac{1}{|G|}$ . Hence  $o(G) \leq 2$  if and only if G is an elementary abelian 2-group and  $o(G) = 2 \frac{1}{|G|}$ .
- (2) If G is of odd order, then  $o(G) \ge 3 \frac{2}{|G|} \ge 3 \frac{2}{3} = \frac{7}{3}$ .
- (3) If  $G = A \times B$  with (|A|, |B|) = 1, then o(G) = o(A)o(B). In particular, if  $A \neq 1$  and  $B \neq 1$ , then

$$o(G) \ge \frac{7}{2}.$$

PROOF. See [17], Lemma 1.1.

For groups G of odd order and of exponent greater than 3, we have the following stronger result.

Proposition 2.2. Let G be a group of odd order and of exponent greater than 3. Then

$$o(G) \ge 3.5 - \frac{2}{|G|} \ge 3.1.$$

PROOF. If G is not a 3-group, then, by [28],  $i_3(G) + 1 \le \frac{3}{4}|G|$ , thus there exist at least  $\frac{1}{4}|G|$  elements of G of order > 3 and the rest of order  $\ge 5$ . Then we have  $\psi(G) \ge 1 + 3(|G| - 1) + 2 \cdot \frac{1}{4}|G| = -2 + 3.5|G|$ , thus  $o(G) \ge 3.5 - \frac{2}{|G|} \ge 3.5 - \frac{2}{5} = 3.5 - 0.4 = 3.1$ .

If G is a 3-group of exponent greater than 3, then, by [29],  $i_3(G)+1 \le \frac{7}{9}|G|$ , thus there exist at least  $\frac{2}{9}|G|$  elements of G of order > 3 and the rest (different from the identity) of order  $\ge 9$ . Then we have  $\psi(G) \ge 1 + 3(|G| - 1) + 6 \cdot \frac{2}{9}|G| \ge -2 + 4.3|G|$ , thus  $o(G) \ge 4.3 - \frac{2}{|G|} \ge 4.3 - \frac{2}{9} \ge 4.3 - 0.2 = 4.1$ .

The function o(G) has a very good behavior with respect to factor groups.

Proposition 2.3. Let G be a finite group containing a non-trivial normal subgroup H. Then the following statements hold.

- (1) If  $x \in G \setminus H$ , then the order |xH| of xH in G/H divides the order of xh in G for every  $h \in H$ . In particular,  $|xh| \ge |xH|$  for every  $h \in H$ .
  - (2) o(G/H) < o(G).

Now we shall prove two very useful lemmas, which we shall use in our proof of Theorem 3.1.

LEMMA 2.4. Let  $G = N \rtimes \langle x \rangle$ , with |x| = 2, N of odd order and non-abelian. Then the following holds

$$\psi(Nx) \ge 2|N| + \frac{8}{3}|N| = 4|N| + \frac{2}{3}|N|.$$

PROOF. Write  $I=\{n\in N\mid n^x=n^{-1}\}$ . Then  $i_2(Nx)=|I|$ . Moreover  $I\subset N$ , since N is not abelian. Also  $|I|=|N|/|C_N(x)|$  (see [10], Lemma 10.4.1), thus |I| divides |N|, hence  $|I|\leq \frac{|N|}{3}$ , since |N| is odd. Then the number of elements of Nx of order 2 is less or equal to  $\frac{|N|}{3}$ , hence there exist at least  $\frac{2|N|}{3}$  elements of Nx of order bigger that 2 and then of order  $\geq 6$ , by Proposition 2.3(1). Therefore we have

$$\psi(Nx) \ge 2|N| + \frac{2|N|}{3}4 = 2|N| + \frac{8}{3}|N| = 4|N| + \frac{2}{3}|N|,$$

as required.

LEMMA 2.5. Let  $G = N \rtimes \langle x \rangle$ , with |x| = 2, N of odd order. Then the following hold:

- (1) if 3 divides  $|C_N(x)|$ , then  $\psi(Nx) \ge 4.66|N|$ ,
- (2) if 5 divides  $|C_N(x)|$ , then  $\psi(Nx) \geq 5.2|N|$ .

PROOF. Write  $I = \{n \in N \mid n^x = n^{-1}\}$ . Then  $i_2(Nx) = |I|$ . Moreover  $|I| = |N|/|C_N(x)|$ , by Lemma 10.4.1 of [10].

If 3 divides  $|C_N(x)|$ , then  $|I| \leq \frac{|N|}{3}$ . Then the number of elements of Nx of order 2 is less or equal to  $\frac{|N|}{3}$ , hence there exist at least  $\frac{2|N|}{3}$  elements of Nx of order bigger that 2 and then of order  $\geq 6$ , by Proposition 2.3(1). Therefore we have  $\psi(Nx) \geq 2|N| + \frac{2|N|}{3}4 = 2|N| + \frac{8}{3}|N| = 4|N| + \frac{2}{3}|N| \geq 4.66|N|$ . That proves (1).

If 5 divides  $|C_N(x)|$ , then  $|I| \leq \frac{|N|}{5}$ . Then the number of elements of Nx of order 2 is less or equal to  $\frac{|N|}{5}$ , hence there exist at least  $\frac{4|N|}{5}$  elements of Nx of order bigger that 2 and then of order  $\geq 6$ , by Proposition 2.3(1). Therefore we have  $\psi(Nx) \geq 2|N| + \frac{4|N|}{5}4 = 2|N| + \frac{16}{5}|N| = 5.2|N|$ . Therefore (2) holds.

#### 3. The proof of Theorem 1.3

In this section we shall study the structure of a finite group G such that  $o(G) = o(A_5)$ . We start with an easy but interesting remark on the order of G.

LEMMA 3.1. Let G be a finite group with  $o(G) = o(A_5)$ . Then

$$|G| = 60k,$$

where k is an odd number.

PROOF. We have  $\frac{\psi(G)}{|G|} = \frac{211}{60} = o(A_5)$ . Moreover  $\psi(G)$  is odd. Thus  $211|G| = 60\psi(G)$ , 60 divides |G| and |G| = 60k, with k odd.

By Lemma 3.1, if G is a finite group such that  $o(G) = o(A_5)$ , then a Sylow 2-subgroup D of G has order 4. First we show that D is not cyclic.

PROPOSITION 3.2. Let G be a finite group such that  $o(G) = o(A_5)$ . Then a Sylow 2-subgroup D of G is not cyclic.

PROOF. Suppose  $o(G)=o(A_5)$  and that G has a cyclic 2-subgroup. Then G is 2-nilpotent (see, for example, 10.1.9 of [32]). Therefore  $G=N\rtimes\langle y\rangle$ , with |y|=4 and |N| odd. We have  $\psi(G)=\psi(N)+\psi(Ny)+\psi(Ny^2)+\psi(Ny^3)$ , and, by Proposition 2.3(1),  $\psi(G)\geq\psi(N)+4|N|+2|N|+4|N|$ . Then  $\psi(G)\geq\psi(N)+2|G|+\frac{|G|}{2}=\psi(N)+2.5|G|$ . Then  $o(G)\geq\frac{o(N)}{4}+2.5$ , and  $o(N)\leq(3.52-2.5)\times4=1.02\times4=4.08$ .

If N is abelian, there exists a cyclic quotient N/V of N of order 15. Then we have  $o(N/V)=\frac{21}{5}\frac{7}{3}=\frac{49}{5}=9.8$ , a contradiction, since, by Proposition 2.3(2),  $o(N/V)\leq o(N)\leq 4.08$ .

Then N is not abelian, therefore, by Lemma 2.4,  $\psi(Ny^2) \ge 4|N| + \frac{2}{3}|N|$ . Therefore we have  $\psi(G) = \psi(N) + \psi(Ny) + \psi(Ny^3) + \psi(Ny^2) \ge \psi(N) + 4|N| + \frac{2}{3}|N|$ .  $4|N| + 4|N| + \frac{2}{3}|N| = \psi(N) + 3|G| + \frac{|G|}{6}$ . Thus  $o(N) \le (o(G) - 3.166) \times 4 \le (0.36) \times 4 = 1.44$ , a contradiction with Proposition 2.2.

Now we shall prove that a finite group with  $o(G) = o(A_5)$  is not 2-nilpotent.

Proposition 3.3. Let  $G = N \rtimes V$  be a finite group, with |N| odd and |V| = 4. Then

$$o(G) \neq o(A_5)$$
.

PROOF. Suppose  $o(G)=o(A_5)$ . Then V is not cyclic, by Proposition 3.2. Then V is a Klein group. Hence  $G=N\cup Nx_1\cup Nx_2\cup Nx_3$ , with  $|x_1|=|x_2|=|x_3|=2$ . Thus, by Proposition 2.3(1),  $\psi(G)\geq \psi(N)+2|N|+2|N|+2|N|=\psi(N)+|G|+\frac{|G|}{2}$ . Then  $o(N)\leq (o(G)-1.5)\times 4\leq (2.02)\times 4=8.08$ .

If N is abelian, then N has a cyclic quotient N/V of order 15, thus, arguing as in Proposition 3.2, o(N/V) = 9.8, a contradiction, since, by Proposition 2.3(2),  $o(N/V) \le o(N) \le 8.08$ .

Then N is not abelian. Hence, by Lemma 2.4,  $\psi(Nx_i) \ge 4|N| + \frac{2}{3}|N|$ , for every  $i \in \{1, 2, 3\}$ . Then  $\psi(G) \ge \psi(N) + 4|N| + 4|N| + 4|N| + 2|N| = \psi(N) + 3|G| + \frac{|G|}{2} = \psi(N) + 3.5|G|$  and  $o(N) \le (o(G) - 3.5) \times 4 \le 0.017 \times 4 = 0.068$ , a contradiction with Proposition 2.2.

We conclude this paper with the proof of Theorem 1.3.

PROOF. (of Theorem 1.3) Suppose that there exists a finite group G which satisfies  $o(G) = o(A_5)$  and it is not isomorphic to  $A_5$ . Then G is a solvable group, by Theorem B of [17].

Moreover, |G| = 60k, with k odd, by Lemma 3.1.

We shall reach a contradiction, which will indicate that if a finite group G satisfies  $o(G) = o(A_5)$ , then  $G \simeq A_5$ , as required.

By Hall's theorem, there exists a subgroup H of G of index 4. Write  $M=H_G$ , the core of H in G. Then M is normal in G and G/M is a subgroup of  $S_4$ . Also |M| is odd, 4 divides |G/M| and 8 does not divide |G/M|. Moreover |G/M| is not 4, by Proposition 3.3. Therefore |G/M| = 12 and  $G/M \simeq A_4$ . Then there exists a normal subgroup N/M of G/M, with |G/N| = 3, and  $N = M \rtimes V$  where V is a Klein group. Write  $G = N\langle y \rangle$ . If |yn| > 3, for every  $n \in N$ , then  $|yn| \ge 6$ , for every  $n \in N$ , by Proposition 2.3(1). Then we have  $\psi(Ny) \ge 6|N|$  and  $\psi(Ny^2) \ge 6|N|$ . Hence  $\psi(G) \ge \psi(N) + 6|N| + 6|N| = \psi(N) + 4|G|$ , and  $o(G) \ge o(N)/3 + 4$ , a contradiction since  $o(G) = o(A_5) \le 3.52$ .

Therefore we can suppose that |y|=3.

Then  $G = N \rtimes \langle y \rangle$ .

Now we prove that  $o(N) \leq 4.56$ .

In fact, we have  $\psi(G) \ge \psi(N) + 3|N| + 3|N| = \psi(N) + 2|G|$ , and  $o(G) \ge o(N)/3 + 2$ . Hence  $o(N) \le (3.52 - 2) \times 3 = 1.52 \times 3 = 4.56$ , as required.

Recall that  $N = M \times V$ , where V is a Klein group and |M| is odd.

Then 5 divides the order of M, since 5 divides the order of G.

We claim that there exists a non-trivial element  $a \in V$  such that 5 divides  $|C_M(a)|$ .

Suppose not. Write  $V = \{1, x_1, x_2, x_3\}$ . By Theorem 6.2.2 of [10] there exists a non-trivial V-invariant Sylow 5-subgroup P of M. Then  $C_P(x_i) = \{1\}$ , otherwise there exists an element of order 5 in  $C_M(x_i)$ , and 5 divides  $C_M(x_i)$ . Write  $J_i = \{x \in P \mid x^{x_i} = x^{-1}\}$ . Then  $P = J_1 = J_2$ , since  $|J_i| = |P|/|C_P(x_i)|$ , by Lemma 10.4.1 of [10]. But then  $x_1$  inverts all elements of P and P0 and P1 and then P2 centralizes all elements of P3. Contradiction since 5 does not divides  $|C_M(x_3)|$ .

Let a be a non-trivial element of V such that 5 divides  $|C_M(a)|$ . Then 5 divides also  $|(C_M(a))^y| = |C_M(a^y)|$ , and  $|(C_M(a))^{y^2}| = |C_M(a^{y^2})|$ , since M is normal in G.

Also  $N/M = \{M, aM, a^yM, a^{y^2}M\}$ , since G/M is isomorphic to  $A_4$ .

Then we have  $\psi(N) = \psi(M) + \psi(aM) + \psi(a^yM) + \psi(a^{y^2}M)$ . By Lemma 2.5(2),  $\psi(aM) \geq 5.2|M|$ ,  $\psi(a^yM) \geq 5.2|M|$  and  $\psi(a^{y^2})M \geq 5.2|M|$ . Hence  $\psi(N) \geq \psi(M) + 15.6|M| = \psi(M) + 3.9|N|$ , hence  $o(N) \geq o(M)/4 + 3.9$  and  $o(M) \leq (4.56 - 3.9) \times 4 = 0.66 \times 4 = 2.64$ , contradicting Proposition 2.2, since M is a group of odd order and 5 divides |M|.

The proof of Theorem 1.3 is now complete.

#### ACKNOWLEDGEMENTS.

This work was supported by the "National Group for Algebraic and Geometric Structures, and their Applications" (GNSAGA - INdAM), Italy.

### REFERENCES

- [1] H. Amiri, S. M. Jafarian Amiri, Sums of element orders on finite groups of the same order, J. Algebra Appl. 10 (2) (2011), 187-190.
- [2] H. Amiri, S. M. Jafarian Amiri, Sum of element orders of maximal subgroups of the symmetric group, Comm. Algebra 40 (2) (2012), 770-778.
- [3] H. Amiri, S. M. Jafarian Amiri, I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978-2980.
- [4] A. Bahri, B. Khosravi, Z. Akhlaghi, A result on the sum of element orders of a finite group, Arch. Math. (Basel) 114 (1) (2020), 3-12.
- [5] M. Baniasad Azad, B. Khosravi, A Criterion for Solvability of a Finite Group by the Sum of Element Orders, J. Algebra 516 (2018), 115-124.
- [6] M. Baniasad Azad, B. Khosravi, On the sum of element orders of PSL(2,p) for some p, Ital. J. Pure and Applied Math. 42 (2019), 12-24.
- [7] M. Baniasad Azad, B. Khosravi, On two conjectures about the sum of element orders, Can. Math. Bull. 65 (1) (2022), 30-38.

- [8] R. Brandl, W. Shi, The characterization of PSL(2, p) by its element orders, J. Algebra 163 (1) (1994), 109-114.
- [9] M. Garonzi, M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra 45 (2016), 677-687.
- [10] D. Gorenstein, Finite Groups, AMS Chelsea Publishing, New York, 1968.
- [11] M. Herzog, P. Longobardi, M. Maj, An exact upper bound for sums of element orders in non-cyclic finite groups, J. Pure Appl. Algebra, 222 (7) (2018), 1628-1642.
- [12] M. Herzog, P. Longobardi, M. Maj, Properties of finite and periodic groups determined by their elements orders (a survey), Group Theory and Computation, Indian Statistical Institute Series, (2018), 59-90.
- [13] M. Herzog, P. Longobardi, M. Maj, Sums of element orders in groups of order 2m with m odd, Comm. Algebra 47 (5) (2019), 2035-2048.
- [14] M. Herzog, P. Longobardi, M. Maj, Two new criteria for solvability of finite groups in finite groups, J. Algebra 511 (2018), 215-226.
- [15] M. Herzog, P. Longobardi, M. Maj, Sums of element orders in groups of odd order, Int. J. Algebra Comp. 31 (6) (2021), 1049-1063.
- [16] M. Herzog, P. Longobardi, M. Maj, The second maximal groups with respect to the sum of element orders, J. Pure Appl. Algebra 225 (3) (2021), 1-11.
- [17] M. Herzog, P. Longobardi, M. Maj, Another criterion for solvability of finite groups, J. Algebra 597 (2022), 1-23.
- [18] M. Herzog, P. Longobardi, M. Maj, New criteria for solvability, nilpotency and other properties of finite groups in terms of the order elements or subgroups, Int. J. Group Theory 12 (1) (2023), 35-44.
- [19] E. I. Khukhro, A. Moretó, M. Zarrin, The average element order and the number of conjugacy classes of finite groups, J. Algebra 569 (1) (2021), 1-11.
- [20] S. M. Jafarian Amiri, Second maximum sum of element orders of finite nilpotent groups, Comm. Algebra 41 (6) (2013), 2055-2059.
- [21] S. M. Jafarian Amiri, Maximum sum of element orders of all proper subgroups of PGL(2,q), Bull. Iran. Math. Soc. 39 (3) (2013), 501-505.
- [22] S. M. Jafarian Amiri, Characterization of A<sub>5</sub> and PSL(2,7) by sum of element orders, Int. J. Group Theory 2 (2) (2013), 35-39.
- [23] S. M. Jafarian Amiri, M. Amiri, Second maximum sum of element orders on finite groups, J. Pure Appl. Algebra 218 (3) (2014), 531-539.
- [24] S. M. Jafarian Amiri, M. Amiri, Sum of the products of the orders of two distinct elements in finite groups, Comm. Algebra 42 (12) (2014), 5319-5328.
- [25] S. M. Jafarian Amiri, M. Amiri, Characterization of p-groups by sum of the element orders, Publ. Math. Debrecen 86 (1-2) (2015), 31-37.
- [26] S. M. Jafarian Amiri, M. Amiri, Sum of the Element Orders in Groups with the Square-Free Order, Bull. Malays. Math. Sci. Soc. 40 (2017), 1025-1034.
- [27] A. Jaikin-Zapirain, On the number of conjugacy classes of finite nilpotent groups, Adv. Math. 227 (2011), 1129-1143.
- [28] T. J. Laffey, The number of solutions of  $x^p = 1$  in a finite group, Math. Proc. Cambridge Philos. Soc. 80 (1976), 229-231.
- [29] T. J. Laffey, The number of solutions of  $x^3 = 1$  in a 3-group, Math. Z. **149** (1976), 43-45.
- [30] M. S. Lazorec, M. M. Tărnăuceanu, On the average order of a finite group, J. Pure Appl. Algebra 227 (4) (2023), 107276.
- [31] Y. Marefat, A. Iranmanesh, A. Tehranian, On the sum of element orders of finite simple groups, J. Pure Appl. Algebra 12 (7) (2013), 135-138.
- [32] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag Berlin, Heidelberg, New York, 1996.

- [33] R. Shen, G Chen, C. Wu, On groups with the second largest value of the sum of element orders, Comm. Algebra 43 (6) (2015), 2618-2631.
- [34] M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. 238 (2020), 629-637.
- [35] M. Tărnăuceanu, A criterion for nilpotency of a finite group by the sum of element orders, Comm. Algebra 49 (2021), 1571-1577.
- [36] M. Tărnăuceanu, Another criterion for supersolvability of finite groups, J. Algebra 604 (2022), 682-693.
- [37] M. Tărnăuceanu, D.G. Fodor, On the sum of element orders of finite abelian groups, Sci. An. Univ. "A1.I. Cuza" Iasi, Ser. Math. LX (2014), 1-7.

M. Herzog School of Mathematical Sciences Tel-Aviv University Ramat-Aviv, Tel-Aviv, Israel

Ramat-Aviv, Tel-Aviv, Israel
E-mail: herzogm@tauex.tau.ac.il

P. Longobardi Dipartimento di Matematica Università di Salerno via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy E-mail: plongobardi@unisa.it

M. Maj Dipartimento di Matematica Università di Salerno via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy E-mail: mmaj@unisa.it