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Dean Crnković, Ana Grbac and Andrea Švob
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Abstract. In 2002, P. Gaborit introduced two constructions of self-
dual codes using quadratic residues, so-called pure and bordered construc-
tion, as a generalization of the Pless symmetry codes. In this paper, we
further study conditions under which the pure and the bordered construc-
tion using Paley designs and Paley graphs yield self-dual codes. Special
attention is given to the binary and ternary codes. Further, we construct t-
designs from supports of the codewords of a particular weight in the binary
and ternary codes obtained.

1. Introduction

We assume that the reader is familiar with basic concepts of design theory,
graph theory and coding theory. We refer the reader to [2] for background in
design theory and to [14] for coding theory.

In [10], P. Gaborit introduced two constructions of self-dual codes from
Paley designs and Paley graphs, so-called pure and bordered construction.
The Gaborit’s construction is a generalization of the construction of Pless
symmetry codes [19]. This concept is further generalized in [9], where the
authors studied codes obtained by the pure and bordered constructions from
two-class association schemes. They applied this method to construct self-dual
codes from some strongly regular graphs and doubly regular tournaments,
including some rank 3 graphs and line graphs of complete or complete bipartite
graphs and Steiner systems. Among others, in [9] the authors constructed
two binary self-dual [200, 100, 12] codes (Type I and Type II, respectively)
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invariant under the action of the Higman-Sims group [12], and two binary self-
dual [200, 100, 16] codes (Type I and Type II, respectively) invariant under
the action of the Janko group J2 [15]. These self-dual codes with parameters
[200, 100, 12] and [200, 100, 16] are constructed using the Higman-Sims graph
[12] and the Hall-Janko graph [13], respectively. Recently, the pure and the
bordered construction were used for a construction of formally self-dual LCD
codes from two-class association schemes [7].

In this paper, we extend the study of self-dual codes obtained from Paley
designs and Paley graphs using the pure and the bordered construction. We
give conditions under which binary and ternary codes obtained by the pure
and the bordered construction are self-dual and cover the cases not studied
before. Further, we construct t-designs from supports of the codewords of a
particular weight in the binary and ternary codes obtained by applying the
pure and the bordered construction to some Paley designs and Paley graphs.

2. Preliminaries

An incidence structure D = (P ,B, I), with point set P , block set B and
incidence I is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident with
precisely k points, and every t distinct points are jointly incident with precisely
λ blocks. A design is called symmetric if it has the same number of points
and blocks, and 2-designs are usually called block designs. An automorphism
of a design D is a permutation on P which sends blocks to blocks. A design is
called simple if it has no repeated blocks. Methods for constructing t-designs
include the Kramer-Mesner method [18], the method using orbit matrices of a
prescribed automorphism group [16], and constructions from codes (see, e.g.,
[3, 8, 19]).

A regular graph is strongly regular with parameters (v, k, λ, µ) if it has v
vertices, degree k, and if any two adjacent vertices are jointly adjacent to λ

vertices, while any two non-adjacent vertices are jointly adjacent to µ vertices.
A strongly regular graph with parameters (v, k, λ, µ) is usually denoted by
SRG(v, k, λ, µ). A strongly regular graph is a distance-regular graph with
diameter 2 whenever µ 6= 0. The intersection array of an SRG is given by
{k, k − 1 − λ; 1, µ} (see [5]). More on strongly graphs the reader can find in
[6].

Let q be a prime power and let Fq be the field of order q. If q ≡ 3 mod 4
then the non-zero squares in Fq form a Paley difference set, which leads to a

symmetric (q, q−1

2
, q−3

4
) design called a Paley design (see [2]). In case when

q ≡ 1 mod 4, then the non-zero squares in Fq form a Paley partial difference

set leading to a strongly regular graph with parameters (q, q−1

2
, q−5

4
, q−1

4
),

called a Paley strongly regular graph.
A q-ary linear code C of dimension k, is a k-dimensional subspace of a

vector space Fn
q . The elements of C are called codewords. Let x = (x1, ..., xn)
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and y = (y1, ..., yn) ∈ F
n
q . The Hamming distance between words x and y

is the number d(x, y) = |{i : xi 6= yi}|. The minimum distance of the code
C is defined by d = min{d(x, y) : x, y ∈ C, x 6= y}. A q-ary linear code of
length n and dimension k is called an [n, k]q code. An [n, k]q code of minimum
distance d is called an [n, k, d]q code, or [n, k, d] code when the order q of the
field is understood. A linear [n, k, d] code can detect at most d − 1 errors
in one codeword and correct at most t =

⌊

d−1
2

⌋

errors. A linear [n, k, d]q
code C is called optimal if the minimum weight of C achieves the theoretical
upper bound on the minimum weight of linear [n, k]q codes. Let wi denote
the number of codewords of weight i in a code C of length n. The weight
of a codeword x is w(x) = d(x, 0) = |{i : xi 6= 0}|. For a linear code,
d = min{w(x) : x ∈ C, x 6= 0}. The weight distribution of C is the list
[〈i, wi〉 : 0 ≤ i ≤ n]. The support of a nonzero vector x = (x1, ..., xn) ∈ F

n
q is

the set of indices of its nonzero coordinates, i.e. supp(x) = {i|xi 6= 0}. The
support design of a code of length n for a given nonzero weight w is the design
with points the n coordinate indices and blocks the supports of all codewords
of weight w. In the case of binary codes support designs are simple, and
otherwise the support designs have repeated blocks. Two codes are said to be
isomorphic if one can be obtained from the other by permuting the coordinate
positions. An automorphism of the code C is an isomorphism from C to C.
Two codes over a finite field are called equivalent if one of the codes can be
obtained from the other by permuting the coordinates and multiplication of
components by non-zero elements. A generator matrix of an [n, k] code is a
k × n matrix whose rows are the vectors of a basis of the code.

Let A be an adjacency matrix of a Paley strongly regular graph with
parameters (q, q−1

2
, q−5

4
, q−1

4
), or an incidence matrix of a Paley design with

parameters (q, q−1

2
, q−3

4
), and A = Jq − Iq − A, where Iq and Jq are the

identity and the all-one matrix of order q, respectively. For arbitrary scalars
r, s, t ∈ R, where R is a finite commutative ring with identity, let QR

q (r, s, t) =

(rIq + sA+ tA).

The following theorem, which is used for constructing self-dual codes, is
given in [10].

Theorem 2.1 (Theorem 3.1, [10]). Let q be a power of an odd prime and

let QR
q (a, b, c) be a quadratic residue circulant matrix with a, b and c elements

of R. If q = 4k + 1, then

QR
q (a, b, c)Q

R
q (a, b, c)

t = QR
q (a

2 + 2k(b2 + c2), 2ab− b2+

k(b+ c)2, 2ac− c2 + k(b+ c)2)
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and

QR
q (a, b, c)Q

R
q (a, b, c)

t = QR
q (a

2 + 4bck, ab+ ac− bc+ (b+ c)2k,

ab+ ac− bc+ (b + c)2k).

If q = 4k + 3, then

QR
q (a, b, c)Q

R
q (a, b, c)

t = QR
q (a

2 + (2k + 1)(b2 + c2), ab + ac+ k(b2 + c2)+

(2k + 1)bc, ab+ ac+ k(b2 + c2) + (2k + 1)bc)

and

QR
q (a, b, c)Q

R
q (a, b, c)

t = QR
q (a

2 + 2bc(2k + 1), 2ab+ c2 + (b + c)2k,

2ac+ b2 + (b+ c)2k).

The matrix PR
q (r, s, t) =

[

Iq QR
q (r, s, t)

]

generates a [2n, n] code over
R. Further, the matrix

BR
q (r, s, t) =











1 0 . . . 0 α β . . . β

0 γ
... Iq

... QR
q (r, s, t)

0 γ











,

where α, β, γ ∈ R, generates a [2n+ 2, n+ 1] code over R. The constructions
of codes spanned by the matrices PR

q (r, s, t) and BR
q (r, s, t) are called the pure

and the bordered construction, respectively.
In the sequel, let R be a finite commutative ring with identity. A code

of length n over R is a subset of Rn and the code is said to be linear if it
is an R-submodule of Rn. Minimum distance, the weight and the support
of a codeword, as well as an isomorphism between two codes, for codes over
rings are defined in the same way as for codes over fields. The standard scalar
product on Rn is defined as x · y =

∑

xiyi. The dual code C⊥ of C is the
orthogonal complement of C with respect to the standard scalar product.
A code C is called self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥. A
self-dual code C over Z2m is called Type II if the Euclidean norm of every
codeword of C is divisible by 4m, otherwise it is called Type I. Computations
in this paper consist of programs written for Magma [4].

3. Codes obtained from Paley designs

Note that the Paley construction from non-zero squares in a field Fq,

q ≡ 3 mod 4, gives a symmetric design with parameters (q, q−1

2
, q−3

4
) having

a skew incidence matrix. This skew matrix is an adjacency matrix of a doubly
regular tournament with parameters (q, q−1

2
, q−3

4
, q+1

4
).

The following statement follows from Theorem 3.4 in [9].
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Theorem 3.1. The code generated by PR
q (r, s, t) formed from an inci-

dence matrix of a Paley design with parameters (4λ + 3, 2λ + 1, λ), where

λ = q−3

4
, is self-dual over R if and only if

r2 + s2 + t2 + 2λ(s2 + t2) = −1,

rt+ sr + st+ λ(s+ t)2 = 0.

Furthermore, the self-dual code P Z2m

q (r, s, t) is Type II if and only if

1 + r2 + s2 + t2 + 2λ(s2 + t2) ≡ 0 mod 4m.

Proof. The statement follows from the equations given in [9, Theorem
3.4] and the fact that a skew incidence matrix of the Paley design with param-
eters (4λ+3, 2λ+1, λ) is an adjacency matrix of a doubly regular tournament
with parameters (4λ+ 3, 2λ+ 1, λ, λ+ 1).

Similarly, the following theorem follows from Theorem 3.5 given in [9].

Theorem 3.2. The code generated by BR
q (r, s, t) formed from an inci-

dence matrix of a Paley design with parameters (4λ+ 3, 2λ+ 1, λ), λ = q−3

4
,

is self-dual over R if and only if

r2 + s2 + t2 + 2λ(s2 + t2) = −(1 + γ2),

rt+ sr + st+ λ(s+ t)2 = −γ2,

1 + α2 + 3β2 + 4λβ2 = 0,

αγ + β(r + s+ t) + 2λβ(s+ t) = 0.

The self-dual code BZ2m

q (r, s, t) is Type II if and only if

1 + γ2 + r2 + s2 + t2 + 2λ(s2 + t2) ≡ 0 mod 4m

and

1 + α2 + 3β2 + 4λβ2 ≡ 0 mod 4m.

3.1. Binary codes form Paley designs. In Tables 1 and 2, we give conditions
under which the constructions from Paley designs yield self-dual binary codes,
and which of the self-dual codes are Type II. These conditions follow from
Theorems 3.1 and 3.2.

It turns out that codes that are interesting in terms of parameters are
obtained for a prime power q = 3 + 8k, where k is a positive integer, in the
following cases:

1. P F2

q (0, 0, 1),

2. P F2

q (0, 1, 0),

3. BF2

q (1, 0, 1) where α = 0, β = γ = 1,

4. BF2

q (1, 1, 0), where α = 0, β = γ = 1.
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Table 1. Self-dual binary codes from Paley designs, pure construction

r s t P F2

q (r, s, t) self-dual Type II

0 0 1 λ even Never
0 1 0 λ even Never
0 1 1 Never -
1 0 0 Always Never
1 0 1 Never -
1 1 0 Never -
1 1 1 Never -

Table 2. Self-dual binary codes from Paley designs, bor-
dered construction

r s t BF2

q (r, s, t) self-dual Type II

0 0 1 λ even, γ = 0 Never
0 1 0 λ even, γ = 0 Never
0 1 1 γ = 1 1 + α2 + 3β2 + 4λβ2 ≡ 0 mod 4
1 0 0 γ = 0 Never
1 0 1 λ even, γ = 1 1 + α2 + 3β2 + 4λβ2 ≡ 0 mod 4
1 1 0 λ even, γ = 1 1 + α2 + 3β2 + 4λβ2 ≡ 0 mod 4
1 1 1 Never -

3.1.1. Designs from binary codes. Using computations in Magma we ob-
tained self-dual codes from Paley designs taking into consideration particular
prime powers of the form q = 3 + 8k, where k is a positive integer. Further,
we construct t-designs from supports of the codewords of a particular weight.

• Let q = 11. Then, the Paley design has parameters (11, 5, 2). The

binary self-dual code obtained using P F2

11 (0, 0, 1) (an isomorphic code

is obtained for P F2

11 (0, 1, 0)) has parameters [22, 11, 6]. From supports of
the codewords of the binary code we obtained designs with parameters
3-(22, 6, 1); b = 77, 3-(22, 8, 12); b = 330, and 3-(22, 10, 48); b = 616.
All the designs have M22 ⋊ Z2 as the full automorphism group. Since
the Mathieu group M22 acts 3-transitively on 22 points, one can easily
obtain above mentioned designs from the group action.

The binary self-dual code obtained using BF2

11 (1, 1, 0) (an isomor-

phic code is obtained for BF2

11 (1, 0, 1)) has parameters [24, 12, 8], i.e., it
is the famous extended binary Golay code. From supports of the code-
words of the code we obtained designs with parameters 5-(24, 8, 1); b =
77, 5-(24, 12, 48); b = 2576, and 5-(24, 16, 78); b = 759. All these de-
signs have the Mathieu group M24 as the full automorphism group and
their existence has been known long ago. For more information see [1].
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• Let q = 27. The Paley design has parameters (27, 13, 6). The binary

self-dual code obtained using BF2

27 (1, 1, 0) (an isomorphic code is ob-

tained for BF2

27 (1, 0, 1)) has parameters [56, 28, 12] and it is extremal
doubly-even self-dual code described by Harada in [11]. From sup-
ports of the codewords of the code we obtained a 3-(56, 12, 65) design;
b = 8190, isomorphic to the one obtained in [11], and a 3-(56, 16, 12572)
design; b = 622314. Both designs have L2(27) ⋊ Z6 as the full auto-
morphism group.

Remark 3.3. If the weight distribution of a code and its dual code satisfy
certain conditions, then the Assmus-Matson theorem (see [1]) guarantees that
the codewords of these codes hold t-designs. In the examples described above,
the existence of the designs in the codes constructed can be explained by the
Assmus-Matson theorem.

3.2. Ternary codes from Paley designs. In Tables 3 and 4, we give conditions
under which the constructions from Paley designs yield self-dual ternary codes.
These conditions follow from Theorems 3.1 and 3.2. In the tables, we observe
the case when the product srt = 0. The case s = t = 0 can not occur.

Table 3. Self-dual ternary codes from Paley designs, pure construction

r s t P F3

q (r, s, t) self-dual

6= 0 6= 0 0 Never
6= 0 0 6= 0 Never
0 6= 0 0 Never
0 0 6= 0 Never
0 6= 0 6= 0 Never

Table 4. Self-dual ternary codes from Paley designs, bor-
dered construction

r s t BF3

q (r, s, t) self-dual

6= 0 6= 0 0 λ ≡ 1 mod 3, rs = γ2 = 1
6= 0 0 6= 0 λ ≡ 1 mod 3, rt = γ2 = 1
0 6= 0 0 Never
0 0 6= 0 Never
0 6= 0 6= 0 λ ≡ 2 mod 3, st = 2, γ2 = 1

Codes that are interesting in terms of minimum distance are obtained for
a prime power q = 7 + 12k, k a non-negative integer, in the following cases:

1. BF3

q (a, a, 0), where αγ + αβ = 0, 1 + α2 + β2 = 0, a, α, β, γ ∈ F
∗
3,

2. BF3

q (a, 0, a), where αγ + αβ = 0, 1 + α2 + β2 = 0, a, α, β, γ ∈ F
∗

3,
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3. BF3

q (a, a, b), where αγ + αβ = 0, 1 + α2 + β2 = 0, a, b, α, β, γ ∈ F
∗

3,
a 6= b,

4. BF3

q (a, b, a), where αγ + αβ = 0, 1 + α2 + β2 = 0, a, b, α, β, γ ∈ F
∗

3,
a 6= b,

and a prime power q = 11 + 12k, k a non-negative integer, for

BF3

q (0, a, b), where α = 0, a, b, β, γ ∈ F3
∗, a 6= b.

3.2.1. Designs from ternary codes. Using computations in Magma we ob-
tained self-dual codes from Paley designs taking into consideration the par-
ticular prime power q. Further, we construct t-designs from supports of the
codewords of a particular weight in these ternary codes, as described below.

• Let q = 7. In this case one obtains the Paley design with parame-
ters (7, 3, 1), known as the Fano plane. The ternary self-dual code ob-

tained using BF3

7 (a, a, 0) (equivalent codes are obtained for BF3

7 (a, 0, a),

BF3

7 (a, a, b), BF3

7 (a, b, a)) has parameters [16, 8, 6], i.e., it is an optimal
ternary code. From supports of the codewords of the code we obtained
designs with parameters 3-(16, 6, 4); b = 112, 3-(16, 9, 204); b = 1360,
and 3-(16, 12, 495); b = 1260. All the designs have E64 ⋊ (L3(2) ⋊ Z2)
as the full automorphism group. By [17], the designs with these pa-
rameters were all known before.

• Let q = 11. The Paley design has parameters (11, 5, 2). The ternary

self-dual code obtained using BF3

11 (0, a, b) has parameters [24, 12, 9], and
it is an optimal ternary code isomorphic to the one constructed by V.
Pless in [19, 20]. From supports of the codewords of the code one ob-
tains designs with parameters 5-(24, 9, 6); b = 2024, 5-(24, 12, 576); b =
30912, and 5-(24, 15, 8580); b = 121440. All these designs have Z2 ×
(L2(11)⋊Z2) as the full automorphism group. They are isomorphic to
the 5-designs constructed by V. Pless in [19, 20]. Further, we obtained
one 3-design with parameters 3-(24, 18, 29784); b= 73876 which is not
described by V. Pless in [19, 20] and one cannot find it in [17] also.

• Let q = 19. The Paley design has parameters (19, 9, 4). The ternary

self-dual code obtained using BF3

19 (a, a, 0) (equivalent codes are ob-

tained for BF3

19 (a, 0, a), BF3

19 (a, a, b) and BF3

19 (a, b, a)) has parameters
[40, 20, 12]. From supports of the codewords of the code we obtained
designs with parameters 3-(40, 12, 220); b= 9880 and 3-(40, 15, 26208);
b = 569088. Both the designs have L2(19) ⋊ Z2 as the full automor-
phism group.

• Let q = 23. Then the Paley design has parameters (23, 11, 5). The

ternary self-dual code obtained by using BF3

23 (0, a, b) has parameters
[48, 24, 15], i.e., it is an optimal ternary code isomorphic to the one
constructed by V. Pless in [19, 20]. The designs obtained from this
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optimal code were described by V. Pless in [19, 20]. All the designs
have Z2 × (L2(23)⋊ Z2) as the full automorphism group.

Remark 3.4. The design with parameters 3-(24, 18, 29784) having 73876
blocks obtained from Paley design for q = 11 is the only among the examples
described above that cannot be described by Assmus-Matson theorem (see[1]).
To our best knowledge it has not been known before.

4. Codes obtained from Paley graphs

The following theorem is a consequence of Theorem 3.4 given in [9].

Theorem 4.1. The code generated by PR
q (r, s, t) formed from an adja-

cency matrix of a Paley graph with parameters (4λ+5, 2λ+2, λ, λ+1), where

λ = q−5
4

, is self-dual over R if and only if

r2 + 2s2 + 2t2 + 2λ(s2 + t2) = −1,

2rs+ 2st+ t2 + λ(s+ t)2 = 0,

2rt+ s2 + 2st+ λ(s+ t)2 = 0.

The self-dual code P Z2m

q (r, s, t) is Type II if and only if

1 + r2 + 2s2 + 2t2 + 2λ(s2 + t2) ≡ 0 mod 4m.

Proof. The statement follows from the equations given in [9, Theorem
3.4], taking into account the parameters of a Paley graph.

Similarly, the following theorem is a consequence of Theorem 3.5 from [9].

Theorem 4.2. The code generated by BR
q (r, s, t) formed from an adja-

cency matrix of a Paley graph with parameters (4λ+5, 2λ+2, λ, λ+1), where

λ = q−5
4

, is self-dual over R if and only if

r2 + 2s2 + 2t2 + 2λ(s2 + t2) = −(1 + γ2),

2rs+ 2st+ t2 + λ(s+ t)2 = −γ2,

2rt+ s2 + 2st+ λ(s+ t)2 = −γ2,

1 + α2 + 5β2 + 4β2λ = 0,

αγ + β(r + 2s+ 2t) + 2βλ(s+ t) = 0.

The self-dual code BZ2m

q (r, s, t) is Type II if and only if

1 + γ2 + r2 + 2s2 + 2t2 + 2λ(s2 + t2) ≡ 0 mod 4m

and

1 + α2 + 5β2 + 4λβ2 ≡ 0 mod 4m.
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4.1. Binary codes from Paley graphs. In Tables 5 and 6, we present conditions
under which the constructions from Paley graphs produce self-dual binary
codes, and which of the self-dual codes are Type II. These conditions follow
from Theorems 4.1 and 4.2.

Table 5. Self-dual binary codes from Paley graphs, pure construction

r s t P F2

q (r, s, t) self-dual Type II

0 0 1 Never -
0 1 0 Never -
0 1 1 Never -
1 0 0 Always Never
1 0 1 Never -
1 1 0 Never -
1 1 1 Never -

Table 6. Self-dual binary codes from Paley graphs, bor-
dered construction

r s t BF2

q (r, s, t) self-dual Type II

0 0 1 Never -
0 1 0 Never -
0 1 1 γ = 1 Never
1 0 0 γ = 0 Never
1 0 1 Never -
1 1 0 Never -
1 1 1 Never -

Remark 4.3. All the binary codes that we obtained from Paley graphs
have minimum distance equal to 2 or 4.

4.2. Ternary codes from Paley graphs. In Tables 7 and 8, we give conditions
under which the constructions from Paley graphs produce self-dual binary
codes. These conditions follow from Theorems 4.1 and 4.2. In the tables, we
observe the case when the product srt = 0. The case s = t = 0 can not occur.

We will investigate codes obtained in the case of prime powers of the form
q = 5 + 12k, k is a non-negative integer, using the construction

BF3

q (0, a, b), where α = 0, a, b, β, γ ∈ F3
∗, a 6= b.

4.2.1. Designs from ternary codes. Here we give self-dual codes from Pa-
ley graphs taking into consideration prime powers of the form q = 5 + 12k,
k is a non-negative integer. Further, we construct t-designs from supports of
the codewords of a particular weight in these ternary codes. The results are
described below.
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Table 7. Self-dual ternary codes from Paley graphs, pure construction

r s t P F3

q (r, s, t) self-dual

6= 0 6= 0 0 Never
6= 0 0 6= 0 Never
0 6= 0 0 Never
0 0 6= 0 Never
0 6= 0 6= 0 Never

Table 8. Self-dual ternary codes from Paley graphs, bor-
dered construction

r s t BF3

q (r, s, t) self-dual

6= 0 6= 0 0 Never
6= 0 0 6= 0 Never
0 6= 0 0 Never
0 0 6= 0 Never
0 6= 0 6= 0 λ ≡ 0 mod 3, γ2 = 1, st = 2

• Let q = 5. Then, the strongly regular Paley graph has parameters
(5, 2, 0, 1). The ternary self-dual code obtained using BF3

5 (0, 1, 2) has
parameters [12, 6, 6], it is an optimal ternary code with this parameters.
From supports of the codewords of the code we obtained the famous
Witt design 5-(12, 6, 1); b = 132 having M12 as the full automorphism
group.

• Let q = 17. Then the strongly regular Paley graph has parameters
(17, 8, 3, 4). The ternary self-dual code obtained using BF3

17 (0, 1, 2) has
parameters [36, 18, 12] and it is isomorphic to the one constructed by
V. Pless in [19, 20]. The designs obtained from this optimal ternary
code were described by V. Pless in [19, 20]. All the designs have
Z2 × (L2(17)⋊ Z2) as the full automorphism group.

• Let q = 29. In this case the strongly regular Paley graph has parame-
ters (29, 14, 6, 7). The ternary self-dual code obtained using BF3

29 (0, 1, 2)
has parameters [60, 30, 18] and it is the best known ternary code with
this parameters. It is constructed by V. Pless in [19, 20]. The designs
obtained from this optimal ternary code were described by V. Pless in
[19, 20]. The designs have Z2×(L2(29)⋊Z2) as the full automorphism
group.

Acknowledgement

This work has been supported in part by Croatian Science Foundation under
the project 5713. The authors would like to thank the anonymous referee for
helpful comments that improved the presentation of the paper.
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