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RELATIVE ENERGY INEQUALITY
AND WEAK-STRONG UNIQUENESS

FOR AN ISOTHERMAL NON-NEWTONIAN
COMPRESSIBLE FLUID

Richard Andrášik, Václav Mácha and Rostislav Vodák

Abstract. Our paper deals with three-dimensional nonsteady Navier-
Stokes equations for non-Newtonian compressible fluids. It contains a deriva-

tion of the relative energy inequality for the weak solutions to these equa-

tions. We show that the standard energy inequality implies the relative
energy inequality. Consequently, the relative energy inequality allows us to

achieve a weak-strong uniqueness result. In other words, we present that

the weak solution of the Navier-Stokes system coincides with the strong
solution emanated from the same initial conditions as long as the strong

solution exists. For this purpose, a new assumption on the coercivity of

the viscous stress tensor was introduced along with two natural examples
satisfying it.

1. Introduction

This paper deals with the analysis of solution to the system describing
a compressible non-Newtonian fluid – a fluid whose viscosity is non-constant,
namely it depends on the shear rate in our case.

The study of such system dates back to Mamontov [10], [11] who showed
the existence of a weak solution for an exponential growth of viscosity and
an isothermal pressure. The existence of the weak solution in more general
setting was provided by Zhikov and Pastukhova [13], nevertheless, their proof
is wrong as noted by Feireisl, Liao and Málek in [6]. The article [6] itself
deals with the existence of a weak solution, authors, however, had to assume
a viscosity with rather an artificial term.
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The viscosity which does not possess an exponential growth admits only
measure-valued solutions. This has been recently showed by Abbatiello, Feireisl
and Novotný in [1] for an isentropic pressure, and by Basarić in [2] for the
isothermal pressure. Authors of the former article also gave a proof of the
relative energy and weak-strong uniqueness.

The existence of a strong solution was, up to now, showed in [8] where
authors used the Lp − Lq regularity approach to show the local-in-time well-
posedness of the system describing compressible non-Newtonian fluids.

The relative entropy inequality (and corresponding weak-strong unique-
ness) for the exponentially growing viscosity and isothermal pressure has not
been investigated up to now. This is the main aim of our paper – in particu-
lar, we derive a connection between results from [10], [11] (resp. also [2]) and
[8].

2. Preliminaries

The motion of the non-Newtonian compressible fluid in a domain Ω ⊂ R3

is described by its velocity u : Ω → R3 and density ρ : Ω → [0,∞). The time
evolution of u and ρ is governed by the continuity and momentum equations

∂tρ+ div (ρu) = 0,(2.1)

∂t (ρu) + div (ρu⊗ u) +∇p = div S+ ρf in Ω× (0, T ),(2.2)

where T > 0, p stands for the pressure, S is the viscous stress tensor and f
represents the external forces [10].

Let us suppose that the fluid is isothermal and non-Newtonian. Namely,
we assume that (without the loss of generality)

S = P (|Du|)Du, p = ρ

where conditions on P : [0,∞) → [0,∞) are discussed later.
Equations (2.1) and (2.2) are supplemented with the no-slip boundary

conditions

u|∂Ω = 0,

and initial conditions

ρ(·, 0) = ρ0 , (ρu)(·, 0) = (ρu)0 in Ω,

where ρ0 is non-negative.
The weak formulation of the system (2.1), (2.2) endowed with presented

boundary and initial condition is

(2.3)

∫
Ω

ρ0φ(·, 0) dx+

∫ T

0

∫
Ω

ρ∂tφ+ ρu · ∇φ dxdt = 0,
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and

(2.4)

∫
Ω

(ρu)0ψ(·, 0) dx+

∫ T

0

∫
Ω

(ρu · ∂tψ + (ρu⊗ u) : Dψ + ρdivψ) dxdt

=

∫ T

0

∫
Ω

(P (|Du|)Du : Dψ − ρf · ψ) dxdt,

for any φ ∈ C∞
c (Ω̄× ⟨0, T )) and ψ ∈ C∞

c (Ω̄× ⟨0, T );R3).
The weak solution is supposed to satisfy the standard energy inequality

expressed as [11]∫
Ω

(
1

2
ρ|u|2 + ρ ln ρ

)
(·, τ) dx+

∫ τ

0

∫
Ω

P (|Du|)|Du|2 dxdt

≤
∫ τ

0

∫
Ω

ρf · u dxdt+

∫
Ω

(
|(ρ0u)0|2

2ρ0
+ ρ0 ln ρ0

)
dx(2.5)

for almost all τ ∈ (0, T ).
Let us define Young functions Φγ(z) = (1 + z) lnγ (1 + z), γ > 1. Func-

tions Ψγ , denote their convex conjugates. For a given Young function Φ
and its convex conjugate Ψ, we employ a standard notation of Orlicz class

L̃Φ(Ω) and Orlicz space LΦ(Ω). While v ∈ L̃Φ(Ω) if
∫
Ω
Φ(|v(x)|)dx < +∞,

v ∈ LΦ(Ω) if supw
∫
Ω
|v(x)w(x)|dx < +∞, where the supremum is taken over

all functions w ∈ L̃Ψ(Ω) such that
∫
Ω
Ψ(|w(x)|)dx ≤ 1. For further details

about Orlicz spaces we refer to [9].
Next, we define a Young function M(z) = ez − z − 1 and we denote by

N its convex conjugate. Similarly as in [12], we assume that the function P
satisfies the following five conditions1

(2.6)

∫
Ω

P (|U |)|U |2 dx ≥ C

∫
Ω

M(|U |) dx,

(2.7)

∫
Ω

(P (|U |)U − P (|V |)V ) : (U − V ) dx ≥ 0,

(2.8) P (z)|z|2 is a convex function for z ≥ 0,

(2.9)

∫
Ω

N(P (|U |)|U |) dx ≤ C

(
1 +

∫
Ω

M(|U |) dx
)
,

(2.10) P (|U − λV |)(U − λV )
M
⇀ P (|U |)U, for λ→ 0,

for any U , V belonging to Orlicz class [L̃M (Ω)]3×3.

1Hereinafter, we use the letter C as an arbitrary positive constant which may vary
from line to line, nevertheless, it is always independent of ϱ, u, U and V .
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Throughout this paper, we assume even stricter condition then (2.7).
Namely, we assume the existence of q ∈ (1,∞) such that

(2.11)

∫
Ω

(P (|U |)U − P (|V |)V ) : (U − V ) dx ≥ C

∫
Ω

|U − V |q dx

for all U and V as above. Although this condition may seem artificial, we
present two natural choices for P satisfying it in Section 5.

We also define the following function spaces in accordance with [10]:

Y = {v|Dv ∈ LM (Ω× (0, T ))3×3, v|∂Ω×(0,T ) = 0},
X = {v|Dv ∈ LM (Ω)3×3, v|∂Ω = 0}, ∥v∥X = ∥Dv∥LM (Ω),

First, our paper contains a derivation of the relative energy inequality for
the weak solution constructed by Mamontov in [10] and [11]. This derivation
is described in Section 3. The relative energy inequality is the cornerstone for
further qualitative analysis of solutions as it allows to deduce various results
concerning long-time behavior, singular limits, dimension reduction and weak-
strong uniqueness result among others. The latter is performed in Section 4
– we present that all weak solutions constructed by Mamontov are equal to
the (unique) strong solution. Here, we would like to remind that the strong
solution for the system in question with the periodic boundary conditions
was constructed recently in [8]. Finally, Section 5 focuses on assumptions
imposed on the function P . In particular, we provide a more convenient
condition replacing (2.11).

3. Relative energy inequality

Let us define

H(ρ) = ρ

∫ ρ

1

1

z
dz = ρ ln ρ.

Let us consider smooth functions r and U such that r is strictly positive and
U satisfies the no-slip boundary conditions. Following [5], relative entropy
E([ρ,u]|[r,U]) is defined as follows

E([ρ,u]|[r,U]) =

∫
Ω

(
1

2
ρ|u−U|2 +H(ρ)−H(r)−H ′(r)(ρ− r)

)
dx

=

∫
Ω

(
1

2
ρ|u−U|2 + ρ ln

ρ

r
− (ρ− r)

)
dx.(3.1)

We would like to point out that the function

ρ 7→ H(ρ)−H(r)−H ′(r)(ρ− r), ρ, r ≥ 0.



RELATIVE ENERGY INEQUALITY AND WEAK-STRONG UNIQUENESS 5

is strictly convex with minimum 0 attained at ρ = r. Therefore, for every
0 < r < r < r <∞ there is a positive constant c such that

(3.2) H(ρ)−H(r)−H ′(r)(ρ− r) > c(ρ− r)2

whenever ρ ∈
( r
2 , 2r

)
, and

(3.3) H(ρ)−H(r)−H ′(r)(ρ− r) > c|ρ− r|

whenever ρ ∈ R+ \
( r
2 , 2r

)
.

Similarly as in [7], a suitable weak solution to (2.1) and (2.2) is a couple
[ρ,u] satisfying (2.3)-(2.4), boundary and initial conditions, and the following
relative energy inequality for all r and U belonging to the class specified in
Theorem 3.1:

E([ρ,u]|[r,U])(τ) +

∫ τ

0

∫
Ω

(P (|Du|)Du− P (|DU|)DU) : (Du−DU) dxdt

≤ E([ρ0,u0]|[r(·, 0),U(·, 0)]) +
∫ τ

0

R(ρ,u, r,U) dt,(3.4)

where the remainder R is defined as

R(ρ,u, r,U) =

∫
Ω

ρ(∂tU+ u∇U) · (U− u)dx

+

∫
Ω

P (|DU|)DU : (DU−Du)dx+

∫
Ω

ρf · (u−U)dx

+

∫
Ω

(
(r − ρ)

∂tr

r
+

∇r
r

· (rU− ρu)

)
dx

+

∫
Ω

divU(r − ρ)dx.(3.5)

If we set r = r0 = |Ω|−1
∫
Ω
ρ0 dx and U = 0, then following the definition

of the relative entropy (3.1), we arrive at

E([ρ,u]|[r0, 0]) =

∫
Ω

(
1

2
ρ|u|2 + ρ ln ρ− ρ ln r0

)
dx,

E([ρ0,u0]|[r0, 0]) =

∫
Ω

(
1

2
ρ0|u0|2 + ρ0 ln ρ0 − ρ0 ln r0

)
dx,

R(ρ,u, r0, 0) =

∫
Ω

ρf · u dx.

Since
∫
Ω
(ρ − ρ0) ln r0 dx = ln r0

∫
Ω
(ρ − ρ0) dx = 0, (3.4) reduces to the

standard energy inequality (2.5). Thus, the relative energy inequality (3.4)
implies the standard energy inequality (2.5). In section 3.1, we show that this
implication holds also the other way round.

Theorem 3.1. Let ρ and u be the weak solution specified in (2.3), (2.4)
and (2.5). For some p > 1 and γ > 1, let U ∈ Y be such that DU ∈
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L̃M (Ω×(0, T ))9 and ∂tU ∈ Lp(0, T ;LΨγ
(Ω))3. Let us further suppose that f ∈

Lp(0, T ;LΨγ
(Ω))3 and r : Ω×⟨0, T ⟩ → (0,∞) is such that r ∈ L∞(0, T ;LΦγ

(Ω)),

∂t ln r ∈ L1(0, T ;LΨγ
(Ω)) and ∇ ln r ∈ Lp(0, T ;LΨγ

(Ω))3. Then the pairs
[ρ,u] and [r,U] satisfy the relative entropy inequality (3.4).

3.1. Proof of Theorem 3.1. First, we take 1
2 |U|2ψ, ψ = χ⟨0,τ⟩ as a test func-

tion in (2.3) – this is possible although ψ is not sufficiently regular as it
suffices to take piecewise linear approximations of ψ ensuring the validity of
the following equalities for almost all τ ∈ (0, T ). We infer

(3.6)
1

2

∫
Ω

ρ0U
2(·, 0) dx+

∫ τ

0

∫
Ω

(ρU · ∂tU+ ρu∇U ·U) dxdt

=
1

2

∫
Ω

ρ(·, τ)U2(·, τ) dx,

using identity ∂j(UiUi) = 2Ui∂jUi. Second, we test (2.4) by Uψ (with the
same remark as above) to arrive at

(3.7)

∫
Ω

(ρu)0U(·, 0) dx+

∫ τ

0

∫
Ω

(ρu · ∂tU+ (ρu⊗ u) : DU+ ρdivU

+ ρf ·U− P (|Du|)Du : DU) dxdt =

∫
Ω

ρu(·, τ)U(·, τ) dx

In the third step, we use ln r as a test function in (2.3) to obtain

(3.8)

∫
Ω

ρ0 ln r(·, 0) dx+

∫ τ

0

∫
Ω

(
ρ
∂tr

r
+ ρu · ∇r

r

)
dxdt

=

∫
Ω

ρ(·, τ) ln r(·, τ) dx.

We multiply (3.6) by −1 and sum it up with (3.7), (3.8) and the standard
energy inequality (2.5) to deduce∫

Ω

(
1

2
ρ|u−U|2 + ρ ln ρ− ρ ln r − ρ

)
(·, τ)dx

+

∫ τ

0

∫
Ω

(P (|Du|)Du− P (|DU|)DU) : (Du−DU) dxdt

≤
∫
Ω

(
1

2
ρ0|u0 −U(·, 0)|2 + ρ0 ln ρ0 − ρ0 ln r(·, 0)− ρ0

)
dx

+

∫ τ

0

∫
Ω

ρ (∂tU+ u∇U) · (U− u) dxdt+

∫ τ

0

∫
Ω

ρf · (u−U) dxdt

+

∫ τ

0

∫
Ω

P (|DU|)DU : (DU−Du) dxdt

−
∫ τ

0

∫
Ω

(
ρ
∂tr

r
+ ρu · ∇r

r
+ ρdivU

)
dxdt.(3.9)
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We add equality∫
Ω

r(·, τ) dx−
∫
Ω

r(·, 0) dx =

∫ τ

0

∫
Ω

∂tr dxdt

to get

E([ρ,u]|[r,U]) +

∫ τ

0

∫
Ω

(P (|Du|)Du− P (|DU|)DU) : (Du−DU) dxdt

≤ E([ρ0,u0]|[r(·, 0),U(·, 0)]) +
∫ τ

0

∫
Ω

ρ (∂tU+ u∇U) · (U− u) dxdt

+

∫ τ

0

∫
Ω

ρf · (u−U) dxdt+

∫ τ

0

∫
Ω

P (|DU|)DU| : (DU−Du) dxdt

+

∫ τ

0

∫
Ω

(
(r − ρ)

∂tr

r
− ρu · ∇r

r
− ρdivU

)
dxdt.(3.10)

Finally, the boundary condition for U yields∫
Ω

(U · ∇r + rdivU) dx =

∫
Ω

div(rU) dx =

∫
∂Ω

(rU) · n dS = 0,

and thus we can add the term
∫
Ω
(U · ∇r + rdivU) dx to the right-hand side

of (3.10) which gives the demanded inequality.

4. Weak-Strong uniqueness

The relative entropy inequality can be used to prove the weak-strong
uniqueness principle. In other words, it enables us to show that weak and
strong solutions of (2.1)-(2.2) with the same boundary and initial conditions
coincide as long as the strong solution exists.

Theorem 4.1. Let ρ̃, ũ be a strong solution to (2.1) and (2.2) satisfying
the Dirichlet boundary condition and ρ̃(x, t) ≥ C, C ∈ R+. If P satisfies
(2.6)–(2.11), then every weak solution ρ, u emanating from the same initial
data ρ̃(·, 0) and ũ(·, 0) is equal to ρ̃ and ũ.

Remark 4.2. We assume the strong solution satisfies (2.1), (2.2) point-
wisely and all terms in this formulation are well defined. In particular,
ϱ̃ ∈ C1(Ω × ⟨0, T ⟩) and ũ ∈ C1(Ω × ⟨0, T ⟩)3 with ∇xu ∈ C(Ω × ⟨0, T ⟩)3×3.
It is worth to mention that the proof presented below works also for weak
solutions with sufficient regularity.

4.1. Proof of Theorem 4.1. Let us consider r = ρ̃ and U = ũ, where [ρ̃, ũ] is
the strong solution of (2.1)-(2.2) and ρ̃ ≥ C, C ∈ R+. The idea of the proof
is to show that all terms in (3.5) can be bounded by the means of the left-
hand side of (3.4) in order to use a Gronwall type argument. Recall that the
assumptions on the strong solution imply that there is not any vacuum region,
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i.e., it holds that 0 < r < ρ̃ < r < ∞ for appropriately chosen constants r
and r.

First, we introduce a decomposition of a general function G = G(ρ) into
the essential and residual part, namely,

G = Gess +Gres

where

Gess :=

{
G on ρ ∈

(
1
2r, 2r

)
0 otherwise.

Due to the convexity of H one can deduce the following coercivity properties
(see also (3.2) and (3.3)):

(4.1) E([ρ,u]|[ρ̃, ũ]) ≥ C

∫
Ω

(
ρ|u− ũ|2 + |ρ− ρ̃|2ess + 1res + ρres

)
dx.

According to (3.5), it holds that

R(ρ,u, ρ̃, ũ) =

∫
Ω

ρ(∂tũ+ u∇ũ− f) · (ũ− u) dx

+

∫
Ω

P (|Dũ|)Dũ : (Dũ−Du) dx

+

∫
Ω

(
(ρ̃− ρ)

∂tρ̃

ρ̃
+ (ρ̃ũ− ρu) · ∇ρ̃

ρ̃

)
dx

+

∫
Ω

divũ(ρ̃− ρ) dx.(4.2)

Since [ρ̃, ũ] is a strong solution of (2.1)-(2.2), we can rearrange the mo-
mentum equation (2.2) as follows:

1

ρ̃
(ũ∂tρ̃+ ρ̃∂tũ+ div(ρ̃ũ)ũ+ ρ̃ũ∇ũ)− f =

1

ρ̃
div (P (|Dũ|)Dũ)− ∇ρ̃

ρ̃

which by the means of the continuity equation (2.1) reduces into

∂tũ+ ũ∇ũ− f =
1

ρ̃
div (P (|Dũ|)Dũ)− ∇ρ̃

ρ̃
.

Hence, the first term in (4.2) can be rewritten as∫
Ω

ρ(∂tũ+ ũ∇ũ− f) · (ũ− u) dx+

∫
Ω

ρ(u− ũ)∇ũ · (ũ− u) dx

=

∫
Ω

ρ

ρ̃
div (P (|Dũ|)Dũ) · (ũ− u) dx−

∫
Ω

ρ∇ρ̃
ρ̃

· (ũ− u) dx

+

∫
Ω

ρ(u− ũ)∇ũ · (ũ− u) dx,(4.3)
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which leads to (using the identity
∫
Ω
Dv : Dwdx = −

∫
Ω
div(Dv) ·w dx):

R(ρ,u, ρ̃, ũ) =

∫
Ω

ρ(u− ũ)∇ũ · (ũ− u) dx

+

∫
Ω

1

ρ̃
(ρ− ρ̃)div (P (|Dũ|)Dũ) · (ũ− u) dx

+

∫
Ω

(ρ̃− ρ)

(
∂tρ̃

ρ̃
+ ũ · ∇ρ̃

ρ̃

)
dx

+

∫
Ω

divũ(ρ̃− ρ) dx.(4.4)

With respect to the continuity equation (2.1), the last two terms in (4.4)
cancel each other out, because

∂tρ̃

ρ̃
+ ũ · ∇ρ̃

ρ̃
+ divũ =

1

ρ̃
(∂tρ̃+ ũ · ∇ρ̃+ ρ̃divũ)

=
1

ρ̃
(∂tρ̃+ div(ρ̃ũ)) = 0.

Thus

R(ρ,u, ρ̃, ũ) =

∫
Ω

ρ(u− ũ)∇ũ · (ũ− u) dx

+

∫
Ω

1

ρ̃
(ρ− ρ̃)div (P (|Dũ|)Dũ) · (ũ− u) dx.(4.5)

Concerning the first term of the remainder (4.5), we have (recall that ∇ũ
is a bounded function)∣∣∣∣∫

Ω

ρ(u− ũ)∇ũ · (ũ− u) dx

∣∣∣∣ ≤ C

∫
Ω

1

2
ρ|ũ− u|2dx

≤ CE([ρ,u]|[ρ̃, ũ]).(4.6)

Regarding the second term in (4.5) we decompose it into two parts and we
use the regularity of the strong solution to get∣∣∣∣∫

Ω

1

ρ̃
(ρ− ρ̃)div(P (|Dũ|)Dũ) · (ũ− u) dx

∣∣∣∣
≤ C

∫
Ω

|ρ̃− ρ|ess|ũ− u| dx+ C

∫
Ω

|ρ̃− ρ|res|ũ− u| dx =: I1 + I2.

Next,

I1 ≤ C

∫
Ω

1
√
ρ
|ρ̃− ρ|ess

√
ρ|ũ− u| dx

≤ C

(∫
Ω

|ρ̃− ρ|2ess dx+

∫
Ω

ρ|ũ− u|2 dx

)
≤ cE([ρ,u], [ρ̃, ũ])
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according to (4.1). We split I2 once again as

I2 = C

∫
Ω∩{ρ>2r}

|ρ̃− ρ||ũ− u| dx+ C

∫
Ω∩{ρ< 1

2 r}
|ρ̃− ρ||ũ− u| dx

where the first integral may be treated in the same way as I1 and second
integral is estimated with the help of the Korn inequality as follows

(4.7)

∫
Ω∩{ρ< 1

2ρ}
|ρ̃− ρ||ũ− u| dx ≤ C

∫
Ω

|ũ− u| dx

≤ C

∫
Ω

1q
′

res dx+ δ

∫
Ω

|ũ− u|q dx ≤ CE([ρ,u], [ρ̃, ũ]) + δ

∫
Ω

|Dũ−Du|q

where q′ = q
q−1 and δ > 0 might be as small as needed – in particular, we

choose δ such that (using (2.11))

δ

∫
Ω

|Dũ−Du|q dx ≤ 1

2

∫
Ω

(P (|Dũ|)Dũ− P (|Du|)Du)(Dũ−Du) dx

so the last term of (4.7) can be absorbed in the left hand side of (3.4). Sum-
ming up, (3.4) yields

E([ρ,u]|[ρ̃, ũ])(τ) ≤ C

∫ τ

0

E([ρ,u]|[ρ̃, ũ])(s) ds

and, consequently,
E([ρ,u]|[ρ̃, ũ]) ≡ 0.

5. Assumptions on P

The most restrictive assumption on P is (2.11) which is not needed in
the proof of the existence given by Mamontov. This assumption is discussed
throughout this section. First, we show that a natural choice of P satisfies
the condition (2.11). Next, we formulate a replacement assumption which is
more convenient than (2.11).

5.1. P (z) = 1
z2M(z). Let us consider a function

P (z) =

{
M(z)
z2 , for z ̸= 0,

0, for z = 0.

It satisfies all conditions (2.6)-(2.10) and it satisfies also (2.11) with q = 2.
Indeed, recall that

P (z)z =
z

2
+
z2

6
+
z3

24
+ . . . =

∞∑
i=1

zi

(i+ 1)!

and therefore we may write P (z)z = F ′(z) +G′(z) where F (z) = z2

4 and

G(z) =

∫ z

0

s2

6
+
s3

24
+

s4

120
+ . . . ds.
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Further, we have

P (|Du|)Du = P (|Du|)|Du| Du

|Du|
=

∂

∂D
(F (|Du|) +G(|Du|)) .

Hence,

(5.1) (P (|Du|)Du− P (|Dv|)Dv) : (Du−Dv)

=

(
∂

∂D
F (|Du|)− ∂

∂D
F (|Dv|)

)
: (Du−Dv)

+

(
∂

∂D
G(|Du|)− ∂

∂D
G(|Dv|)

)
: (Du−Dv) .

Since F complies with the ∆2-condition, we can apply Lemma 21 from [4]
and deduce a lower bound for the first term in (5.1) as follows:

(5.2)

(
∂

∂D
F (|Du|)− ∂

∂D
F (|Dv|)

)
: (Du−Dv)

≥ CF ′′(|Du|+ |Dv|)|Du−Dv|2 ≥ C|Du−Dv|2

The second term in (5.1) is non-negative. This follows since Du : Dv ≤
1
2 |Du|+ 1

2 |Dv| and thus(
∂

∂D
G(|Du|)− ∂

∂D
G(|Dv|)

)
: (Du−Dv)

=

(
G′(|Du|)
|Du|

Du− G′(|Dv|)
|Dv|

Dv

)
: (Du−Dv)

=
G′(|Du|)
|Du|

Du : Du− G′(|Du|)
|Du|

Du : Dv

− G′(|Dv|)
|Dv|

Dv : Du+
G′(|Dv|)
|Dv|

Dv : Dv

≥ 1

2

G′(|Du|)
|Du|

|Du|2 − 1

2

G′(|Du|)
|Du|

|Dv|2

− 1

2

G′(|Dv|)
|Dv|

|Du|2 + 1

2

G′(|Dv|)
|Dv|

|Dv|2

=
1

2

(
G′(|Du|)
|Du|

− G′(|Dv|)
|Dv|

)(
|Du|2 − |Dv|2

)
≥ 0

where we used the fact that G′(z)/z is non-negative and increasing for z ≥ 0.

5.2. Further note on (2.11). In general, we claim that (2.11) is fulfilled when-
ever P is a non-decreasing function satisfying

(5.3) P ′(z) ≥ 0 and there exists c > 0 such that P (z) ≥ czα

for all z ≥ 0 and some α > 0 .
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In order to prove that (5.3) implies (2.11) we start with a generalization
of [3, Sect I.4., Lemma 4.4, p. 14]. The following holds for every U, V ∈ R3×3:

(P (|U |)U − P (|V |)V ) : (U − V )

=

(∫ 1

0

d

ds
[P (|sU + (1− s)V |)(sU + (1− s)V )] ds

)
: (U − V )

=

∫ 1

0

P (|sU + (1− s)V |)|U − V |2 ds

+

∫ 1

0

P ′(|sU + (1− s)V )|
|sU + (1− s)V |

|(sU + (1− s)V ) : (U − V )|2 ds

≥
∫ 1

0

P (|sU + (1− s)V |)|U − V |2 ds = (I).

Now, let us assume for a while that |U | ≥ |U − V |. Then

(I) =

∫ 1

0

P (|U + (1− s)(V − U)|)|U − V |2 ds

≥
∫ 1

0

P (| |U | − (1− s)|V − U | |) |U − V |2 ds

≥
∫ 1

0

P (s|U − V |)|U − V |2 ds

= |U − V |
∫ |U−V |

0

P (z) dz ≥ c|U − V |2+α.

On the other hand, if |U | < |U − V |, we deduce that

(I) = |U − V |2
∫ 1

0

P (|sU + (1− s)V |)|sU + (1− s)V |2

|sU + (1− s)V |2
ds = (II) .

Since

|sU + (1− s)V |2 = |U + (1− s)(V − U)|2 ≤ (2− s)2|V − U |2,

we derive

(II) ≥ |U − V |2
∫ 1

0

P (|sU + (1− s)V |)|sU + (1− s)V |2

(2− s)2|U − V |2
ds

≥ 1

4

∫ 1

0

P (|sU + (1− s)V |)|sU + (1− s)V |2 ds

≥ c

∫ 1

0

Q(|sU + (1− s)V |2)|sU + (1− s)V |2 ds = (III),
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where Q(z) = zα/2. Since G := z1+α/2 is a convex and non-decreasing func-
tion, we can use Jensen’s inequality to deduce

(III) ≥ C G

(∫ 1

0

|sU + (1− s)V |2 ds
)

= C G

(
1

3
(|U |2 + |V |2 + U : V )

)
= (IV ).

Further,

|U |2 < |U − V |2 ⇒ 2U : V < |V |2,
leads to

|U |2 + |V |2 + U : V

=
9

10
|U |2 + 9

10
|V |2 + 6

5
U : V +

1

10
|U |2 + 1

10
|V |2 − 2

10
U : V

≥ 9

10
|V |2 − 6

10
|V |2 + 1

10
(|U |2 + |V |2 − 2U : V ) ≥ 1

10
|U − V |2.

Consequently,

(IV ) ≥ C G
(
c|U − V |2

)
= C|U − V |2+α.

We combine the two previous estimate to deduce that (5.3) implies (2.11)
with q = 2 + α.
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Palacký University Olomouc
17. listopadu 12

771 46 Olomouc

Czech Republic
E-mail : rostislav.vodak@gmail.com


