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ABSTRACT. A p-group G with the property that its every nonabelian
subgroup has a trivial centralizer (namely only it’s center) is called a CZ-
group. In Berkovich’s monograph (see [1]) the description of the structure
of a C'Z-group was posted as a research problem. Here we provide further
progress in this topic based on results proved in [5]. In this paper we have
described the structure of C'Z-groups G that possess a nonabelian normal
subgroup of order p* which is contained in the Frattini subgroup d(G). We
manage to prove that such a group of order p? is unique and that the order
of the entire group G is less or equal p”, p being a prime. Additionally, all
such groups G are shown to be of class less than maximal.

1. INTRODUCTION

A p-group G is a group of order p™, where p is prime. The conjugation
of z by y is given by z¥ = y~lzy, where z, y € G. If 2¥ = x, then = and y
commute, i.e. [r,y] = 27y~ lzy = 1. Let H < G be a subgroup of G. The
centralizer of H in G is Cq(H) = {g € G | h9 = h, Vh € H}. The center
of G is given by Z(G) = {g € G | 29 = x, Yo € G}. The center Z(H) of a
subgroup H < G is defined in the same way.

A finite group G is called a CZ-group (this abbreviated form comes
from the words centralizer and Zentrum) if Cq(H) = Z(H) for all nontrivial
H < G. The set of all C'Z-groups that are at the same time p-groups will be
denoted by C'Z,, and sometimes we will call such a group a C'Z,-group. The
question of determining the general structure of G € C'Z,, was posted in [1] as
one of the open problems in the theory of p-groups. More on p-groups can be
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found in [2] and [3]. The first results about groups G € C'Z, were published
in [5], where it was shown that a minimal C'Z,-group has order at least °.
Additionally, the structure of maximal abelian subgroups of a minimal CZ,
group has been described in that paper as well.

In this paper, we assume that the Frattini subgroup ®(G), which is de-
fined as the intersection of all maximal subgroups of GG, contains a normal
nonabelian subgroup of order p*. A subgroup H < G that is a normal sub-
group of G will be sometimes called G-invariant (if we want to point out this
fact, we will denoted it by H < G). The existence of a normal subgroup of
order p* in ®(G) doesn’t appear as a limitation, since we can always find
normal subgroups in p-groups of any given order. What however appears as
a true assumption is that we in addition assume for this subgroup of order p*
to be nonabelian.

In the next result we will determine the lower bound for the order |G| of
Ge(CZ,.

LEMMA 1.1. If G € CZ,, then |G : Z(G)| > p* and |G| > p°.

PROOF. Let’s assume the opposite, so let |G : Z(G)| < p?. Then immedi-
ately we get |G : Z(G)| = p?, since otherwise G would be abelian. The factor
group G/Z(G) can’t be cyclic, otherwise G would be abelian again. Thus,
G/Z(G) = E,2 (the elementary abelian group of order p?). Since the Frattini
subgroup is the smallest subgroup such that its factor group is elementary
abelian, we get ®(G) < Z(G). If ®(G) < Z(G), there is some maximal sub-
group M such that Z(G) £ M. Hence, M must be abelian, since otherwise,
we would be able to find some g € Z(G) \ M, leading further to g € Cq(M),
which is a contradiction since G € CZ,. Therefore, MZ(G) = G and G is
abelian, which is a contradiction again. So, |G : Z(G)| > p* and |G| > p*
(since |Z(G)| > p). If |G| = p*, then |Z(G)| = p and Z(G) < ®(G). This
implies that any maximal subgroup of G is minimally nonabelian, thus G is a
minimal CZ group, from which follows that |G| > p® (as it was proved in [5]).
This is a contradiction. Therefore, the only remaining option is |G| > p5. 0O

LEMMA 1.2. Let G € CZ, and M < G, M € CZ,. Then |G : Z(G)| > p*
and |G| > p°.

PROOF. Lemma 1.1 states that |G : Z(G)| > p*. Let M € CZ, and
M < G. Then again by Lemma 1.1, |M : Z(M)| > p3. It was proved in [5]
that Z(G) < Z(M). Thus |G : Z(G)| > |M : Z(G)| > |M : Z(M)| > p>.
Therefore, |G : Z(G)| > p* and |G| > p°. ad

The following statement establishes a connection between CZ,-groups
and the maximality of class.

THEOREM 1.3. Let G € CZ, and B < G be a nonabelian group of order
p2. Then, G is a group of mazimal class.
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PROOF. Let B < G, where |B| = p? and B nonabelian. Then Cg(B) <
B. Therefore, Z(G) < Z(B). Clearly, |Z(B)| = p and Z(G) = Z(B).

It is known that if H € Syl,(Aut(B)) (a Sylow p-group), then |H| = p?
and H is nonabelian. Therefore, Ng(B)/Cq(B) < Aut(B) is a p-group.
Also, Ng(B) > B and Cg(B) = Z(B). Therefore, |Ng(B)/Cq(B)| > p?
since [Ng(B) : Cg(B)| = |[Ng(B) : B|-|B : Z(B)| > p-p* = p. Thus, it
is necessary that Ng(B)/Z(G) = H € Syl,(Aut(B)). Also, N¢(B)/Z(G) <
G/Z(G) (since |Z(G)| = p and |G| > p® and H nonabelian of order p?).

Obviously Cs(Ng(B)/Z(G)) < Ng(B)/Z(G). Inductively, G/Z(G) is of
maximal class, where |Z(G)| = p. From here we deduce that G is of maximal
class. a

2. CZ-GROUPS WITH NONABELIAN G-INVARIANT SUBGROUP N < ®(G) OF
ORDER p*

Let us now we introduce the main assumption. We will assume further
that G is a C'Z, group possessing a subgroup N < ®(G) which is a nonabelian
G-invariant subgroup of order p*. The nilpotency class of a group G will be
denoted by cl(G). If the class is maximal, we will put ¢l(G) = max, otherwise
c(G) < max. If the group is generated by at least k elements, we shall say
that it is a k-generated group and write d(G) = k.

We will make use of the following result. Its proof can be found in [1]
(Lemma 1.4.).

LEMMA 2.1. Let G be a p-group forp > 2 and N < G. If N has no abelian
G-invariant subgroups of type (p,p), then N is cyclic.

The structure of a p-subgroup N satisfying the properties mentioned
above is partially described in the following result.

LEMMA 2.2. Let G € CZ, where p > 2 and cl(G) < max. Let N < ®(Q)
be a G-invariant nonabelian group of order p*. Then ®(N) = Z(N) = E,»
and N is a 2-generated group of exponent p2.

PrOOF. Assume that Z(N) is cyclic. Let A < G and A < N of order
p?. Then [Ng(A)/Cq(A)| = |G/Ca(A)| < |Aut(A)|, = p, where |Aut(A)], is
the maximal power of p that divides |Aut(A)|. Hence, N < ®(G) < Cx(A)
and A < Cg(A). Thus, A < Z(®(G))N N and A < Z(N) (since N < &(@)).
Therefore, A is cyclic. Then, according to Lemma 2.1, N must be cyclic,
which is a contradiction. Therefore, Z(N) is not cyclic. If d(Z(N)) > 3,
then |Z(N)| > p?® and |N : Z(N)| < p. This would imply that N is abelian.
Therefore, d(Z(N)) = 2 and Z(N) = E,2. Clearly, d(N) > 2. Assume that
d(N) = 4. Then N/®(N) = E,» and ®(N) = 1. On the other hand, ®(N) =
N'G1(N) and N’ = 1. This is a contradiction. Thus, d(N) < 3.
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If d(N) = 3, then ®(N) 2 C), and 1 < N’ < &(N). Thus, &(N) = N'.
Clearly, N' N Z(N) > 1 since N’ﬁN Put Z(N ) (x) x (yy = C), x C}p such
that N’ = (z). Thus, there is y € Z(N) — ®(N).

Thus, y is a generator of N and the order of y is p. Then there is some
maximal subgroup M < N such that y ¢ M. Therefore, N = (M,y) =
M x (y). If w? = y for some w, theny € U1(N) < ®(N). This is a contradiction
since y is a generator. Because N is nonabelian, M must be nonabelian,
otherwise N = M x (y) would be abelian. Therefore, M’ > 1 and |M| = p3.
Then, according to the Theorem 1.3, the class of the group G is maximal. This
is a contradiction with our assumption. Therefore, d(N) = 2 and N/®(N) &
E,> where |®(N)| = p>. If Z(N) & ®(N), then there is some maximal M <1, N
such that Z(N) £ M then M’ = 1. Otherwise, by Theorem 1.3 we would get
cl(G) = max. Thus, it is necessary that Z(N) < ®(N). Since both groups
have order p?, we get Z(N) = ®(N).

Let exp(G) = p. Then |G1(G)] = 1 and ®(N) = N'G;(N) = N/ =
Cp x Cp. Since N has a maximal abelian subgroup, then p* = |N| =p-|N'| -
|Z(N)| = p-p?-p® This is a contradiction. Thus, exp(N) > p.

If exp(N) = p?, then N = My, where Mps is a minimal nonabelian group
with a maximal cyclic subgroup. Then, there is some w € N of order p3. Hence
U1(N) = (w?) =2 Cp2 and U1 (N) = ®(N) = Z(N) and d(N) = 1. Again, this
is a contradiction. Thus, the only remaining option is exp(N) = p?. O

The following result shows the uniqueness of the nonabelian G-invariant
subgroup N < ®(G), where cl(G) < maz, G € CZ, and |[N| = p*

LEMMA 2.3. Let G € CZ,, p> 2 and cl(G) < mazx. Let N < &(G) be a
G-invariant nonabelian subgroup of order p*. Then N is uniquely determined
by its generators and relations with N = (x,y | 2P’ = y”2 =1, ¥ = 2!*P).

PRrOOF. From Lemma 2.2 we have Z(N) = ®(N) = E,2. Also, exp(N) =
p?. If M < N is maximal, then Z(N) < M and M’ = 1. Thus, |N| =
p - |N'||Z(N)|. Hence, |[N'| = p. We can put Z(N) = (a) x (b). We can
assume N’ = (a). There are z,y € N such that a? = a, y? = b. Otherwise,
a ¢ ®(N) = N'U;(N) and b ¢ ®(N). Now, take [x,y] = a = 27ty tay =
x~1x¥ = zP. This gives us z¥ = z!*P. O

LEMMA 2.4. Let the group N be defined as N = (z,y | =y =
1, x¥ = 2'7P). Let 2= = xP. Then for all integers i, j, n the following relations
hold: ya = xyi2?, ya' = a'y? 29, Furthermore, (z'y’)" = xmy”J ()i gnd
the order o(g) = p?, for all g € N — ®(N). The subgroup (x'y??) < N is
normal in N.

PROOF. Since 2~} = 2P € Z(N), it follows 2¥ = 227! and zyz =

ya. Then, y/z = y/~H(yz) = ¢/~ H(ay)z = o/~ 2(ya)yz =y 2(oy)ys? —
Yy~ nyZQ* c=xy'27. Wehave y/z’ = yloz'™! = oy’ 127 = zyiax

22j_



CZ-GROUPS WITH NONABELIAN NORMAL SUBGROUP OF ORDER p* 5

zxyl 2% = ... = zlyl 2. We will use induction to prove the claim about
(z°y7)". For n = 1 the claim is trivial. Assume that (z’y/)" = x"iy"jz(g)ij.
Now we proceed with the induction step by computing

n

(xiyj)n-s-l _ xniynjz(g)ijxiyj _ xniynjxiyjz(Q)ij _ xnixiynjyjznijz(;)ij _
(Vi (415 ("57)id

Let g ¢ ®(N). Then g = x'y’, where either i or j is not divisible by p.
Otherwise, g € (zP,y?) = ®(N) = Z(N), (see Lemma 2.2). Since zP = 1

and p | <§>, we obtain (z'y?)P = xpiypjz(g)ij = gPiyPi If gP = 1, then

aPt = y~PJ € (x) N (y), which implies 27! = 1 and i = (0 mod p). In the other
case j = (0 mod p). This is a contradiction. Therefore o(g) = p?.

Look now at 2'yP?, where i and j are not divisible by p. Since y? €
Z(N), it follows (z'yP7)® = z'yPI. Let us assume that there is some integer
n such that (x'yP?)¥ = (2'yP?)". This would imply (z‘yP?) < N. If such an
n exists, this would imply (zz71)yP/ = (z'yP?)"™. Then, ziyPiz~% = g™iy"PJ
and y™7~PJ € (x). Thus pj(n — 1) = 0 (mod p?) and n — 1 = 0 (mod p) since
j # 0(mod p). Let n = 1 4+ mp, for some integer m. Then z*!~™) = 2 and
2~ = 2, Therefore, 2™ = z'. Take m = 1 and n = 1 + p. We conclude,
such n exists and (x'yP7) < N. |

LEMMA 2.5. Let G € CZ,, p > 2 and cl(G) < mazx. Let N I G and
N < ®(G) be nonabelian of order p*. Then G/Z(N) is isomorphic to some
subgroup of Aut(N).

PROOF. Since Ng(N) = G and Cg(N) < N, we get Cg(N) = Z(N).
Then by the N/C-theorem, Ng(N)/Ca(N) < Aut(N). 0

The following results is from [4] (Theorem 12.2.2, page 178).

THEOREM 2.6. Let |G| = p™ and d(G) = d. Then |Aut(G)| divides
|Aut(E,q) x ®(G)4].

The following result establishes an upper bound for the order of a group
G with conditions we are studying here.

THEOREM 2.7. Let G € CZ,, c(G) < mazx and let N < ®(G) be a
normal nonabelian subgroup of G of order p*. Then |G| < p”.

PRrROOF. According to Lemma 2.2 and Lemma 2.3, ®(N) = Z(N) = E,»

and N is uniquely determined by N = (x,y | - y”2 =1, ¥ = zMtP).
Applying Lemma 2.5 and Theorem 2.6, we have G/Z(N) < Aut(N) and
|G/Z(N)|p divides |Aut(Ep:2) x ®(N)?|, = |(p* — 1)(p* — p) - p'|, = p°. Since
|Z(N)| = p?, we get |G| < p". O

COROLLARY 2.8. Let G € CZ,, cl(G) < max and N < ®(G) a normal
nonabelian subgroup of order p*. Then |G| € {p°, p%,p"}.
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We conclude this section with a technical result that we shall need.

LEMMA 2.9. Let (x) = Cp2, p > 2 and let p € Aut((z)) be an automor-
phism of (x) of order p. Then, there is some m € N such that ¥ = x'+t™P,

3. THE CASE |G| = p® AND cl(G) < max

We shall continue with the same assumption that G possesses a non-
abelian subgroup N < ®(G) of order p*. Additionally, we shall assume that
G is not of maximal class. By Corollary 2.8, the order of G is at least p°.
If |G| = p®, then |G : ®(G)| = p and G is cyclic. Therefore, from this moment
on, we can assume that |G| > p®. If |G| = p®, then |G : ®(G)| = p? and G is
a 2-generated group.

We now prove additional results about the structure of the group N.

LEMMA 3.1. Let N = (z,y | a?’ = y?" =1, 2¥ = 2'*P). Then Z(N) =
®(N) = (2P, yP) = Ep2 and (yP"*) 4N, i=0,1,...,p— 1.

Proof: From (2P)Y = (2¥)? = (2'*P)P = 2P and [z,2P] = 1 we have
2P € Z(N). Furthermore, z¥" = z(1*P)" = 2P (since (1 + p)? = p(mod p?)).
Therefore, (zP,y?) < Z(N). Since [N : Z(N)| > p? and {(aP) N (y?) = 1, we
have Z(N) = (2P,yP). Since N is 2-generated and N/Z(N) = E,, it follows
that Z(N) = ®(N).

Now we shall prove the second claim. We firstly use the following: (y?+1)® =
(y®)Pl = (yo=P)Pitl = ypitl (p=P)Pitl = ypitly=p If (yPi+l) is N-invariant,
then yPiT1z=P € (yPi™1). This implies 277 € (yP'™1) < (y) and (z) N (y) > 1,
which is a contradiction. Therefore, (y***') 4 N. O

The following two results have been proved in [1]. We shall present them
here with slightly different proofs. We will use the following notation: if H is
a normal subgroup of index p’ of G, then we shall write this as H < G

THEOREM 3.2. Let G be a p-group and let K < G contain a abelian
mazimal subgroup. Then K contains a mazximal abelian subgroup that is G-
tmovariant.

PrOOF. If G is an abelian group, the claim is true. Let G be a nonabelian
group, and let A <, K < G, where A is an abelian subgroup. If {T' | T' <,
K, T' =1} = {A}, then A9 9, K9 = K for all g € G (AY is abelian as well).
Therefore, A9 = A for all g € G. This implies that A is G-invariant.

Now assume that A; and Ay are distinct maximal abelian subgroups of
K. Then A; < K and A1A; = K. Since A1 N Ay <, A;, we have 41 N
Ay < Ok (A1) N Ck(Ag). This implies 41 N Ay < Z(K). Let K be a non-
abelian group. Then K/Z(K) = E,2. There is a subgroup C' < K such that
C/Z(K) = C,. Then C/Z(K) < K/Z(K). There is a one-to-one map between
{C/Z(K) | C/Z(K) <« K/Z(K)} and {C/Z(K) | Z(K) <, C <, K}. Note
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2

-1
p T = p+1. This implies

that K has p + 1 abelian maximal subgroups. The group G acts via conju-
gation on p + 1 maximal abelian subgroups of K. Orbits of this action have
lengths = 0 (mod p). This implies that there is at least one fixed subgroup

and that one is G-invariant. The proof is identical in the case when K’ = 1.
|

that [{C/Z(K) | C/Z(K)<, K/Z(K)}| = m -

THEOREM 3.3. Let N < G and |N| > p?, where G is a p-group. Then
there is some abelian D < N of order p® such that D < G.

PROOF. There is a composition series that goes through each normal
subgroup of G. It implies that there is a G-invariant subgroup M < N of
order p*. Let A < M be of order p?. Then, A is abelian and |M : A| = p.
By Theorem 3.2, there is a B <I M of order p?. Note that B is abelian as
well. Since |Aut(B),| = p, it is necessary that [Ny (B) : Cy(B)| < p, where
Ny (B) =M. It M = Cp(B), then B < Z(M). This implies that there is
g € M — B such that g € B and (B, g) < M is an abelian group of order p>.

If Cp(B) <, M, then Cyy(B) is abelian of order p3. Thus, we can always
find an abelian M-invariant subgroup of M the order of which is p3. The
claim follows from Theorem 3.2. d

PROPOSITION 3.4. Let G € CZ, be a 2-generated group of order pS. Let
®(G) = N = (z,y | o =y =1 aY = 2'P) and exp(G) < p?. Then
U1(G) = B1(N) = (aP,y?) and |G'| > p3.

PROOF. From Lemma 3.1 the center of N is Z(N) = (zP,yP) = ®(N).
Therefore, (aP,y?) < U1(N) < ®(N) = (zP,y?). This implies G1(N) =
(xP,yP). Thus, (xP,yP) < U1(G). Since exp(G) = p?, there is * € G and
o(g) = p*. Furthermore, g? € ®(G) = N and o(¢g?) = p. By Lemma 2.4, it
follows that if t € N\ ®(V), then o(t) = p?. Therefore, g? € ®(N) = (zP, yP).
Thus, U1(G) < (2P, y?) and finally G1(G) = (aP, y?).

Since (aP) = N’ < G’ and (2P) < U1(G), we have |01(G) N G’| > p and

U1(G)||G" p2|G’ G\ ..
p < |01(G)NG| = ||Ull((63)||G’|| = <I>(|G)| = |p77 yielding |G’| > p3. ]

THEOREM 3.5. Let G € CZ, be of order p® and ®(G) = N = (z,y | 2’ =
yP’ =1, a¥ = 2'P). Let exp(G) = p? and |G| = p*. Then Z(G) = (aP) and
Z3(G) = Z(N) = (2P,y").

PROOF. By Proposition 3.4, |G’| > p3. Since |G : G'| < p?, the only
options are |G'| = p® or |G'| = p*. Let |G'| = p*. Since G/ < ®(G) =
U1(G)G’, we have G’ = N. By Griinn’s theorem (see [1]), we have [G’ :
Z5(G)] = 1. Therefore, [N, Z2(G)] = 1. Since G € CZ,, we have Z3(G)
Ca(N) = Z(N) = (zP,yP) (see Lemma 3.1). This implies Z3(G)/Z1(G)

I IA
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Z(G/Z1(G)) > 1. Therefore, Z2(G) > Z1(G) > 1. Since | Z2(G)| = |(zP,y?)| =
p?, we have |Z;(G)| = |Z(G)| = p. Note that N’ = (zP) is a characteristic
subgroup of IV, and N is a characteristic subgroup of G. It follows know that
N’ <G is of order p. Therefore, [IN'NZ(G)| > 1 and N' = Z(G) = (zP). O

THEOREM 3.6. Let G € CZ, be a group of order pb. Let ®(G) = N =
(my | 2" =yP" =1, 2¥ = 21P) and exp(G) < p2. If |G'| = p*, then G is a
group of maximal class.

Proor. If we assume that cl(G) < maz, then, by Theorem 3.3, there
is a G-invariant, abelian subgroup A < N of order p3. This implies Z(N) =
(aP,yP) < A. Otherwise, N would be an abelian group. Note that U;(N) =
Z(N) < A. Since U1(N) is a characteristic subgroup of A, we have (zP,y?) <
G. We know that |G : ®(G)| = p? and G = (a,b) for some a,b € G. By
Theorem 3.5, we have Z(G) = (zP). This yields [a?, a] = [aP,b] = 1. If (yP)* =
(yP)b = yP, then y? € Z(G) = (), which is a contradiction. Therefore, we
have (y?)® # yP. Since (zP, yP) <1 G, we have (y?)* € (zP,yP). Also, o(a?) < p
and a? € N. Therefore, a? € Q1(N) = (zP,yP). It follows that (zP,yP, a) is a
nonabelian group of order p3 and by Theorem 1.3 we have cl(G) = max. This
is the final contradiction which proves the theorem. ]

THEOREM 3.7. Let G € CZ,, cl(G) < maz, exp(G) < p* and let N <
®(G) be a nonabelian G-invariant subgroup of order p*. Then |G| = p”.

PROOF. By Corollary 2.8, we have p° < |G| < pT. Since |®(G)| > p?, it
follows |G| > p® (since otherwise d(G) = 1). By Lemma 2.3, we know the
structure of the group N.

Let |G| = p°®. By Proposition 3.4, we have |G’| > p?. Since |G| = p® and
d(G) = 2, it follows that G’ < ®(G) and |G’'| < p*. If |G| = p?, then by
Theorem 3.6, the class of G would be maximal, contradicting the assumption.
Hence |G’| = p3. By Proposition 3.4, we have U;(G) = U1(N) = Z(N) =
(xP,yP) = ®(N). Since |G’| = p3, we have G’ < N = ®(G). On the other hand,
G’ is a maximal subgroup of N. Therefore Z(N) = U1(G) = ®(N) < G’. This
implies ®(G) = U1(G)G’ = G’ < N = ®(G). This is a contradiction. So, the
only remaining possibility is |G| = p”. ]

4. THE CASE |G| = p” AND dl(G) < max

We shall continue with the same assumption that there is a nonabelian
N < ®(G) of order p*. Additionally, we shall assume that G is not of max-
imal class and |G| = p”, exp(G) = p?. Note that exp(G) < p3. We begin
with the following result on the size of G'.

LEMMA 4.1. Let G € CZ, be a group of order p” and exp(G) = p* where
N =&G) = (z,y | 2?° =y =1, a¥ = 21*P). Then U1(G) = U1(N) =
(xP,yP) and |G'| > p3.
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PRrROOF. Notice that U1(N) < U;1(G) and exp(U1(G)) = p. By Lemma 3.1,
we have U1(N) = ®(N) = (aP,yP). We also have U1(G) < &(G) = N. Then
U1(G) < ®(N) = U1(N). This implies U1(G) = U1(N) = (aP, yP).

By Lemma 3.4, we have (aP) = N’ < G'NU1(G). Therefore p < [U1(G)N
BYal 2 | ’

“I=Tue el T @l T 2

THEOREM 4.2. Let G € CZ, be a group of order p” with exp(G) = p?
where N = ®(G) = (z,y | a¥° = y?" =1, a¥ = 2'P). If |G’| = p*, then
Z(G) = (aP) and Z3(G) = Z(N) = (2P, yP).

PROOF. By Lemma 4.1, we have |G'| > p3. Since G’ < ®(G) = N, it
follows |G’| < p*. The rest of the proof follows the proof of Theorem 3.5. 0

Now we shall present the main result.

THEOREM 4.3. Let G € CZ, be of exponent p*, where cl(G) < max. Let
N < &(G) be a G-invariant nonabelian subgroup of order p*. Then |G| = p”
and N = (z,y | a?” = y?" =1, a¥ = 2'*?) is of index p in ®(G).

PROOF. Assume that N = ®(G) and |G’| = p*. As in Theorem 3.5, we
have Z(G) = (zP) and Z3(G) = Z(N) = (P, y?). By Theorem 3.3, there is an
abelian group A<IG such that A < N and |A| = p®. Therefore Z(N) < A, since
otherwise AZ(N) = N and N would be an abelian group. By Lemma 4.1,
we have U1(G) = U1(N) = (2P,y?) < A. Note that U;(N) = Z(N). By
Lemma 3.1, we have Z(N) = ®(N) = (2P, y?) < G (since U1(G) = (aP,yP) is
a characteristic subgroup of G). From G/®(G) = E,s, we have G = (a,b, c)
for some generators a, b, c € G. Since 2P € Z(QG), it follows [zP,a] = [aP,b] =
[P, .

If (y?)* = (y?)* = (yP)¢ = yP, then y? € Z(G). This is a contradiction.
Thus, we may assume (yP)® # yP. Furthermore, o(a?) < p (since exp(G) = p?)
and a?U1(G) = (2P, yP). This implies that (zP,yP, a) is a nonabelian group
of order p? and by Theorem 1.3 the group G has maximal class. This is a
contradiction. Therefore, by Lemma 4.1, we have |G’| = p3. By Lemma 4.1,
it follows that U1(G) = U1(N) = Z(N) = ®(N) = (2P, yP). From |G'| = p?,
we have G’ < N = G'®(G). Since G’ is maximal in N, it implies ®(N) < G.
Since U1(G) = U1(N) = ®(N) < G, it follows that ®(G) = U1(G)G" <
G’ < N. This yields now ®(G) < N = ®(G), which is a contradiction.
By Theorem 3.7, we have |G| = p”. It follows N < ®(G). The description
of the group N is given by Lemma 2.3. Since |G : ®(G)| > p?, we have
|®(G) : N| = p. |

ACKNOWLEDGEMENTS.

This work has been fully supported by Croatian Science Foundation under
the project 6732 and 9752.



10 M.O. PAVCEVIC, K. TABAK

REFERENCES

[1] Y. Berkovich, Groups of Prime Power Order Vol. 1., Walter de Gruyter, Berlin - New
York, 2008.

[2] Y. Berkovich, Z. Janko, Groups of Prime Power Order Vol. 2., Walter de Gruyter,
Berlin - New York, 2008.

[3] Y. Berkovich, Z. Janko, Groups of Prime Power Order Vol. 3., Walter de Gruyter,
Berlin - New York, 2010.

[4] M- Hall, Theory of Groups, The Macmillan Company, New York, 1959.

[5] M. O. Pavéevié¢, K. Tabak, CZ-groups, Glas. Mat. Ser. III 51(71) (2016), 345-358.

M.O. Pavcevié¢

Department of applied mathematics

Faculty of Electrical Engineering and Computing
University of Zagreb

10 000 Zagreb

Croatia

E-mail: mario.pavcevic@fer.hr

K. Tabak

Rochester Institute of Technology
Zagreb Campus

D.T. Gavrana 15

10000 Zagreb

Croatia

E-mail: kxtcad@rit.edu



