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A NOTE ON DUJELLA’S UNICITY CONJECTURE

Maohua Le, Anitha Srinivasan

Abstract. Using properties of binary quadratic Diophantine equa-
tions, we prove that if r = pmqn, where p, q are distinct odd primes and

m,n are positive integers, then the equation x2 −
(
r2 + 1

)
y2 = r2 has at

most one positive integer solution (x, y) with y < r − 1.

1. Introduction

Let r be a positive integer with r ≥ 2. A. Dujella put forward the following
conjecture.

Conjecture 1.1 (Dujella). The equation

(1.1) x2 −
(
r2 + 1

)
y2 = r2, x, y ∈ Z

has at most one positive integer solution (x, y) with

0 < y < r − 1.

The above conjecture is also called Dujella’s unicity conjecture, and it
is related to some classical problems in number theory (see [5]). It is rather
a difficult problem, and so far only the following cases have been verified.
A. Filipin, Y. Fujita and M. Mignotte [2] proved the conjecture in the case
when r = pm, 2pm or r2 + 1 = p, 2pm, where p is an odd prime and m is
a positive integer. In the case when r = 2p2i with p an odd prime, there is
an exceptional solution (2p3i + pi, pi). The reader can find more details on
exceptional solutions in [5]. A. Srinivasan [9] showed that the conjecture is
true when r = pq, where p and q are distinct odd primes. We extend this
result in our main theorem given below.
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Theorem 1.2. If r = pmqn, where p, q are distinct odd primes and m,n ∈
N, then Conjecture 1.1 is true.

Note that equation (1.1) has solutions (r, 0) and (r2 − r + 1, r − 1). Our
approach uses the theory of equivalence of solutions of (1.1). Each equivalence
class has a unique fundamental solution (a, b) that satisfies 0 ≤ b < r. There-
fore Dujella’s conjecture claims that there is at most one positive fundamental
solution (a, b) with b > 0 other than the one given above.

2. Binary quadratic forms

In this section we present the basic theory of binary quadratic forms. An
excellent reference is [7], in Sections 4 to 7 and 11 of Chapter 6.

A primitive binary quadratic form F = (a, b, c) of discriminant ∆ is a
function F (x, y) = ax2 +bxy+cy2, where a, b, c are integers with b2−4ac = ∆
and gcd(a, b, c) = 1. Note that the integers b and ∆ have the same parity. All
forms considered here are primitive binary quadratic forms and henceforth we
shall refer to them simply as forms.

Two forms F and F ′ are said to be (properly) equivalent, written as

F ∼ F ′, if for some A =

(
α β
γ δ

)
∈ SL2(Z) (called a transformation matrix),

we have F ′(x, y) = f(αx+ βy, γx+ δy) = (a′, b′, c′), where a′, b′, c′ are given
by

(2.2) a′ = F (α, γ), b′ = 2(aαβ + cγδ) + b(αδ + βγ), c′ = f(β, δ).

It is easy to see that ∼ is an equivalence relation on the set of forms of
discriminant ∆. The equivalence classes form an abelian group called the
class group with group law given by composition of forms. The identity form
is defined as the form (1, 0, −∆

4 ) or (1, 1, 1−∆
4 ), depending on whether ∆ is

even or odd respectively. The inverse of F = (a, b, c) denoted by F−1, is given
by (a,−b, c). In the following definition we present the formula for composition
of forms.

Let F1 = (a1, b1, c1) and F2 = (a2, b2, c2) be two binary quadratic forms
of discriminant ∆.

Definition 2.1 (Composition). Let l = gcd(a1, a2, (b1 + b2)/2) and let
v1, v2, w be integers such that

v1a1 + v2a2 + w(b1 + b2)/2 = l.

If we define a3 and b3 as

a3 =
a1a2

l2
,

b3 = b2 + 2
a2

l

(
b1 − b2

2
v2 − c2w

)
,
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then the composition of the forms (a1, b1, c1) and (a2, b2, c2) is the form (a3, b3, c3),
where c3 is computed using the discriminant equation.

Note that this gives the multiplication in the class group.
A form F is said to represent an integer N if there exist integers x and

y such that F (x, y) = N . If gcd(x, y) = 1, we call the representation a
primitive one. Observe that equivalent forms primitively represent the same
set of integers, as do a form and its inverse. Note also that if F and G are in
the identity class, then so are F−1 and FG.

We end this section with two elementary observations about forms. Firstly,
a form F represents primitively an integer N if and only if F ∼ (N, b, c) for
some integers b, c. This follows simply by noting that F (α, γ) = N with
gcd(α, γ) = 1 if and only if there exists a transformation matrix A as given
above such that (2.2) holds. Secondly, if b ≡ b′ (mod 2N), then the forms
(N, b, c) and (N, b′, c′) are equivalent. This equivalence follows using the trans-

formation matrix A =

(
1 δ
0 1

)
where b′ = b+ 2Nδ.

3. The diophantine equation x2 −Dy2 = N

Let D be a non-square positive integer, and let N be an odd positive
integer with N > 1 and gcd(D,N) = 1. It is well known that the solutions
(x, y) of the equation

(3.3) x2 −Dy2 = N,

can be put into equivalence classes, where equivalence of solutions is defined
as follows.

Definition 3.1. Two solutions (x, y) and (x′, y′) of x2 − Dy2 = N are
said to be equivalent, written as (x, y) ∼ (x′, y′) if xy′ ≡ yx′ (mod N).

Remark 3.2. The equivalence stated above is usually stated with the ad-
ditional condition of xx′ ≡ Dyy′ (mod N). However, this condition follows
from the congruence given in the definition.

The following lemma connects primitive representations of x2−Dy2 = N
and forms that represent N . It is well known and one may refer to [1, Theorem
4.4, Page 53]. A clear and explicit exposition is also available in [3] and [4].

Theorem 3.3. Let D be a non-square integer. Let N > 1 be a positive
integer such that gcd(N, 2D) = 1 and suppose that N is primitively repre-
sented by some form of discriminant 4D. Then the following hold, where all
forms are of discriminant 4D.

1. If A = {(N, b, c) : −N < b < N} and w(N) is the number of distinct
primes dividing N , then |A| = 2w(N).
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2. There is a one-to-one correspondence between the set of equivalence
classes of primitive solutions (x, y) of the equation X2 − DY 2 = N
and the set A0 = {(N, b, c) ∼ (1, 0,−D);−N < b < N} of forms in A
equivalent to the identity form.

Furthermore, in each equivalence class there is a unique fundamental so-
lution (u, v) with least non-negative value of v. The following result gives us
an upper bound for v.

Theorem 3.4. [6, Theorem 4.1] Let N > 1 be an integer. Suppose that
(x0, y0) is the least positive solution of the Pell equation x2 −Dy2 = 1. Then
a solution (u, v) with v > 0 of x2 − Dy2 = N is a fundamental solution if

and only if either 0 < v < y0

√
N/(2(x0 + 1)) or v = y0

√
N/(2(x0 + 1)) and

u =
√
N(x0 + 1)/2.

Corollary 3.5. Let gcd(a, b) = g with b > 0. Then the following are
true.

1. (a, b) is a fundamental solution of x2 − (1 + r2)y2 = r2 if and only if
b < r.

2. (a, b) is a fundamental solution of X2 − (1 + r2)Y 2 = r2 if and only
(a/g, b/g) is a primitive fundamental solution of X2 − dY 2 = (r/g)2.

Proof. The fundamental solution of the Pell equation x2−(1+r2)y2 = 1
is (x0, y0) = (2r2 + 1, 2r). Using these values along with N = r2 in Theorem
3.4 we obtain that a positive solution (u, v) of x2 − (1 + r2)y2 = r2 is a
fundamental solution if and only if 0 < v < r.

For part 2 we simply note that for the second equation, the upper bound
in the theorem (using N = (r/g)2) is r/g.

Remark 3.6. From Theorem 3.4 we may re-word Dujella’s conjecture to
state that equation (1.1) has at most one positive fundamental solution (x, y)
with 0 < y < r − 1.

Lemma 3.7. [8, Lemma 3.3] Let k = ff ′ be a positive integer such that
1 < f < k. If x2 − (k2 + 1)y2 = f ′2 for some coprime integers x and y, then
f ′ is not an odd prime power.

Lemma 3.8. [8, Lemma 3.2] Let d = 1 + r2 and N be an integer such that
1 < |N | ≤ r. Then there are no primitive solutions to X2 − dY 2 = N .

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the following lemma.

Lemma 4.1. Let d = 1+r2, with r = pmqn, where p and q are odd primes,
and m and n are positive integers. Then the following are true.

1. The congruence x2 ≡ d (mod pq) has exactly 4 solutions, namely ±1
and ±l2, for an l2 that satisfies 1 < l2 < pq.
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2. Let f1, f2, g1, g2 be integers such that 0 < f1 < f2 ≤ m and 0 < g1, g2 ≤
n. Suppose that there are two forms F = (p2f1q2g1 , 2L1, c1) and G =
(p2f2q2g2 , 2L2, c2) equivalent to (1, 0,−d) such that L1 ≡ ±L2 ≡ ±l2
(mod pq). Then g1 > g2. Moreover L1 ≡ ±L2 (mod p2f1q2g2).

Proof. The first part is a standard result from elementary number the-
ory.

For the second part assume first that L2 ≡ −L1 (mod pq). From the
discriminant equation we have

(4.4) L2
2 ≡ L2

1 ≡ d (mod gcd(p2f1q2g1 , p2f2q2g2)),

and as L2 ≡ −L1 (mod pq), this gives

(4.5) L1 ≡ −L2 (mod gcd(p2f1q2g1 , p2f2q2g2)).

We now apply the composition algorithm to find FG. If g1 ≤ g2 we see that
the gcd l required in Definition 2.1 is p2f1q2g1 . Hence the first coefficient
of the composition FG is p2(f2−f1)q2(g2−g1). Therefore there is a primitive
representation (x, y) such that x2−dy2 = p2(f2−f1)q2(g2−g1) > r from Lemma
3.8. It follows on using Lemma 3.8 again for p2f1q2g1 that

r2 ≥ p2f2q2g2 > p2f1q2g1r > r2

a contradiction. Therefore we have g2 < g1, in which case from (4.5) we have
L1 ≡ −L2 (mod p2f1q2g2).

In the case when L2 ≡ L1 (mod pq) we would proceed exactly as above
with the only difference that we would now consider the composition FG−1,
so as to obtain the same gcd in Definition 2.1 as above.

Proof of Theorem 1.2
We start with the observation that if y > 0 and s = gcd(x, y), then from

Corollary 3.5(2), we have (x, y) is a fundamental solution of X2 − dY 2 = r2

if and only if (x/s, y/s) is a fundamental primitive solution of X2 − dY 2 =
(r/s)2. Moreover, from Lemma 3.7 we have r/s is not a prime power. Observe
that if (x, y) is a fundamental solution, then so is (−x, y) and these correspond
to inverse classes. Therefore it follows from Theorem 3.3 that every such pair
of fundamental solutions of x2 − dy2 = r2 corresponds to a pair of forms
(p2fq2g,±2L,C), where

(4.6) 0 < f ≤ m, 0 < g ≤ n and 0 < L < p2fq2g.

Note that the fundamental solutions (±(r2 − r + 1), r − 1) correspond to
the forms (r2,±2,−1).

From Remark 3.6 to prove Dujella’s conjecture, we may assume on the
contrary, that there are two positive fundamental solutions different from the
one mentioned above. It follows from the discussion above that we have the
forms

F = (p2fq2g, 2L,C), G = (p2f ′
q2g′ , 2L′, C ′),
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where L and L′ satisfy condition (4.6) (where in the case of L′ we replace
f, g, L by f ′, g′, L′ respectively) and thus

F 6= G or G−1.

From the discriminant equation we have

(4.7) L2 ≡ d ≡ 1 (mod p2fq2g).

From Lemma 4.1(1), we have L ≡ ±1 or ±l2 (mod pq). If L ≡ ±1 (mod pq),
then from (4.7) above we have L ≡ ±1 (mod p2fq2g) which means

(p2fq2g, 2L,C) ∼ (p2fq2g,±2,−p2m−2fq2n−2g) ∼ (1, 0,−d),

where we have used the remark at the end of Section 2. Thus (1, 0,−d)
represents primitively both p2fq2g and −p2m−2fq2n−2g (see last paragraph
of Section 2). This is not possible from Lemma 3.8, if both these integers
are greater than 1 in absolute value, as at least one of them is less than or
equal to r in absolute value. Hence we must have (f, g) = (m,n) and thus
F = (r2, 2,−1) which is contrary to the assumption.

An identical analysis with L′ yields

(4.8) L ≡ ±L′ ≡ ±l2 (mod pq).

If (f, g) = (f ′, g′) then the discriminant equation gives

L2 ≡ L′2 ≡ 1 (mod p2fq2g).

Combining the above with (4.8) yields

L ≡ ±L′ (mod p2fq2g),

which is not possible because as stated above, F 6= G or G−1 because of the
conditions on L and L′.

Hence we may assume that f < f ′. Then from Lemma 4.1(2) we have
g′ < g and

L′ ≡ −λ1L (mod p2fq2g′),

where λ1 = 1 or −1. We will now compute the composition form FGλ1 . We
have for the gcd l in Definition 2.1

gcd(p2fq2g, p2f ′
q2g′ , L+ λ1L

′) = p2fq2g′ .

It follows from Definition 2.1 that

FGλ1 = (p2(f ′−f)q2(g−g′), 2L1, C1),

for some integers L1, C1. If now g − g′ ≤ g′, (i.e. g ≤ 2g′) then we have a
contradiction from Lemma 4.1(2), as f ′−f < f ′. Assume now that g−g′ > g′.
Let L′ ≡ −λ2L1 (mod pq). Then

FGλ1+λ2 = (p2fq2(g−2g′), 2L2, C2),

where the required gcd in Definition 2.1 is l = p2(f ′−f)q2g′ . Observe that
the exponent of p in the form displayed above is 2f (the same as in F ) and
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the exponent of q is less than the corresponding exponent in F , which is not
possible by Lemma 4.1, and thus the proof is complete.
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