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Abstract. In this paper, we define the directional edge escaping
points set of function iteration under a given plane partition and then
prove that the upper bound of Hausdorff dimension of the directional edge

escaping points set of S(z) = aez+be−z , where a, b ∈ C and |a|2+ |b|2 ̸= 0,
is no more than 1.

1. Introduction

The Julia sets of transcendental entire functions always have very com-
plicated fractal structures (see [9]). We often use the Huasdorff dimension
to describe them. Many profound results about the Huasdorff dimension of
Julia sets of transcendental entire functions have been obtained. For exam-
ple, Stallard and Bishop proved that there is a transcendental entire function
such that the Huasdorff dimension of its Julia set is equal to any pre-specified
number on the closed interval [1,2] (see [1, 17, 18]).

In addition to Julia set, the closely related escaping set (see [3]) is also the
subject of increasing interest. In particular, there are many studies on the
escaping sets of specific transcendental entire functions. Take the escaping
set of exponential function for example, Schleicher and Zimmer proved that
the escaping points set of λez with λ ̸= 0 is the Cantor set of curves and
has a peculiar phenomenon of ”dimension paradox”, which was first found by
Karpińska(see [6, 7]), that is the Hausdorff dimension of the hairs without
endpoints is 1, however, the Hausdorff dimension of the set of endpoints is
2 (see [16]). Further more, not only for escaping points set of exponential
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function, but for escaping parameters set of exponential functions family has
been intensively studied. For example, Schleiher, Forster, Rempe, Bailesteanu
and Balan proved the escaping parameters set of exponential functions family
also has the properties of Cantor bundle structure and ”dimension paradox”
(see [10, 12, 14, 15]). Of course, there are many other entire functions have
been studied deeply, such as cosine function aez + be−z, where ab ̸= 0 (see
[5, 8, 10, 11, 13, 19]).

In this paper, we will combine exponential and cosine functions to study
the function aez + be−z, where a, b ∈ C and |a|2 + |b|2 ̸= 0. Moreover, we will
also study a kind special escaping points set, which we call it directional edge
escaping points set. For a function S(z), the directional edge escaping points
set of it under a given plane partition is defined below.

First, We divide the complex plane with squares. Denote Sn(z) as the n-
fold iterate of S(z), where n ∈ N. Take one of the squares arbitrarily, denote
it by B0, a point z in it is called directional edge escaping point means that
it satisfies

• Sn(z)→∞ as n→∞,

• |ImSn(z)| ≤ λ|Sn(z)| for all n ∈ N,

• Bn+1(z) ∩ ∂S(Bn(z)) ̸= ∅ for all n ∈ N.

where λ ∈ (0, 1) is a constant, Bn+1(z) is the square Sn+1(z) belongs to,
∂S(Bn(z)) is the boundary of the image of Bn(z) under function S(z). See
the following figure 1.

Figure 1. directional edge escaping point

As we all know, it is very important method to study the transcendental
dynamics by dividing the plane(see [2]). If we imagine a series of objects
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connected by one rope, see the following figure 2, the concept of directional
edge escaping point can emerges.

Figure 2. objects connected by one rope

It should be pointed out that the above directional edge escaping points
set is very likely complicated and interesting. In order to be more intuitive,
we limit the observation to the real axis and a simple linear function. Divide
the real axis to partitions with integer points endpoints and consider the
directional edge escaping points set of the map y = 3x only in the interval
[0, 1]. According to the concept of directional edge escaping points set, we
can infer that the directional edge escaping points set of map y = 3x in the
interval [0, 1] is a classic Cantor set without {0}, whose Hausdorff dimension
is log32. See the following figure 3.

Figure 3. the directional edge escaping points set of y = 3x

In this paper, We will prove that the Hausdorff dimension of directional
edge escaping points set of aez + be−z, where a, b ∈ C and |a|2 + |b|2 ̸= 0,
is no more than 1 under one kind of complex plane partition. In order to
state our conclusion, we turn to briefly introduce the concept of Hausdorff
dimension(see [4]) and some notations.

For any set U ⊆ C, denote the diameter of U by |U | := sup{|z − w| :
z, w ∈ U}. Let F be a set in C, and s a positive number. Define s-dimensional
measure Hs(F ) of F by

Hs(F ) := limδ→0 inf
{∑∞

i=1 |Ui|s : |Ui| < δ, F ⊆
∪

i Ui

}
.

and define the Hausdorff dimension dim(F ) of F by

dim(F ) := inf
{
s ≥ 0 : Hs(F ) = 0

}
= sup

{
s ≥ 0 : Hs(F ) =∞

}
.

For convenience, we might as well denote function aez + be−z, where
a, b ∈ C and |a|2 + |b|2 ̸= 0, as S(z).

Define I := {z ∈ C : Sn(z) → ∞, as n → ∞ and |ImSn(z)| ≤ λ|Sn(z)|
for all n ∈ N}. Denote E∞ as the the directional edge escaping points set,
that is E∞ := {z ∈ I : Bn+1(z) ∩ ∂S(Bn(z)) ̸= ∅ for all n ∈ N}. And divide
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the complex plane as follow.

C := ∪∞k=−∞Pk

:= ∪∞k=−∞{z ∈ C : −π

2
+ kπ ≤ Imz <

π

2
+ kπ}

:= ∪∞k=−∞ ∪∞j=−∞ Bj,k

:= ∪∞k=−∞ ∪∞j=−∞ {z ∈ Pk : jπ ≤ Rez < (j + 1)π}.

See the following figure 4.

Figure 4. plane division

Theorem 1.1. If E∞ be the directional edge escaping points of S(z) under
the foregoing division of plane, then dim(E∞) ≤ 1.

2. Preliminaries

Lemma 2.1. Let F be a subset of C, S(z) = aez + be−z, where a, b ∈ C
and |a|2 + |b|2 ̸= 0, then dim(F ) = dim(S(F )).

Proof. If a = 0 or b = 0, S′(z) ̸= 0.
If ab ̸= 0, let S′(z) = aez − be−z = 0, then z = 1

2 log |
b
a | +

i
2Arg(ba ). So

S′(z) ̸= 0 on C \ {z : z = 1
2 log |

b
a | +

i
2Arg(

b
a )}. That means S(z) is locally

univalent except for a countable set. And note that ignoring a countable
subset has no effect on the Hausdorff dimension of the original set, we have
dim(F ) = dim(S(F )).

For z ∈ I, according to |Sn(z)| ≤ |a| exp(ReSn−1(z))+|b| exp(−ReSn−1(z)),
we have {z ∈ I : |Re(Sn(z))| → ∞ as n → ∞}. So it is no matter that we
limit our discussion in

Hq := {z ∈ C : |Rez| ≥ q},
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where q is large enough. Otherwise, by lemma 2.1, we consider the set
Sn(E∞ ∩Bj,k).

Lemma 2.2. Let S(z) = aez + be−z, where a, b ∈ C and |a|2 + |b|2 ̸= 0,
m,n be nonnegative integers, if q > 0 is sufficiently large and z ∈ Hq, then

(a) S(m)(z) ̸= 0 , where S(m)(z) is the m-order derivative, S(0)(z) = S(z);
(b) the horizontal strip domain with width smaller than 2π and the real

part no less than q (or no more than −q) is the univalent domain of S(m)(z);
(c) e < 2

3 min{|a|, |b|}e|Rez| < |S(m)(z)| < 3
2 max{|a|, |b|}e|Rez|;

(d) 1
2eπ < |S(m)(z1)|

|S(n)(z2)|
< 2eπ, where |Rez1−Rez2| < π and zi ∈ Hq,i = 1, 2.

Proof. (a)If S(m)(z) = aez ± be−z = 0, then z = 1
2 log |

b
a |+

i
2Arg(± b

a ).

Because |Rez| ≥ q > | 12 log |
b
a ||, then S(m)(z) ̸= 0.

(b) Note that S(m)(z) = aez±be−z =
√
ab(

√
a
b e

z±
√

b
ae

−z). If S(m)(z1) =

S(m)(z2), then √
a

b
ez1 =

√
a

b
ez2 or |

√
a

b
ez1 ·

√
a

b
ez2 | = 1.

Since q is large enough such that |
√

a
b e

z1 ·
√

a
b e

z2 | ̸= 1, we have
√

a
b e

z1 =√
a
b e

z2 and then z1 = z2 (width of strip < 2π).
(c) Suppose Rez ≥ q > 0, as q is large enough, then

|S(m)(z)| ≥ ||a|eRez − |b|e−Rez| > |a|eRez − 1

3
|a|eRez

=
2

3
|a|eRez ≥ 2

3
min{|a|, |b|}e|Rez| > e,

|S(m)(z)| ≤ |a|eRez + |b|e−Rez < |a|eRez +
1

2
|a|eRez

=
3

2
|a|e|Rez| ≤ 3

2
max{|a|, |b|}e|Rez|.

The prove is completely similar when Rez ≤ −q < 0.
(d)Without losing generality, suppose Rez ≥ q > 0. It can be proved

similarly when Rez ≤ −q < 0.

||a|eRez1 − |b|e−Rez1 |
|a|eRez2 + |b|e−Rez2

≤ |S
(m)(z1)|
|S(n)(z2)|

≤ |a|e
Rez1 + |b|e−Rez1

||a|eRez2 − |b|e−Rez2 |
.

As q > 0 is large enough and |Rez1 − Rez2| < π, then Rez1 and Rez2 are
positive large enough. So

1

2
e−π <

|S(m)(z1)|
|S(n)(z2)|

≈ eRez1−Rez2 < 2eπ.
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According to lemma 2.2, we can further observe S(z). For any given small
positive number θ, as long as q > 0 is large enough, we have that

max{|a|, |b|}e−|Rez| < θ.(2.1)

So S(z) ≈ aez or S(z) ≈ be−z in Hq.
Take B := Bj,k and j > 0 for example, S(B) contains a half-annulus

with inner radius of |a|ejπ + θ and outer radius of |a|e(j+1)π − θ. At the same
time, S(B) included in a half-annulus with inner radius of |a|ejπ−θ and outer
radius of |a|e(j+1)π + θ. As the positive number θ is very small, S(B) can be
viewed as ’approximate-half-annulus’.

Let R(S(B)) := sup |S(B)|, r(S(B)) := inf |S(B)|, and

Ã(r(S(B)), R(S(B))) := S(B) ∩Hq ∩ {z ∈ C : |Imz| ≤ λ|z|, λ ∈ (0, 1)},

which is partial approximate-annulus.

Denote Ã(a0r(S(B))+a1, b0R(S(B))+b1) as the ’approximate-half-annulus’
in Hq, which is enclosed by the image of inner and outer boundary of S(B)
under linear transformation a0z + a1 and b0z + b1 respectively along radial
direction, where a0, a1, b0, b1 are real number.

Since {z, S1(z), S2(z), · · ·} stay in Hq, so for every n ≥ 0 there exists a
unique square Bn(z) ⊆ Hq such that

Sn(z) ∈ Bn(z).

If necessary, we can ask q to be sufficiently large that the above lemma 2.2
holds when |Rez| > q

2 . It follows immediately from lemma 2.2 (b) and (c)
that there exists a unique holomorphic inverse branch S−n

z : Bn(z) → Hq−π

:= {z ∈ C : |Rez| ≥ q− π} of Sn sending Sn(z) to z. Denote

Kn(z) = S−n
z (Bn(z)).

In addition, denote R(S(Bn−1(z))) and r(S(Bn−1(z))), i.e. R(Sn(Kn−1(z)))
and r(Sn(Kn−1(z))), respectively, by Rn(z) and rn(z). See the following
figure 5 to be familiar with the above symbols.

Figure 5. diagrammatic sketch of symbols
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Lemma 2.3. Let S(z) = aez + be−z, where a, b ∈ C and |a|2 + |b|2 ̸= 0.
If q is large enough, then there exists constants K1 and K2 independent on n
and z such that

|(S−n
z )′(x)|

|(S−n
z )′(y)|

≤ K1

for all x, y ∈ Bn(z), and

|(Sn)′(x)|
|(Sn)′(y)|

≤ K2

for all x, y ∈ Kn−1(z) i.e. Sn−1(x), Sn−1(y) ∈ Bn−1(z).

Proof. Denote B̃i(z) ⊃ Bi(z) as the open square of side length 2π
with sides parallel to Bi(z) and center coincident with Bi(z). By lemma

2.2 (b), we know that S(z) is univalent on B̃i(z) and the S(B̃i(z)) contains

B̃i+1(z) for i = 0, 1, 2, · · ·. See the following figure 6.

Figure 6. deviation property of S(z)

The module of B̃i(z) \ Bi(z) is constant, by distortion theorem, for all
x, y ∈ Bn(z)

|(S−n
z )′(x)|

|(S−n
z )′(y)|

≤ K1.

By lemma 2.2 (d)

|(Sn)′(x)|
|(Sn)′(y)|

=
|S′(Sn−1(x))|
|S′(Sn−1(y))|

· |(S
n−1)′(x)|

|(Sn−1)′(y)|
≤ 2eπK1 = K2.

If let K = max{K1,K2}, K1,K2 can be replaced with K at the same time.

Lemma 2.4. Let S(z) = aez + be−z, where a, b ∈ C and |a|2 + |b|2 ̸= 0. If
z ∈ I and q is large enough, then |Re(Sn(z))| tends to infinity uniformly.
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Proof. For any given z ∈ I, we have

|Re(Sn(z))| =
√
|Sn(z)|2 − (|ImSn(z)|)2

≥
√
|Sn(z)|2 − (λ|Sn(z)|)2

= (1− λ2)
1
2 |Sn(z)|.

(2.2)

According to lemma 2.2 (c), q is large enough, we get

|Sn+1(z)| = |aeS
n(z) + be−Sn(z)|

≥ 2

3
min{|a|, |b|}e|ReSn(z)|

≥ 2

3
min{|a|, |b|} exp((1− λ2)

1
2 |Sn(z)|)

≥ 2

(1− λ2)
1
2

|Sn(z)|.

Hence,

|Re(Sn+1(z))| ≥ (1− λ2)
1
2 |Sn+1(z)| ≥ 2|Sn(z)|

≥ 2|Re(Sn(z))| ≥ · · · ≥ 2n+1q.

Lemma 2.5. Let S(z) = aez + be−z, where a, b ∈ C and |a|2 + |b|2 ̸= 0.
For any given α > 0 and T > 0, there exist K3 > 0 and n0 ≥ 0 such that for
every n ≥ n0,

|(Sn+1)′(z)| ≥ K3|(Sn)′(z)|α

for all z ∈ I ∩B(0, T ).

Proof. By lemma 2.4, for any given α > 0, there is n0 ≥ 0 such that

1

2eπ
2

3
min{|a|, |b|}e(1−λ2)

1
2 |Sn+1(z)| ≥ (2eπ)α|Sn+1(z)|α

for all z ∈ I when n ≥ n0.
We claim that

inf
z∈I∩B(0,T )

|(Sn0+1)′(z)|
|(Sn0)′(z)|α

̸= 0.

If there no exist j ∈ {0, 1, ···n0} and z0 ∈ I ∩B(0, T ) such that S′(Sj(z0)) = 0,
|(Sn0+1)′(z)|
|(Sn0 )′(z)|α is a positive continuous function on bounded closed sets, the claim

holds. Suppose there exist j ∈ {0, 1, · · ·n0} and z0 ∈ I ∩B(0, T ) such that
S′(Sj(z0)) = 0, then exist {zn} ⊆ I ∩ B(0, T ) such that zn → z0 or zn ≡ z0.
By lemma 2.2 (d)

|S′(Sj(z0))| ← |S′(Sj(zn))| ≥
1

2eπ
|Sj+1(zn)| ≥

1

2eπ
q,
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which contradicts to S′(Sj(z0)) = 0.
Let K3 be the infimum of the function z 7→ |(Sn0+1)′(z)||(Sn0)′(z)|−α in

I ∩B(0, T ), then K3 is a positive number. Proof by induction. According to
the definition of K3, the lemma holds when n = n0. Suppose it is true for
n ≥ n0, so

|(Sn+2)′(z)| = |(S′(Sn+1(z))| · |(Sn+1)′(z)|
≥ K3|(S′(Sn+1(z))| · |(Sn)′(z)|α.

By lemma 2.2 (d) (c) and (2.2)

|(S′(Sn+1(z))| ≥ 1

2eπ
|Sn+2(z)| ≥ 1

2eπ
2

3
min{|a|, |b|}e|ReSn+1(z)|

≥ 1

2eπ
2

3
min{|a|, |b|}e(1−λ2)

1
2 |Sn+1(z)| ≥ (2eπ)α|Sn+1(z)|α

≥ (2eπ)α · ( 1

2eπ
)α|S′(Sn(z))|α = |S′(Sn(z))|α.

Therefore

|(Sn+2)′(z)| ≥ K3|S′(Sn(z))|α · |(Sn)′(z)|α = K3|(Sn+1)′(z)|α.

3. The proof of theorem

Based on the above preliminaries, we can begin to prove the main result
of this paper.

Proof. Let En := ∪z∈IS
−n
z (Ã(rn(z), rn(z)+2π)∪Ã(Rn(z)−2π,Rn(z))).

Then E∞ can be covered by the set ∪n≥kEn for every k ≥ 0 and the

approximate-half-annuli Ã(rn(z), rn(z) + 2π) ∪ Ã(Rn(z) − 2π,Rn(z)) can be
covered by M1rn(z) squares with diameters less than 1, where M1 is a con-
stant. Therefore, according to lemma 2.3, Kn−1(z)∩En can be covered with
no more than M1rn(z) sets Ji,n(z) of diameters less than K|(Sn)′(z)|−1.

Let T ≥ 2q. Note that any two sets Kn−1(z) and Kn−1(z
′) are either

disjoint or equal, so we can find a set Zn ⊂ I such that Kn−1(z) and Kn−1(z
′)

are disjoint for z, z′ ∈ Zn, z ̸= z′ and

En ∩B(0, T ) ⊂ ∪z∈ZnKn−1(z) ⊂ B(0, 2T ).
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For the given ϵ > 0, let n be large enough such that lemma 2.5 is satisfied for
α = 2/ϵ and 2T . Using lemma 2.2 (d), lemma 2.5 and (2.1), we get∑
z∈Zn

∑
Ji,n

(diamJi,n(z))
1+ϵ ≤

∑
z∈Zn

M1K
1+ϵrn(z)|(Sn)′(z)|−(1+ϵ)

≤ 2eπM1K
1+ϵ

∑
z∈Zn

|S′(Sn−1(z))||(Sn)′(z)|−(1+ϵ)

≤ 2eπM1K
1+ϵ

∑
z∈Zn

|S′(Sn−1(z))||S′(Sn−1(z))|−(1+ϵ)|(Sn−1)′(z)|−(1+ϵ)

≤ 2eπM1K
1+ϵ

∑
z∈Zn

|S′(Sn−1(z))|−ϵ|(Sn−1)′(z)|−ϵ|(Sn−1)′(z)|−1

≤ 2eπM1K
1+ϵ

∑
z∈Zn

|(Sn)′(z)|−ϵ|(Sn−1)′(z))|−1

≤ 2eπM1K
1+ϵ

∑
z∈Zn

K−ϵ
3 |(Sn−1)′(z)|−2|(Sn−1)′(z))|−1

≤ 2eπK−ϵ
3 M1K

1+ϵe−(n−1)
∑
z∈Zn

|(Sn−1)′(z)|−2.

Because Kn−1(z) and Kn−1(z
′) are disjoint and the Lebesgue measure of

each set of the form Kn−1(z) is proportional to |(Sn−1)′(z)|−2 by lemma 2.3,
we get that there exists a constant M2 > 0 such that the last term in the
above inequality is no more than M2e

−(n−1) · area(B(0, 2T)) .
Hence,

∞∑
n=k

∑
z∈Zn

∑
Ji,n

(diamJi,n(z))
1+ϵ ≤M2 · area(B(0, 2T))

∞∑
n=k

e−(n−1)

= 4πT 2M2
e−k+2

e− 1
.

Let k → ∞, then 4πT 2M2
e−k+2

e−1 → 0. That is, for any given ϵ > 0, the

(1+ϵ)-dimensional Hausdorff measure of E∞∩B(0, T ) is equal to zero. Hence,

dim(E∞) ≤ 1.

Question: Does the same result hold for more general analytic functions?
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