
SERIJA III

www.math.hr/glasnik

Alan Filipin and Ana Jurasić
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ON THE EXISTENCE OF D(−3)-QUADRUPLES IN Z[X]

Alan Filipin and Ana Jurasić

Abstract. In this paper we prove that there does not exist a set

of four non-zero polynomials from Z[X], not all constant, such that the
product of any two of its distinct elements decreased by 3 is a square of a

polynomial from Z[X].

1. Introduction

Since Diophantus [3] noted that the product of any two elements of the
set
{

1
16 ,

33
16 ,

17
4 ,

105
16

}
increased by 1 is a square of rational number, many gen-

eralizations of his original problem were also studied. The following definition
describes a more general problem:

Definition 1.1. Let m ≥ 2 and let R be a commutative ring with unity.
Let n ∈ R be a non-zero element and let {a1, . . . , am} be a set of m distinct
non-zero elements from R such that aiaj + n is a square of an element of R
for 1 ≤ i < j ≤ m. The set {a1, . . . , am} is called a Diophantine m-tuple with
the property D(n) or simply a D(n)-m-tuple in R.

There are many results concerning the upper bounds for the number of
elements of such sets (see for example [1, 4, 6, 7, 8, 9, 12, 17]). Brown [1] proved
that if n is an integer and n ≡ 2 (mod 4), then there does not exist a D(n)-
quadruple of integers. Furthermore, Dujella [4] proved that if n is an integer
n 6≡ 2 (mod 4), and n /∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists
at least one D(n)-quadruple of integers, and moreover if n /∈ S ∪ T , where
T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 60, 84}, then there exist at least
two distinct D(n)-quadruples of integers. For some integers the question of
the existence of such a quadruple is still open, as it is stated in Dujella’s
conjecture [5]:

2020 Mathematics Subject Classification. 11D09, 11D45.

Key words and phrases. Diophantine m-tuples, polynomials.

1



2 ALAN FILIPIN AND ANA JURASIĆ

Conjecture 1.2. For n ∈ S = {−4,−3,−1, 3, 5, 8, 12, 20} there does not
exist a D(n)-quadruple of integers.

The question of whether there exists a D(n)-quadruple of integers can be
reduced to elements of the set S′ = {−3,−1, 3, 5, 8, 20} (see [4, Remark 3]).
Bonciocat, Cipu and Mignotte [2] recently proved that there are no D(−1)-
quadruples (and D(−4)-quadruples).

A polynomial variant of the problem of Diophantus was firstly studied by
Jones [18, 19] for the case R = Z[X] and n = 1. Since then, a lot of other
variants of such a polynomial problem were also considered (for example [9, 10,
11, 12, 13, 14, 15]). In case where R is a polynomial ring with coefficients in a
ring-extension of Z, and n is a non-zero integer, which will be the subject of our
interest, it is usually assumed that not all polynomials in such a D(n)-tuple
are constant. We also assume that R has a characteristic 0. We call a D(n)-
tuple a polynomial D(n)-tuple in this case and we specify, when neessary,
which polynomial ring R we are referring to. Let {a, b, c} be a polynomial
D(n)-triple. Then, there exist polynomials r, s and t from R such that

(1.1) ab+ n = r2, ac+ n = s2, bc+ n = t2.

Also, there is the following well-known definition:

Definition 1.3. A polynomial D(n)-triple {a, b, c}, where n ∈ Z\{0}, is
called regular if

(1.2) (c− b− a)2 = 4(ab+ n).

Equation (1.2) is symmetric under the permutations of a, b, and c, and
from (1.2), using (1.1), we get

(1.3) c = c± = a+ b± 2r,

(1.4) ac± + n = (a± r)2, bc± + n = (b± r)2.

For a polynomial D(n)-quadruple {a, b, c, d}, with n ∈ Z\{0}, there also exist
polynomials x, y and z from R such that, beside (1.1), there hold

ad+ n = x2, bd+ n = y2, cd+ n = z2.

We can also distinguish regular and irregular polynomial D(n)-quadruples
(see [16]).

Definition 1.4. A polynomial D(n)-quadruple {a, b, c, d}, with n ∈ Z \
{0}, is called regular if

n(d+ c− a− b)2 = 4(ab+ n)(cd+ n)(1.5)

or, equivalently, if

d = d± = a+ b+ c+
2

n
(abc± rst).
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Equation (1.5) is also symmetric under permutations of a, b, c and d.
In R[X], for example, a regular polynomial D(n)-quadruple exists for every
positive integer n.

A multi-set {a1, . . . , am} of elements of R such that aiaj + n is a square
of an element in R for 1 ≤ i < j ≤ m is called an improper D(n)-m-tuple in
R. Thus compared with Definition 1.1 the elements need not be distinct and
need not be non-zero. If this is the case we say that the improper D(n)-m-
tuple in R is proper. As above we consider polynomial D(n)-m-tuples. In an
(improper) polynomial D(n)-triple we can not have two equal non-constant
polynomials because this would imply for example (b− t)(b+ t) = −n, which
is not possible since not both factors on the left hand side of this equation
can be constant.

Now we state a polynomial variant of Conjecture 1.2:

Conjecture 1.5. For n ∈ S = {−4,−3,−1, 3, 5, 8, 12, 20} there does not
exist a polynomial D(n)-quadruple in Z[X].

Let us mention that in a polynomial case we can not reduce the set S to
the set S′.

The authors [15] proved that there does not exist a polynomial D(n)-
quadruple in Z[X] for any positive integer n which is not a perfect square.
Dujella and Fuchs [8] proved that there does not exist a polynomial D(−1)-
quadruple in Z[X]. As a consequence of the result from [2], there does not
exist a polynomial D(−4)-quadruple in Z[X]. In this paper, we consider the
case where R = Z[X] and n = −3 and we prove the following:

Theorem 1.6. There does not exist a polynomial D(−3)-quadruple in
Z[X].

Therefore, by proving Theorem 1.6, we complete the proof of Conjec-
ture 1.5.

Let Z+[X] denote the set of all polynomials with integer coefficients with
positive leading coefficient. For a′, b′ ∈ Z[X], a′ < b′ means that b′ − a′ ∈
Z+[X]. Let {a′, b′, c′}, such that 0 < a′ < b′ < c′, be a polynomial D(−3)-
triple in Z[X] and

a′b′ − 3 = (r′)2, a′c′ − 3 = (s′)2, b′c′ − 3 = (t′)2,(1.6)

where r′, s′, t′ ∈ Z+[X]. Such sets are, for example, the regular polynomial
D(−3)-triple

{1, X2 + 3, X2 + 2X + 4}

and the irregular polynomial D(−3)-triple

{1, 9X2 + 3, 1296X6 + 864X5 + 792X4 + 288X3 + 105X2 + 18X + 4}.
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The proof that a polynomial D(−3)-triple in Z[X] can not be extended to a
polynomial D(−3)-quadruple in Z[X] will be presented through the follow-
ing sections. In Section 2 we transform the problem of extending a polyno-
mial D(−3)-triple {a′, b′, c′} to a polynomial D(−3)-quadruple {a′, b′, c′, d′}
in Z[X] into solving a system of simultaneous pellian equations. Solutions of
that system appear from the intersections of the obtained binary recurrent
sequences of polynomials. It is a well-known method, but while solving our
problem we have to seek solutions in R[X] instead of solutions in Z[X], firstly.
In Section 3 we completely determine possible initial terms of the observed
recurring sequences. It is not difficult to see that if {a′, b′, c′, d′} is a polyno-

mial D(−3)-quadruple in Z[X], then the set
{
a′√

3
, b

′
√

3
, c

′
√

3
, d

′
√

3

}
is a polynomial

D(−1)-quadruple in R[X] and also the set
{
a′√

3
i, b

′
√

3
i, c

′
√

3
i, d

′
√

3
i
}

is a polyno-

mial D(1)-quadruple in C[X]. We will use this parallelism of the original
problem with the problems in R[X] and C[X] to be able to draw conclusions
in a polynomial ring R in which they are most apparent. That is the main
difference and novelty from the methods and results from [8] where it was
possible to consider everything in Z[X]. In Section 4 we prove Theorem 1.6,
using the results from the previous sections.

2. Binary recursive sequences of polynomials

Assume that a D(−3)-triple {a′, b′, c′}, where 0 < a′ < b′ < c′, in Z[X]
can be extended to a D(−3)-quadruple {a′, b′, c′, d′} in Z[X], where d′ > c′.
Let the equations (1.6) hold and let

a′d′ − 3 = (x′)2, b′d′ − 3 = (y′)2, c′d′ − 3 = (z′)2,(2.7)

where x′, y′, z′ ∈ Z+[X]. Let a, b, c and d be obtained by dividing a′, b′, c′

and d′ with
√

3. The polynomial D(−1)-triple {a, b, c} in R[X] can in turn
be extended to a polynomial D(−1)-quadruple {a, b, c, d} in R[X], where all
suitable elements are obtained from (1.6) and (2.7) by dividing with 3, i.e. we
get equations

ab− 1 = r2, ac− 1 = s2, bc− 1 = t2,(2.8)

ad− 1 = x2, bd− 1 = y2, cd− 1 = z2,(2.9)

where r, s, t, x, y, z ∈ R+[X] and R+[X] is defined analogously as Z+[X].
Since, by [13, Lemma 1], in a polynimial D(1)-quadruple {ai, bi, ci, di} in C[X]
there is at most one constant, it follows that a polynomial D(−1)-quadruple
in R[X] and also a polynomial D(−3)-quadruple in Z[X] can not contain two
constants.

Remark 2.1. We will firstly consider our problem in R[X] since, as we
will explain later, it will be the most suitable polynomial ring for our con-
clusions. When we study polynomial D(−1)-tuples in R[X], we consider only
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polynomials of the form p = p′√
3
, where p′ ∈ Z[X]. In other words, we are

interested only in polynomial D(−1)-tuples in R[X] whose existence follows
from the existence of polynomial D(−3)-tuples in Z[X]. Analogously, in C[X]
we are interested only in polynomial D(1)-tuples which follow from the exis-
tence of polynomial D(−3)-tuples in Z[X].

We will need the following construction for the elements of a polynomial
D(−1)-triple in R[X]. The following lemma is a modification of the analogue
statement for the integer case [6, Lemma 3], but also an analogue version of
[8, Lemma 7] for Z[X].

Lemma 2.2. Let {a, b, c}, where 0 < a < b < c, be a polynomial D(−1)-
triple in R[X] such that (2.8) holds. Then, there exist polynomials e, u, v, w ∈
R[X] such that

(2.10) ae+ 1 = u2, be+ 1 = v2, ce+ 1 = w2

and

(2.11) c = a+ b− e+ 2(abe+ ruv).

Proof. The proof is analogous to the proof of [8, Lemma 7].

Remark 2.3. As in the proof of [8, Lemma 7], we define

(2.12) e = −(a+ b+ c) + 2(abc− rst)

and we have

u = at− rs, v = bs− rt, w = cr − st.

Lemma 2.4. Let {a, b, c} be a polynomial D(−1)-triple in R[X], where
0 < a < b < c, and let e be defined by (2.12). Let us denote by α, β, γ the
degrees of polynomials a, b, c, respectively. Then e = 0 and β = γ or e > 0
and β < γ.

Proof. From (2.10), we conclude that e ≥ 0. For e = 0, by (2.11), we
get c = c± and then, from (1.3), γ ≤ β which implies β = γ.

Let e > 0. Let us define

(2.13) e = −(a+ b+ c) + 2(abc+ rst).

By (2.12) and (2.13), we have

(2.14) ee = −2ab− 2ac− 2bc+ a2 + b2 + c2 + 4.

Also, by (2.13),

deg(e) = α+ β + γ.
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From (2.14), deg(e) + deg(e) ≤ 2γ, where the inequality can occur only if
β = γ. But, then we would also have deg(e) + α < 0, which is not possible.
Therefore, we have deg(e) + deg(e) = 2γ, from which we conclude

deg(e) = γ − α− β.

If in this case we have β = γ, then it would be deg(e) = −α = 0 and
{ai, bi, ci,−ei} would be a polynomial D(1)-quadruple in C[X] with two con-
stants. Hence, ai = −ei, so a = −e < 0, which is not possible. We conclude
that β < γ.

We also need an analogue of [13, Lemma 4] so that we can use it in finding
all possible polynomials d. Let us denote by δ the degree of the polynomial
d. Therefore, 0 ≤ α ≤ β ≤ γ ≤ δ and β, γ, δ > 0. Eliminating d from (2.9),
we obtain the system of simultaneous pellian equations

az2 − cx2 = c− a,(2.15)

bz2 − cy2 = c− b.(2.16)

If we could find solutions (z, x) and (z, y) of (2.15) and (2.16), respectively,
we would have a polynomial d by following the classical arguments from [13,
Lemma 4] and also the results from [8].

We consider our problem in R[X], since in Z[X] we can not generate all
solutions of the equations (2.15) and (2.16) such that all of the solutions in
one class would be in Z[X]. This is the main difference between considering
polynomial D(−3)-tuples and polynomial D(−1)-tuples, for which in [8] all
solutions of the equations (2.15) and (2.16) are generated in the way which is
standard by now. On the other hand, in R[X] we can not pick the minimal
element of the observed set as we can in Z[X], just the element with minimal
degree. This makes the proofs in R[X] more complex. In the following lemma
we firstly obtain bounds for the degrees of the fundamental solutions of the
equations (2.15) and (2.16). Later, we will completely determine the form of
these fundamental solutions so that we can prove Theorem 1.6.

Lemma 2.5. Let (z, x) and (z, y) be solutions, with x, y, z ∈ R+[X],
of (2.15) and (2.16), respectively. Then, there exist solutions (z0, x0) and
(z1, y1), with z0, x0, z1, y1 ∈ R[X], of (2.15) and (2.16), respectively, such
that:

γ

2
≤ deg(z0) ≤ γ, α

2
≤ deg(x0) ≤ α+ γ

2
,(2.17)

γ

2
≤ deg(z1) ≤ γ, β

2
≤ deg(y1) ≤ β + γ

2
.(2.18)

More precisely, if deg(z0) = γ, then z0 = c ∓ s and if deg(z1) = γ, then
z1 = c∓ t.
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Moreover, there also exist non-negative integers m and n such that

(2.19) z
√
a+ x

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)2m,

(2.20) z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)2n.

Proof. We prove the statements of the lemma for the equation (2.15).
Statements for the equation (2.16) can be obtained analogously.

From (2.9), we conclude that z 6= 0, since otherwise we would have cd = 1,
i.e. γ + δ = 0, which is not possible. By (2.15), we have

(2.21) a(z2 + 1) = c(x2 + 1),

so if z is a constant, then x is a constant. Moreover, z2 +1 6= 0 and x2 +1 6= 0,
since the case with z = ±i and x = ±i is not possible in R[X]. Hence, in
that case, c = c1a with c1 ∈ R \ {0}. Also, α = β = γ and, by (2.8), we have
a1c

2 − 1 = s2. This leads to (
√
a1c− s)(

√
a1c+ s) = 1, which is not possible

since at least one of the factors on the left hand side of this equation has to
be non-constant. It follows that deg(z) ≥ 1.

Notice that

(s±
√
ac)2m = (s2 ± 2s

√
ac+ ac)m = (2ac− 1± 2s

√
ac)m

and

(2.22) (s+
√
ac)2m(s−

√
ac)2m = (s2 − ac)2m = (−1)2m = 1.

Let (z, x) be a solution of the equation (2.15) in polynomials from R+[X].
Let us consider all pairs (z∗, x∗) of polynomials from R[X] for which

(2.23) z∗
√
a± x∗

√
c = (z

√
a± x

√
c)(s±

√
ac)2m,

m ∈ Z. By (2.22), (z∗, x∗) is a solution of (2.15), so z∗ 6= 0 and deg(z∗) ≥ 1.
Analogously as in [8], we can prove that z∗ > 0.

Among all pairs (z∗, x∗), we choose one with the minimal deg(z∗). We
denote that pair by (z0, x0). By (2.23),

z
√
a+ ε1x

√
c = (z0

√
a+ ε2x0

√
c)(s+

√
ac)2m,

for ε1, ε2 ∈ {−1, 1} and some m ∈ Z. We follow the arguments from [13,
Lemma 4] for n = 1. By choosing appropriate signs of x and x0, which does
not change the degree of z0, we may assume that

(2.24) z
√
a+ x

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)2m

holds for m ≥ 0 and a pair (z0, x0) for which deg(z0) is minimal. For m < 0,
by (2.22), it holds

z
√
a− x

√
c = (z0

√
a− x0

√
c)(s−

√
ac)−2m.

Therefore, by changing the signs of x and x0, which does not have effect on
the degree of x0 neither the degree of z0, we may assume that (2.24) holds for
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m ≥ 0 and for z0 > 0 with minimal degree, up to the change of the signs of x
and x0.

Let us now find bounds on deg(z0) and deg(x0). Let (vm)m∈Z and
(xm)m∈Z be the sequences of polynomials given by

(2.25) vm
√
a+ xm

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)2m.

Then, v0 = z0,

v1

√
a+ x1

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)2

and

v−1

√
a+ x−1

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)−2 = (z0

√
a+ x0

√
c)(s−

√
ac)2.

More precisely,

v1 = (2ac− 1)z0 + 2scx0 = 2c(az0 + sx0)− z0,(2.26)

v−1 = (2ac− 1)z0 − 2scx0 = 2c(az0 − sx0)− z0.(2.27)

By the minimality of deg(z0) and by using the fact that z∗ 6= 0, we get

deg(v1) ≥ deg(v0) = deg(z0),(2.28)

deg(v−1) ≥ deg(v0) = deg(z0).(2.29)

From (2.21), we can conclude that if c|z2 + 1, then a|x2 + 1. For the pair
(z0, x0), we prove the similar statement by following the arguments from [13,
Lemma 4 v.]. We assume that c|z2 + 1 and, by induction on m ≥ 0 from
(2.24), we have to show that c|z2

0 +1. For m = 0, from (2.24), we have z = z0,
so the statement follows trivially. For m = 1, in (2.24) it holds z

√
a+ x

√
c =

(z0
√
a+x0

√
c)(s+

√
ac)2. But, since z0

√
a+x0

√
c = (z

√
a+x

√
c)(s−

√
ac)2

also holds, we conclude that z0 = (2ac−1)z−2scx. Finally, z0 ≡ −z (mod c),
so (z0)2 ≡ z2 (mod c). Since z2 ≡ −1 (mod c), then (z0)2 ≡ −1 (mod c). By
induction on m from (2.24), we can conclude that if c|z2 + 1, then c|z2

0 + 1.
Hence, there exists

(2.30) d0 =
z2

0 + 1

c
∈ R+[X].

By (2.21), it furthermore follows that a|x2
0 + 1, i.e. we have

x2
0 = ad0 − 1 and z2

0 = cd0 − 1.(2.31)

If x0 is a constant, then a and d0 are constants and d0 = a, since otherwise
we would have two different constants in a polynomial D(−1)-triple {a, d0, c},
which is not possible. Also, by (2.8) and (2.31), x2

0 = a2 − 1, z0 = s. Hence,
deg(v0) = deg(z0) = γ

2 . Since az0 ± sx0 = s(a ± x0), by (2.26) and (2.27),

deg(v±1) = 3γ
2 . If x0 is not a constant, since z2

0 + 1 is a multiple of c and
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2deg(z0) = deg(z2
0 + 1) ≥ γ, it follows that deg(z0) ≥ γ

2 . Also, from (2.21),
we get

(2.32) deg(x0) =
α− γ

2
+ deg(z0),

thus deg(x0) ≥ α
2 . By (2.31), the leading coefficients of the polynomials az0

and sx0 are equal to A
√
CD0, where A, C and D0 are the leading coefficients

of the polynomials a, c and d0, respectively. Also, by (2.32), deg(az0) =
deg(sx0) = α + deg(z0). Hence, one of the polynomials az0 ± sx0 obviously
has degree equal to α+ deg(z0). By (2.26) and (2.27), one of the polynomials
v1 and v−1 has degree equal to α+ γ + deg(z0), which is strictly greater than
deg(v0) = deg(z0). Therefore,

(2.33) max{deg(v1),deg(v−1)} = α+ γ + deg(z0) > deg(v0).

Using (2.15), (2.28), (2.29) and (2.33), we obtain

deg(z2
0) < deg(v1v−1) = deg(4c(c− a)s2 + z2

0).(2.34)

From (2.34), it follows that deg(v−1) + deg(v1) ≤ α + 3γ. Furthermore,
deg(z0) + α + γ + deg(z0) ≤ α + 3γ, so deg(z0) ≤ γ. More precisely, if
min{deg(v1),deg(v−1)} > deg(v0), then we have

deg(z0) < γ.

In that case, by (2.32),

deg(x0) <
α+ γ

2
.

If min{deg(v1),deg(v−1)} = deg(v0) = deg(z0), then we have

deg(z0) = γ.

By (2.32), deg(x0) = α+γ
2 . Also, by (2.31), deg(d0) = γ. In this case, by

Lemma 2.4, a polynomial D(−1)-triple {a, c, d0} in R[X] is regular. Depend-
ing whether c > d0 or c < d0, in (1.3) we have c = a+ d0 ± 2x0, respectively,
where we take x0 > 0. Then, by (1.4), c = ±s + z0, respectively. Hence,
z0 = c∓s. For a D(−1)-triple {b, c, d1}, similarly we conclude that z1 = c∓ t.

Now, we investigate the sequence (vm)m≥0, given by (2.25) (obtained from
(2.19)) for some initial values (z0, x0) for which estimates (2.17) hold, looking
for dm ∈ R+[X] such that v2

m = cdm − 1, for some m ≥ 0. We also study
the sequence (wn)n≥0, obtained from (2.20) for some initial values (z1, y1) for
which estimates (2.18) hold, trying to find dn ∈ R+[X] such that w2

n = cdn−1,
for some n ≥ 0. Since we want to extend a polynomial D(−1)-triple {a, b, c}
in R[X] to a polynomial D(−1)-quadruple with an element d ∈ R+[X], we
need to solve the equation

(2.35) vm = wn
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with m,n ≥ 0. Then, for some non-negative integers m and n we would
have z = vm = wn where, by (2.19) and (2.20), the sequences (vm)m≥0 and
(wn)n≥0 are given by

v0 = z0,

v1 = (2ac− 1)z0 + 2scx0,

vm+2 = (4ac− 2)vm+1 − vm,(2.36)

w0 = z1,

w1 = (2bc− 1)z1 + 2tcy1,

wn+2 = (4bc− 2)wn+1 − wn.(2.37)

Remark 2.6. Note that in (2.36) and (2.37) we take z0, z1 > 0 and we
have to consider both possibilities ±x0, ±y1. Note also that elements of the
sequences (vm)m≥0 and (wn)n≥0, multiplied by ±i correspond to elements of
the analogous sequences, with even indices, obtained for a polynomial D(1)-
triple {ai, bi, ci} in C[X]. In other words, by multiplying (2.19) and (2.20)
with ±i, we obtain a subcase (described in [12, Lemma 3]) of the case with
n = 1 in C[X] which corresponds to the case with n = −1 in R[X].

The following lemma implies that if the equation (2.35) has a solution,
then it has a solution for m = n = 0. In the part a) of its proof we con-
sider congruences in R[X], but in the rest of the proof we have to consider
congruences in Z[X], which appear after taking into consideration that poly-

nomials in R[X] we are dealing with in our problem have the form p′√
3
, where

p′ ∈ Z[X].

Lemma 2.7. Let {a, b, c}, where 0 < a < b < c and a = a′√
3

, b = b′√
3

and

c = c′√
3

with a′, b′, c′ ∈ Z[X], be a polynomial D(−1)-triple in R[X]. If that

triple can be exstended with an element d = d′√
3

, where d′ ∈ Z[X] and d > c, to

a polynomial D(−1)-quadruple {a, b, c, d} in R[X] i.e. if the equation (2.35)
has a solution, then z0 = z1 and deg(z0) = deg(z1) < γ.

Proof. Let vm = wn, for some integers m,n ≥ 0. From (2.36) and
(2.37), by induction, it easily follows that

vm ≡ (−1)mz0 (mod c), wn ≡ (−1)nz1 (mod c),

where we consider congruences in R[X]. Since vm = wn, we have

(2.38) z0 ≡ ±z1 (mod c).

By Lemma 2.5, deg(z0),deg(z1) ≤ γ. We have to consider four possible
combinations of degrees:

a) If deg(z0),deg(z1) < γ, then z0 = ±z1. Moreover, since z0, z1 > 0, we
conclude that z0 = z1. We can also conclude that m and n have the same
parity.



ON THE EXISTENCE OF POLYNOMIAL D(−3)-QUADRUPLES OVER Z 11

b) If deg(z0) < γ and deg(z1) = γ then, from the proof of Lemma 2.5,
we have that the triple {b, c, d1} is regular and z1 = c∓ t (the sign − appears
if c > d1 and the sign + if c < d1). In this case y1 = b∓ t.

c) If deg(z0) = γ and deg(z1) < γ then, similarly as in b), the triple
{a, c, d0} is regular and z0 = c∓ s (the sign − appears if c > d0 and the sign
+ if c < d0). In this case x0 = a∓ s.

d) Let deg(z0) = γ and deg(z1) = γ. Then the triples {a, c, d0} and
{b, c, d1} are both regular, so z0 = c∓s (x0 = a∓s) and z1 = c∓t (y1 = b∓t).

In cases b) - d) polynomials x0, z0, y1 and z1 have the form
x′
0√
3
,
z′0√

3
,

y′1√
3

and
z′1√

3
, respectively, where x′0, z

′
0, y
′
1, z
′
1 ∈ Z[X]. After taking this into

consideration, from (2.36) we can conclude that vm =
v′m

3m
√

3
, where v′m ∈

Z[X], for m ≥ 0. Also, from (2.37), wn =
w′

n

3n
√

3
, where w′n ∈ Z[X], for n ≥ 0.

Therefore, by induction, we get congruences in Z[X]

v′m ≡ 3m(−1)mz′0 (mod 2c′), w′n ≡ 3n(−1)nz′1 (mod 2c′).

Since vm = wn, we have 3nv′m = 3mw′n and then 3m+nz′0 ≡ ±3m+nz′1 (mod 2c′).
If 3 | c′ then, by (1.6), 3 | s′ and 3 | t′ so 3 | z′0 and 3 | z′1. If 32 | c′ then,
since 32 | (t′)2, we are led to the contradiction 32 | 3. Therefore, if 3 | c′ then
we may take c′ = 3c′′, where c′′ ∈ Z[X] and gcd(3, c′′) = 1. We also take
s′ = 3s′′, t′ = 3t′′, z′0 = 3z′′0 and z′1 = 3z′′1 , where s′′, t′′, z′′0 , z

′′
1 ∈ Z[X]. If

gcd(3, c′) = 1 then we simply take c′′ := c′, s′′ := s′, z′′0 := z′0 and z′′1 := z′1.
Finally, we can consider the congruence

(2.39) z′′0 ≡ ±z′′1 (mod 2c′′)

in Z[X], instead of the congruence (2.38) in R[X].
In the case b), from (2.39), we get z′′0 ≡ ±(c′′ ∓ t′′) (mod 2c′′). By (1.6),

0 < t′′ < c′′, therefore, z′′0 ≡ ±t′′ (mod c′′), which leads to z′′0 = ±t′′. But,
then in (2.39) we would have ±t′′ ≡ ±(c′′ ∓ t′′) (mod 2c′′). Finally, either
2c′′ | c′′, which is not possible, or c′′ | 2t′′ which is also not possible because
of (1.6).

In the case c), we conclude analogously as in b).
In the case d), from (2.39), we get c′′∓ s′′ ≡ ±(c′′∓ t′′) (mod 2c′′). From

that, we get

(2.40) ±s′′ ± t′′ ≡ 0 (mod 2c′′).

By (1.6), we conclude that 0 < s′′ < c′′ and 0 < t′′ < c′′. Hence | ±s′′ ± t′′ |<
2c′′ and we obtain a contradiction with (2.40). With this we showed that
cases b) - d) are not possible.

In the proof of Lemma 2.5, we proved the existence of d0 ∈ R+[X] such
that (2.31) holds, where x0, z0 ∈ R[X] and z0 > 0. Analogously, there exists
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d1 ∈ R+[X] such that

bd1 − 1 = y2
1 and cd1 − 1 = z2

1,(2.41)

with y1, z1 ∈ R[X] and z1 > 0. In the following lemma, we will prove that
d0 = d1.

Lemma 2.8. Let {a, b, c, d}, where 0 < a < b < c < d and a = a′√
3

,

b = b′√
3

, c = c′√
3

and d = d′√
3

, with a′, b′, c′, d′ ∈ Z[X], be a D(−1)-quadruple

in R[X]. Then, there exists d0 ∈ R+[X] such that deg(d0) < γ and ad0 − 1,
bd0 − 1 and cd0 − 1 are perfect squares.

Proof. By the proof of Lemma 2.5, there exists d0 ∈ R+[X] defined by
(2.30), such that (2.31) holds, where x0, z0 ∈ R[X] and z0 > 0. By Lemma 2.5,
Lemma 2.7, (2.16) and (2.30),

bd0 − 1 = b
z2

1 + 1

c
− 1 = y2

1 .

By (2.41), d0 = d1. Also, since deg(z0) < γ, from (2.30) we conclude that
deg(d0) < γ.

Remark 2.9. Generally, d0, x0, z0 ∈ R[X]. But, by Remark 2.1, we
consider a problem of extending a polynomial D(−1)-triple to a polynomial
D(−1)-quadruple in R[X] which follows from a problem of extending a poly-
nomial D(−3)-triple to a polynomial D(−3)-quadruple in Z[X], so we only
consider the situation which is a consequence of that problem and we have to

assume that d0 =
d′0√

3
, x0 =

x′
0√
3
, z0 =

z′0√
3

with d′0, x
′
0, z
′
0 ∈ Z[X], respectively.

3. Determination of the initial terms

We assume that {a, b, c, d}, with 0 < a < b < c < d and a = a′√
3
,

b = b′√
3
, c = c′√

3
and d = d′√

3
with a′, b′, c′, d′ ∈ Z[X], is a polynomial D(−1)-

quadruple in R[X] with minimal δ among all such D(−1)-quadruples. By
Lemma 2.8, there also exists a polynomial D(−1)-quadruple {a, b, c, d0} in

R[X]. By Remark 2.9, d0 =
d′0√

3
, x0 =

x′
0√
3
, z0 =

z′0√
3

with d′0, x
′
0, z
′
0 ∈ Z[X],

respectively. Since deg(d0) < γ, it follows that {a, b, c, d0} is an improper
polynomial D(−1)-quadruple. From our considerations in the Section 1, we
conclude that {a, b, c, d0} = {a, a, b, c}, i.e. d0 = a and α = 0. By (2.31),

a2− 1 = x2
0, where a = a′√

3
and x0 =

x′
0√
3
, with a′, x′0 ∈ Z. Therefore, we solve

the equation (a′)2−3 = (x′0)2 in integers and we get (a′, x′0) = (±2,±1). Since
a′ > 0, we conclude that it suffices to consider a polynomial D(−1)-quadruples
in R[X] with a = 2√

3
, i.e. a polynomial D(−1)-quadruples { 2√

3
, b, c, d}, with

2√
3
< b < c < d and b = b′√

3
, c = c′√

3
, d = d′√

3
, with b′, c′, d′ ∈ Z[X].

Hence, we also have a polynomial D(−1)-quadruple { 2√
3
, 2√

3
, b, c} in R[X]
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and a polynomial D(1)-quadruple { 2√
3
i, 2√

3
i, bi, ci} in C[X], so we can draw

the following conclusion.

Lemma 3.1. For a polynomial D(−1)-quadruple { 2√
3
, 2√

3
, b, c} in R[X],

it holds β < γ.

Proof. Assume that β = γ. Then, by [12, Lemma 5], a polynomial
D(1)-quadruple { 2√

3
i, 2√

3
i, bi, ci} in C[X] is regular. Applying (1.5) for that

quadruple, since a = 2√
3
, we obtain

(ci+ bi− 2ai)2 = 4
(4i2

3
+ 1
)

(bci2 + 1).

But, then it also holds

−(c+ b− 2a)2 =
4

3
(bc− 1) =

4

3
t2,

which is not possible in R[X]. Since β ≤ γ, it follows that β < γ.

For the polynomial D(−1)-triple { 2√
3
, b, c} in R[X], with 2√

3
< b < c, we

have d0 = d1 = a = 2√
3
, hence, by (2.31) and (2.41), x0 = ± 1√

3
, z0 = z1 = s

(since z0, z1 > 0) and y1 = ±r. With that initial terms, from (2.36) and
(2.37), the following four sequences arise. Namely, the sequences (v±m)m≥0 are
given by

v+
0 = s,

v+
1 =

s√
3

(6c−
√

3),

v+
m+2 =

2√
3

(4c−
√

3)v+
m+1 − v+

m,(3.42)

v−0 = s,

v−1 =
s√
3

(2c−
√

3),

v−m+2 =
2√
3

(4c−
√

3)v−m+1 − v−m(3.43)

and the sequences (w±n )n≥0 are given as follows

w+
0 = s,

w+
1 = (2bc− 1)s+ 2crt,

w+
n+2 = (4bc− 2)w+

n+1 − w+
n ,(3.44)

w−0 = s,

w−1 = (2bc− 1)s− 2crt,

w−n+2 = (4bc− 2)w−n+1 − w−n .(3.45)
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4. The final part of the proof of Theorem 1.6

In order to extend a polynomial D(−1)-triple { 2√
3
, b, c} to a polynomial

D(−1)-quadruple, we are trying to find a suitable solution of equation (2.35),
where for (vm)m≥0 we take (v±m)m≥0, defined by (3.42) and (3.43), and for
(wn)n≥0 we take (w±n )n≥0, defined by (3.44) and (3.45). The trivial solution
v0 = w0 = s leads to an improper polynomial D(−1)-quadruple { 2√

3
, 2√

3
, b, c}

in R[X]. But, we will prove that neither of the above mentioned four sequences
leads to a nontrivial solution. Therefore, the proof of Theorem 1.6 follows
directly from the following lemma.

Lemma 4.1. Let the sequences (v±m)m≥0 and (w±n )n≥0 be defined by (3.42)
- (3.45). Then, the equations v±m = w±n have no nontrivial solutions for m ≥ 0
and n ≥ 0.

Proof. From (3.42) and (3.43), by induction, it follows that

(4.46) deg(v±m) = mγ +
γ

2
,

for m ≥ 0. Hence, deg(v±m) < deg(v±m+1), for m = 0, 1, 2, .... Similarly, from
(3.44), it follows that

(4.47) deg(w+
n ) = n(β + γ) +

γ

2
,

for n ≥ 0. Hence, deg(w+
n ) < deg(w+

n+1), for n = 0, 1, 2, ....

Also, from (3.42), V +
0 =

√
2C′

3 is the leading coefficient of the polyno-

mial v+
0 and, by induction, we conclude that the leading coefficients of the

polynomials v+
m are

(4.48) V +
m =

23m−2

3m−1
(C ′)m

√
2C ′

3
,

for m ≥ 1, where C ′ is the leading coefficient of the polynomial c′. Analo-

gously, from (3.43), V −0 =
√

2C′

3 is the leading coefficient of the polynomial v−0
and, by induction, we conclude that the leading coefficients of the polynomials
v−m are

(4.49) V −m =
23m−2

3m
(C ′)m

√
2C ′

3
,

for m ≥ 1, where C ′ is the leading coefficient of the polynomial c′. Further-
more, from (3.44), we find that the leading coefficients of the polynomials w+

n

are

(4.50) W+
n =

22n

3n
(B′)n(C ′)n

√
2C ′

3
,
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for n ≥ 0, where B′ and C ′ are the leading coefficients of the polynomials b′

and c′, respectively.
If the equations v±m = w+

n have a solution, by comparing the degrees
on both sides of these equations and using (4.46) and (4.47), we obtain a
homogeneous linear Diophantine equation

(m− n)γ − nβ = 0.

For fixed β and γ, there holds m− n = qβ and n = qγ, with q ∈ Z. Since for
the triple { 2√

3
, b, c} we have α = 0, by (2.8), we can conclude that β and γ

are even positive integers. Therefore, n is even and m is even. Especially, for
m = 0, we have n = 0, which leads to the trivial solution.

If the equation v+
m = w+

n has a nontrivial solution then, from (4.48) and
(4.50), assuming that m = 2k and n = 2l with k, l ∈ N, we also conclude that( 3k−l(B′)l

23k−2l−1(C ′)k−l

)2

= 3.

But, since
√

3 /∈ Q, this is not possible.
By comparing the leading coefficients in equations (1.6), obtained for the

triple { 2√
3
, b, c}, we conclude that B′ = 2(B′′)2 and C ′ = 2(C ′′)2, where B′

and C ′ are the leading coefficients of the polynomials b′ and c′, respectively,
and B′′, C ′′ ∈ N. If the equation v−m = w+

n has a nontrivial solution then,
from (4.49) and (4.50), assuming that m = 2k and n = 2l with k, l ∈ N, we
conclude that ( 22k(C ′′)k

22l(B′′)l(C ′′)l

)2

= 2 · 3k−l.

But, then we would obtain
√

2 ∈ Q, if k− l is even, or
√

6 ∈ Q, if k− l is odd,
a contradiction in each case.

Now we have to consider the equations v±m = w−n . From (3.44) and (3.45),
using (2.8), we get

w+
1 w
−
1 = (2bc− 1)2s2 − 4c2r2t2

= 4bc3 − 4c2 − 4b2c2 + 4bc+ ac− 1.(4.51)

By Lemma 3.1, β < γ so, by comparing the leading coefficients in (4.51), we
obtain

(4.52) W+
1 W

−
1 = 4BC3 =

4B′(C ′)3

32
,

where W±1 are the leading coefficients of the polynomials w±1 , and, by com-
paring the degrees in (4.51), we obtain

(4.53) deg(w+
1 w−1 ) = β + 3γ.

By (4.47),

(4.54) deg(w+
1 ) = β +

3γ

2
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and, by (4.50), we get

(4.55) W+
1 =

22B′C ′

3

√
2C ′

3
.

Hence, by (4.52) and (4.55),

(4.56) W−1 =
C ′
√

2C ′

2
√

3

and, by (4.53) and (4.54), we conclude deg(w−1 ) = 3γ
2 . From (3.45), it follows

that deg(w−0 ) = γ
2 and

(4.57) deg(w−n ) = (n− 1)β + nγ +
γ

2
,

for n ≥ 1. Hence, deg(w−n ) < deg(w−n+1), for n = 0, 1, 2, ....

Also, from (3.45), the leading coefficient of the polynomial w−0 is W−0 =√
2C′

3 and, by induction, we conclude that the leading coefficients of the

polynomials w−n are

(4.58) W−n =
22n−3(B′)n−1(C ′)n

3n−1

√
2C ′

3
,

for n ≥ 1, where B′ and C ′ are the leading coefficients of the polynomials b′

and c′, respectively.
If the equation v±m = w−n has a solution, by comparing the degrees on both

sides of this equation and using (4.46) and (4.57), we obtain a homogeneous
linear Diophantine equation

(m− n)γ − (n− 1)β = 0.

For fixed β and γ, there holds m− n = qβ and n− 1 = qγ, with q ∈ Z. Since
for the triple { 2√

3
, b, c} we already concluded that β and γ are even positive

integers, then n is odd and m is odd.
If the equation v+

m = w−n has a nontrivial solution then, from (4.48) and
(4.58), assuming that m = 2k + 1 and n = 2l + 1 with k, l ∈ N0, we conclude
that ( (B′′)l

22(k−l)(C ′′)k−l

)2

=
2

3k−l
.

If k− l is even, then we would have
√

2 ∈ Q, which is a contradiction. If k− l
is odd, we get

√
2
3 ∈ Q, which is also not possible.

If the equation v−m = w−n has a nontrivial solution then, from (4.49) and
(4.58), assuming that m = 2k + 1 and n = 2l + 1 with k, l ∈ N0, we conclude
that (23k−2l+1(C ′)k−l

3k−l(B′)l

)2

= 3.
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But, then we would obtain
√

3 ∈ Q, which is again a contradiction.
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