# FIRST ORDER DIFFERENTIAL EQUATIONS WITH A PARAMETER 

Tadeusz Jankowski<br>Technical University of Gdańsk, Poland


#### Abstract

Employing the method of upper and lower solutions and monotone iterative technique, existence of extremal solutions to differential equations with a parameter is proved.


## 1. Introduction

We concentrate our attention on the following differential equation

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t), \lambda), \quad t \in J=[0, b] \tag{1}
\end{equation*}
$$

with the conditions:

$$
\begin{equation*}
x(0)=k_{0}, \quad G(x(b), \lambda)=0 \tag{2}
\end{equation*}
$$

where $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), G \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ and $k_{0} \in \mathbb{R}$ are given. By a solution of problem (1)-(2) we mean a pair $(x, \lambda) \in C^{1}(J, \mathbb{R}) \times \mathbb{R}$ for which (1)-(2) is satisfied. Problem (1)-(2) is called a problem with a parameter. Problems with a parameter have been considered for many years. Some of them appeared as mathematical model of physical systems (see, for example [7]).

The important area of research in the qualitative theory of differential equations is study of existence of solutions. Existence theorems can be formulated under the assumption that $f$ and $G$ satisfy the Lipschitz condition with respect to the last two variables with suitable Lipschitz constants or Lipschitz functions (see, for example [1], [2], [4], [6]). The purpose of this

[^0]paper is to formulate an existence theorem for problem (1)-(2) employing the method of upper and lower solutions. This method gives a solution in a closed set. Using this technique, we construct monotone sequences giving sufficient conditions under which they are convergent. It is important to add that the one-sided Lipschitz condition is assumed on $f$ and $G$. This paper extends the result of paper [3], where it was assumed that $f$ is nondecreasing with respect to the last variable.

## 2. Main Result

A pair $(v, \alpha) \in C^{1}(J, \mathbb{R}) \times \mathbb{R}$ is said to be a lower solution of (1)-(2) if

$$
\left\{\begin{aligned}
v^{\prime}(t) & \leq f(t, v(t), \alpha), t \in J, \\
v(0) & \leq k_{0}, \\
0 & \leq G(v(b), \alpha),
\end{aligned}\right.
$$

and an upper solution of (1)-(2) if the above inequalities are reversed.
Theorem 1. Assume that $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), G \in C(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ and $1^{\circ}\left(y_{0}, \lambda_{0}\right),\left(z_{0}, \gamma_{0}\right) \in C^{1}(J, \mathbb{R}) \times \mathbb{R}$ are lower and upper solutions of problem (1)-(2) such that $y_{0}(t) \leq z_{0}(t)$ on $J$, and $\lambda_{0} \leq \gamma_{0}$,
$2^{\circ} f$ is nondecreasing with respect to the last variable,
$3^{\circ} f(t, \bar{u}, \lambda)-f(t, u, \lambda) \geq-M(\bar{u}-u) \quad$ for $\quad y_{0} \leq u \leq \bar{u} \leq z_{0}$ with $M \geq 0$,
$4^{\circ} G$ is nondecreasing with respect to the first variable, $5^{\circ} G(u, \bar{\lambda})-G(u, \lambda) \geq-N(\bar{\lambda}-\lambda)$ for $\lambda_{0} \leq \lambda \leq \bar{\lambda} \leq \gamma_{0}$ with $N>0$.
Then there exist monotone sequences $\left\{y_{n}, \lambda_{n}\right\},\left\{z_{n}, \gamma_{n}\right\}$ such that $y_{n}(t) \rightarrow$ $y(t), z_{n}(t) \rightarrow z(t), \quad t \in J$ and $\lambda_{n} \rightarrow \lambda, \quad \gamma_{n} \rightarrow \gamma$ as $n \rightarrow \infty$ and this convergence is uniformly and monotonically on J. Moreover, $(y, \lambda)$ and $(z, \gamma)$ are minimal and maximal solutions of problem (1)-(2), respectively.

Proof. For $k=0,1, \cdots$, we construct monotone sequences by formulas:

$$
\left\{\begin{aligned}
y_{k+1}^{\prime}(t) & =f\left(t, y_{k}(t), \lambda_{k}\right)-M\left[y_{k+1}(t)-y_{k}(t)\right], \quad y_{k+1}(0)=k_{0}, \\
0 & =G\left(y_{k}, \lambda_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right),
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
z_{k+1}^{\prime}(t) & =f\left(t, z_{k}(t), \gamma_{k}\right)-M\left[z_{k+1}(t)-z_{k}(t)\right], \quad z_{k+1}(0)=k_{0}, \\
0 & =G\left(z_{k}, \gamma_{k}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right) .
\end{aligned}\right.
$$

First of all, we shall prove that

$$
\left\{\begin{array}{c}
\lambda_{0} \leq \lambda_{1} \leq \gamma_{1} \leq \gamma_{0}  \tag{3}\\
y_{0}(t) \leq y_{1}(t) \leq z_{1}(t) \leq z_{0}(t), \quad t \in J .
\end{array}\right.
$$

Put $p=\lambda_{0}-\lambda_{1}$. Then, we have

$$
0=G\left(y_{0}, \lambda_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right) \geq-N\left(\lambda_{1}-\lambda_{0}\right)=N p
$$

so $p \leq 0$ and hence $\lambda_{0} \leq \lambda_{1}$. Now, let $p=\lambda_{1}-\gamma_{1}$. In view of $1^{\circ}, 4^{\circ}$ and $5^{\circ}$, we have

$$
\begin{aligned}
0 & =G\left(y_{0}, \lambda_{0}\right)-G\left(z_{0}, \gamma_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right)+N\left(\gamma_{1}-\gamma_{0}\right) \\
& \leq G\left(z_{0}, \lambda_{0}\right)-G\left(z_{0}, \gamma_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right)+N\left(\gamma_{1}-\gamma_{0}\right) \\
& \leq N\left(\gamma_{0}-\lambda_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right)+N\left(\gamma_{1}-\gamma_{0}\right)=-N p
\end{aligned}
$$

Hence $\lambda_{1} \leq \gamma_{1}$. Note that if $p=\gamma_{1}-\gamma_{0}$, then

$$
0=G\left(z_{0}, \gamma_{0}\right)-N\left(\gamma_{1}-\gamma_{0}\right) \leq-N\left(\gamma_{1}-\gamma_{0}\right)=-N p
$$

and hence $\gamma_{1} \leq \gamma_{0}$. As a result, we have the first part of (3).
Let $p(t)=y_{0}(t)-y_{1}(t), t \in J$. In view of $1^{\circ}$, we see that

$$
\begin{aligned}
p^{\prime}(t) & =y_{0}^{\prime}(t)-y_{1}^{\prime}(t) \leq f\left(t, y_{0}(t), \lambda_{0}\right)-f\left(t, y_{0}(t), \lambda_{0}\right)+M\left[y_{1}(t)-y_{0}(t)\right] \\
& =-M p(t), \quad t \in J
\end{aligned}
$$

and $p(0)=y_{0}(0)-y_{1}(0) \leq 0$. It shows that $p(t) \leq 0, t \in J$, so $y_{0}(t) \leq$ $y_{1}(t), t \in J$. Put $p(t)=y_{1}(t)-z_{1}(t), t \in J$. Then, in view of $1^{o}, 2^{o}$ and $3^{o}$, we have

$$
\begin{aligned}
p^{\prime}(t)= & y_{1}^{\prime}(t)-z_{1}^{\prime}(t) \\
= & f\left(t, y_{0}(t), \lambda_{0}\right)-M\left[y_{1}(t)-y_{0}(t)\right]-f\left(t, z_{0}(t), \gamma_{0}\right) \\
& +M\left[z_{1}(t)-z_{0}(t)\right] \\
\leq & f\left(t, y_{0}(t), \gamma_{0}\right)-f\left(t, z_{0}(t), \gamma_{0}\right)-M\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right] \\
\leq & M\left[z_{0}(t)-y_{0}(t)\right]-M\left[y_{1}(t)-y_{0}(t)-z_{1}(t)+z_{0}(t)\right] \\
= & -M p(t), t \in J,
\end{aligned}
$$

and $p(0)=0$, so $p(t) \leq 0, t \in J$, and $y_{1}(t) \leq z_{1}(t), t \in J$. Put $p(t)=$ $z_{1}(t)-z_{0}(t), t \in J$. Then, by $1^{\circ}$, we obtain

$$
\begin{aligned}
p^{\prime}(t) & =z_{1}^{\prime}(t)-z_{0}^{\prime}(t) \leq f\left(t, z_{0}(t), \gamma_{0}\right)-M\left[z_{1}(t)-z_{0}(t)\right]-f\left(t, z_{0}(t), \gamma_{0}\right) \\
& =-M p(t), t \in J \text { with } p(0) \leq 0,
\end{aligned}
$$

so $p(t) \leq 0, t \in J$, and hence $z_{1}(t) \leq z_{0}(t), t \in J$. This shows that (3) is satisfied.

In the next step, we are going to show that $\left(y_{1}, \lambda_{1}\right)$ and $\left(z_{1}, \gamma_{1}\right)$ are lower and upper solutions of problem (1)-(2). Note that

$$
\begin{aligned}
& y_{1}^{\prime}(t)= f\left(t, y_{0}(t), \lambda_{0}\right)-M\left[y_{1}(t)-y_{0}(t)\right] \\
&= f\left(t, y_{1}(t), \lambda_{1}\right)+f\left(t, y_{0}(t), \lambda_{0}\right)-f\left(t, y_{1}(t) ; \lambda_{1}\right) \\
&-M\left[y_{1}(t)-y_{0}(t)\right] \\
& \leq f\left(t, y_{1}(t), \lambda_{1}\right)+f\left(t, y_{0}(t), \lambda_{1}\right)-f\left(t, y_{1}(t), \lambda_{1}\right) \\
& \leq-M\left[y_{1}(t)-y_{0}(t)\right] \\
& \leq f\left(t, y_{1}(t), \lambda_{1}\right)+M\left[y_{1}(t)-y_{0}(t)\right] \\
&=-M\left[y_{1}(t)-y_{0}(t)\right] \\
&= f\left(t, y_{1}(t), \lambda_{1}\right), \quad t \in J, \quad y_{1}(0)=k_{0},
\end{aligned}
$$

and

$$
\begin{aligned}
z_{1}^{\prime}(t) & =f\left(t, z_{0}(t), \gamma_{0}\right)-M\left[z_{1}(t)-z_{0}(t)\right] \\
& =f\left(t, z_{1}(t), \gamma_{1}\right)+f\left(t, z_{0}(t), \gamma_{0}\right)-f\left(t, z_{1}(t), \gamma_{1}\right)-M\left[z_{1}(t)-z_{0}(t)\right] \\
& \geq f\left(t, z_{1}(t), \gamma_{1}\right)+f\left(t, z_{0}(t), \gamma_{1}\right)-f\left(t, z_{1}(t), \gamma_{1}\right)-M\left[z_{1}(t)-z_{0}(t)\right] \\
& \geq f\left(t, z_{1}(t), \gamma_{1}\right)-M\left[z_{0}(t)-z_{1}(t)\right]-M\left[z_{1}(t)-z_{0}(t)\right] \\
& =f\left(t, z_{1}(t), \gamma_{1}\right), t \in J, z_{1}(0)=k_{0}
\end{aligned}
$$

Moreover, in view of $4^{\circ}$ and $5^{\circ}$, we have

$$
\begin{aligned}
0 & =G\left(y_{0}, \lambda_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right) \leq G\left(y_{1}, \lambda_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right) \\
& =G\left(y_{1}, \lambda_{0}\right)-G\left(y_{1}, \lambda_{1}\right)+G\left(y_{1}, \lambda_{1}\right)-N\left(\lambda_{1}-\lambda_{0}\right) \\
& \leq N\left(\lambda_{1}-\lambda_{0}\right)+G\left(y_{1}, \lambda_{1}\right)-N\left(\lambda_{1}-\lambda_{0}\right)=G\left(y_{1}, \lambda_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =G\left(z_{0}, \gamma_{0}\right)-N\left(\gamma_{1}-\gamma_{0}\right) \geq G\left(z_{1}, \gamma_{0}\right)-N\left(\gamma_{1}-\gamma_{0}\right) \\
& =G\left(z_{1}, \gamma_{0}\right)-G\left(z_{1}, \gamma_{1}\right)+G\left(z_{1}, \gamma_{1}\right)-N\left(\gamma_{1}-\gamma_{0}\right) \\
& \geq-N\left(\gamma_{0}-\gamma_{1}\right)+G\left(z_{1}, \gamma_{1}\right)-N\left(\gamma_{1}-\gamma_{0}\right)=G\left(z_{1}, \gamma_{1}\right)
\end{aligned}
$$

By the above considerations, ( $y_{1}, \lambda_{1}$ ) and ( $z_{1}, \gamma_{1}$ ) are lower and upper solutions of (1)-(2).

Let us assume that

$$
\begin{gathered}
\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{k-1} \leq \lambda_{k} \leq \gamma_{k} \leq \gamma_{k-1} \leq \cdots \leq \gamma_{1} \leq \gamma_{0} \\
y_{0}(t) \leq y_{1}(t) \leq \cdots \leq y_{k-1}(t) \leq y_{k}(t) \\
\leq z_{k}(t) \leq z_{k-1}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), t \in J
\end{gathered}
$$

and

$$
\begin{aligned}
& \left\{\begin{aligned}
y_{k}^{\prime}(t) & \leq f\left(t, y_{k}(t), \lambda_{k}\right), y_{k}(0)=k_{0} \\
0 & \leq G\left(y_{k}, \lambda_{k}\right)
\end{aligned}\right. \\
& \left\{\begin{aligned}
z_{k}^{\prime}(t) & \geq f\left(t, z_{k}(t), \gamma_{k}\right), \quad z_{k}(0)=k_{0} \\
0 & \geq G\left(z_{k}, \gamma_{k}\right)
\end{aligned}\right.
\end{aligned}
$$

for some $k>1$. We shall prove that

$$
\left\{\begin{align*}
\lambda_{k} \leq \lambda_{k+1} & \leq \gamma_{k+1} \leq \gamma_{k}  \tag{4}\\
y_{k}(t) \leq y_{k+1}(t) & \leq z_{k+1}(t) \leq z_{k}(t), \quad t \in J
\end{align*}\right.
$$

and

$$
\begin{aligned}
& \left\{\begin{aligned}
y_{k+1}^{\prime}(t) & \leq f\left(t, y_{k+1}(t), \lambda_{k+1}\right), \quad y_{k+1}(0)=k_{0}, \\
0 & \leq G\left(y_{k+1}, \lambda_{k+1}\right),
\end{aligned}\right. \\
& \left\{\begin{aligned}
z_{k+1}^{\prime}(t) & \geq f\left(t, z_{k+1}(t), \gamma_{k+1}\right), \quad z_{k+1}(0)=k_{0}, \\
0 & \geq G\left(z_{k+1}, \gamma_{k+1}\right) .
\end{aligned}\right.
\end{aligned}
$$

Put $p=\lambda_{k}-\lambda_{k+1}$, so

$$
0=G\left(y_{k}, \lambda_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right) \geq N p
$$

and hence $\lambda_{k} \leq \lambda_{k+1}$. Let $p=\lambda_{k+1}-\gamma_{k+1}$. Then, in view of $4^{o}$ and $5^{\circ}$, we see that

$$
\begin{aligned}
0 & =G\left(y_{k}, \lambda_{k}\right)-G\left(z_{k}, \gamma_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right)+N\left(\gamma_{k+1}-\gamma_{k}\right) \\
& \leq G\left(z_{k}, \lambda_{k}\right)-G\left(z_{k}, \gamma_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right)+N\left(\gamma_{k+1}-\gamma_{k}\right) \\
& \leq N\left(\gamma_{k}-\lambda_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right)+N\left(\gamma_{k+1}-\gamma_{k}\right)=-N p .
\end{aligned}
$$

Hence we have $\lambda_{k+1} \leq \gamma_{k+1}$. Now, let $p=\gamma_{k+1}-\gamma_{k}$. Then

$$
0=G\left(z_{k}, \gamma_{k}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right) \leq-N p
$$

so $\gamma_{k+1} \leq \gamma_{k}$, which shows that the first inequality of (4) is satisfied.
Similarly as before, we can show that $y_{k}(t) \leq y_{k+1}(t)$, and $z_{k+1}(t) \leq$ $z_{k}(t), t \in J$. Note that for $p(t)=y_{k+1}(t)-z_{k+1}(t), t \in J$, we obtain

$$
\begin{aligned}
p^{\prime}(t)= & f\left(t, y_{k}(t), \lambda_{k}\right)-M\left[y_{k+1}(t)-y_{k}(t)\right]-f\left(t, z_{k}(t), \lambda_{k}\right) \\
& +M\left[z_{k+1}(t)-z_{k}(t)\right] \\
\leq & f\left(t, y_{k}(t), \gamma_{k}\right)-f\left(t, z_{k}(t), \gamma_{k}\right) \\
\leq & -M\left[y_{k+1}(t)-y_{k}(t)-z_{k+1}(t)+z_{k}(t)\right] \\
\leq & M\left[z_{k}(t)-y_{k}(t)\right]-M\left[y_{k+1}(t)-y_{k}(t)\right. \\
= & \left.-z_{k+1}(t)+z_{k}(t)\right] \\
= & -M p(t), t \in J, \text { and } p(0)=0 .
\end{aligned}
$$

It proves that $y_{k+1}(t) \leq z_{k+1}(t), t \in J$, so $y_{k}(t) \leq y_{k+1}(t) \leq z_{k+1}(t) \leq$ $z_{k}(t), t \in J$, and hence, (4) holds.

Now we are going to show that $\left(y_{k+1}, \lambda_{k+1}\right)$ and $\left(z_{k+1}, \gamma_{k+1}\right)$ are lower and upper solutions of problem (1)-(2). Indeed, we see that

$$
\begin{aligned}
& y_{k+1}^{\prime}(t)=f\left(t, y_{k}(t), \lambda_{k}\right)-M\left[y_{k+1}(t)-y_{k}(t)\right] \\
&= f\left(t, y_{k+1}(t), \lambda_{k+1}\right)+f\left(t, y_{k}(t), \lambda_{k}\right) \\
&-f\left(t, y_{k+1}(t), \lambda_{k+1}\right)-M\left[y_{k+1}(t)-y_{k}(t)\right] \\
& \leq f\left(t, y_{k+1}(t), \lambda_{k+1}\right)+f\left(t, y_{k}(t), \lambda_{k+1}\right) \\
&-f\left(t, y_{k+1}(t), \lambda_{k+1}\right)-M\left[y_{k+1}(t)-y_{k}(t)\right] \\
& \leq f\left(t, y_{k+1}(t), \lambda_{k+1}\right)+M\left[y_{k+1}(t)-y_{k}(t)\right] \\
&=-M\left[y_{k+1}(t)-y_{k}(t)\right] \\
& f\left(t, y_{k+1}(t), \lambda_{k+1}\right) \text { with } \quad y_{k+1}(0)=k_{0},
\end{aligned}
$$

and

$$
\begin{aligned}
z_{k+1}^{\prime}(t) & =f\left(t, z_{k}(t), \gamma_{k}\right)-M\left[z_{k+1}(t)-z_{k}(t)\right] \\
& =f\left(t, z_{k+1}(t), \gamma_{k+1}\right)+f\left(t, z_{k}(t), \gamma_{k}\right) \\
& \geq f\left(t, z_{k+1}(t), \gamma_{k+1}\right)-M\left[z_{k+1}(t)-z_{k}(t)\right] \\
& \geq f\left(t, z_{k+1}(t), \gamma_{k+1}\right)+f\left(t, z_{k}(t), \gamma_{k+1}\right) \\
& \geq f\left(t, z_{k+1}(t), \gamma_{k+1}\right)-M\left[z_{k+1}(t)-z_{k}(t)\right] \\
& =f\left(t, z_{k+1}(t), \gamma_{k+1}\right)-M\left[z_{k}(t)-z_{k+1}(t)\right]-M\left[z_{k+1}(t)-z_{k}(t)\right] \\
& =z_{k+1}(0)=k_{0} .
\end{aligned}
$$

Moreover, in view of $4^{\circ}$ and $5^{\circ}$, we have

$$
\begin{aligned}
0 & =G\left(y_{k}, \lambda_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right) \leq G\left(y_{k+1}, \lambda_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right) \\
& =G\left(y_{k+1}, \lambda_{k}\right)-G\left(y_{k+1}, \lambda_{k+1}\right)+G\left(y_{k+1}, \lambda_{k+1}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right) \\
& \leq N\left(\lambda_{k+1}-\lambda_{k}\right)+G\left(y_{k+1}, \lambda_{k+1}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right)=G\left(y_{k+1}, \lambda_{k+1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =G\left(z_{k}, \gamma_{k}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right) \geq G\left(z_{k+1}, \gamma_{k}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right) \\
& =G\left(z_{k+1}, \gamma_{k}\right)-G\left(z_{k+1}, \gamma_{k+1}\right)+G\left(z_{k+1}, \gamma_{k+1}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right) \\
& \geq-N\left(\gamma_{k}-\gamma_{k+1}\right)+G\left(z_{k+1}, \gamma_{k+1}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right)=G\left(z_{k+1}, \gamma_{k+1}\right)
\end{aligned}
$$

It proves that $\left(y_{k+1}, \lambda_{k+1}\right),\left(z_{k+1}, \gamma_{k+1}\right)$ are lower and upper solutions of problem (1)-(2).

Hence, by induction, we have

$$
\begin{aligned}
\lambda_{0} & \leq \lambda_{1} \leq \cdots \leq \lambda_{n} \leq \gamma_{n} \leq \cdots \leq \gamma_{1} \leq \gamma_{0} \\
y_{0}(t) \leq y_{1}(t) & \leq \cdots \leq y_{n}(t) \leq z_{n}(t) \leq \cdots \leq z_{1}(t) \leq z_{0}(t), t \in J
\end{aligned}
$$

for all $n$. Emploing standard techniques (see [5]), it can be shown that the sequences $\left\{y_{n}, \lambda_{n}\right\},\left\{z_{n}, \gamma_{n}\right\}$ converge uniformly and monotonically to $(y, \lambda)$, $(z, \gamma)$, respectively. Indeed, $(y, \lambda)$ and $(z, \gamma)$ are solutions of problem (1)(2) in view of the continuity of $f$ and $G$, and the definitions of the above sequences.

Now, we need to prove that if ( $u, \beta$ ) is any solution of problem (1)-(2) such that

$$
y_{0}(t) \leq u(t) \leq z_{0}(t), \quad t \in J, \text { and } \lambda_{0} \leq \beta \leq \gamma_{0}
$$

then the following inequalities
$y_{0}(t) \leq y(t) \leq u(t) \leq z(t) \leq z_{0}(t), t \in J, \quad$ and $\quad \lambda_{0} \leq \lambda \leq \beta \leq \gamma \leq \gamma_{0}$
are satisfied.
First, let $p(t)=y_{1}(t)-u(t), \quad t \in J$. Then

$$
\begin{aligned}
p^{\prime}(t) & =y_{1}^{\prime}(t)-u^{\prime}(t)=f\left(t, y_{0}(t), \lambda_{0}\right)-M\left[y_{1}(t)-y_{0}(t)\right]-f(t, u(t), \beta) \\
& \leq f\left(t, y_{0}(t), \beta\right)-f(t, u(t), \beta)-M\left[y_{1}(t)-y_{0}(t)\right] \\
& \leq M\left[u(t)-y_{0}(t)\right]-M\left[y_{1}(t)-y_{0}(t)\right]=-M p(t) \text { with } p(0)=0
\end{aligned}
$$

so $y_{1}(t) \leq u(t), \quad t \in J$. Now, let $p(t)=u(t)-z_{1}(t), \quad t \in J$. Then

$$
\begin{aligned}
p^{\prime}(t) & =u^{\prime}(t)-z_{1}^{\prime}(t)=f(t, u(t), \beta)-f\left(t, z_{0}(t), \gamma_{0}\right)+M\left[z_{1}(t)-z_{0}(t)\right] \\
& \leq f\left(t, u(t), \gamma_{0}\right)-f\left(t, z_{0}(t), \gamma_{0}\right)+M\left[z_{1}(t)-z_{0}(t)\right] \\
& \leq M\left[z_{0}(t)-u(t)\right]+M\left[z_{1}(t)-z_{0}(t)\right]=-M p(t) \text { with } p(0)=0
\end{aligned}
$$

and hence $u(t) \leq z_{1}(t), \quad t \in J$.
Put $p=\lambda_{1}-\beta$. Then

$$
\begin{aligned}
0 & =G\left(y_{0}, \lambda_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right) \leq G\left(u, \lambda_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right) \\
& =G\left(u, \lambda_{0}\right)-G(u, \beta)-N\left(\lambda_{1}-\lambda_{0}\right) \\
& \leq N\left(\beta-\lambda_{0}\right)-N\left(\lambda_{1}-\lambda_{0}\right)=-N p
\end{aligned}
$$

so $p \leq 0$, and hence $\lambda_{1} \leq \beta$. Now, we put $p=\beta-\gamma_{1}$. Then

$$
\begin{aligned}
0 & =G(u, \beta) \leq G\left(z_{0}, \beta\right)=G\left(z_{0}, \beta\right)-G\left(z_{0}, \gamma_{0}\right)+N\left(\gamma_{1}-\gamma_{0}\right) \\
& \leq N\left(\gamma_{0}-\beta\right)+N\left(\gamma_{1}-\gamma_{0}\right)=-N p,
\end{aligned}
$$

and $p \leq 0$ which means that $\beta \leq \gamma_{1}$. From the above we have

$$
y_{0}(t) \leq y_{1}(t) \leq u(t) \leq z_{1}(t) \leq z_{0}(t), t \in J, \text { and } \lambda_{0} \leq \lambda_{1} \leq \beta \leq \gamma_{1} \leq \gamma_{0} .
$$

Let us assume that

$$
y_{k}(t) \leq u(t) \leq z_{k}(t), \quad t \in J, \quad \text { and } \quad \lambda_{k} \leq \beta \leq \gamma_{k}
$$

for some $k>1$. Put $p=\lambda_{k+1}-\beta$. Then, in view of $4^{\circ}$ and $5^{\circ}$, we have

$$
\begin{aligned}
0 & =G\left(y_{k}, \lambda_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right) \leq G\left(u, \lambda_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right) \\
& =G\left(u, \lambda_{k}\right)-G(u, \beta)-N\left(\lambda_{k+1}-\lambda_{k}\right) \\
& \leq N\left(\beta-\lambda_{k}\right)-N\left(\lambda_{k+1}-\lambda_{k}\right)=-N p,
\end{aligned}
$$

so $p \leq 0$ and hence $\lambda_{k+1} \leq \beta$. Let $p=\beta-\gamma_{k+1}$. Then we obtain

$$
\begin{aligned}
0 & =G(u, \beta) \leq G\left(z_{k}, \beta\right)=G\left(z_{k}, \beta\right)-G\left(z_{k}, \gamma_{k}\right)+N\left(\gamma_{k+1}-\gamma_{k}\right) \\
& \leq N\left(\gamma_{k}-\beta\right)+N\left(\gamma_{k+1}-\gamma_{k}\right)=-N p,
\end{aligned}
$$

and hence $p \leq 0$, so $\beta \leq \gamma_{k+1}$. This shows that

$$
\lambda_{k+1} \leq \beta \leq \gamma_{k+1} .
$$

As before, we set $p(t)=y_{k+1}(t)-u(t), t \in J$. Then, in view of $2^{\circ}$ and $3^{\circ}$, we obtain

$$
\begin{aligned}
p^{\prime}(t)= & y_{k+1}^{\prime}-u^{\prime}(t)=f\left(t, y_{k}(t), \lambda_{k}\right) \\
& -M\left[y_{k+1}(t)-y_{k}(t)\right]-f(t, u(t), \beta) \\
\leq & f\left(t, y_{k}(t), \beta\right)-f(t, u(t), \beta)-M\left[y_{k+1}(t)-y_{k}(t)\right] \\
\leq & M\left[u(t)-y_{k}(t)\right] \\
& -M\left[y_{k+1}(t)-y_{k}(t)\right]=-M p(t), \quad t \in J \text { with } p(0)=0,
\end{aligned}
$$

hence $p(t) \leq 0, t \in J$, and $y_{k+1}(t) \leq u(t), t \in J$. Put $p(t)=u(t)-z_{k+1}(t), t \in$ $J$. Indeed, in this case, we have

$$
\begin{aligned}
p^{\prime}(t)= & u^{\prime}(t)-z_{k+1}^{\prime}(t)=f(t, u(t), \beta)-f\left(t, z_{k}(t), \gamma_{k}\right) \\
& +M\left[z_{k+1}(t)-z_{k}(t)\right] \\
\leq & f\left(t, u(t), \gamma_{k}\right)-f\left(t, z_{k}(t), \gamma_{k}\right) \\
\leq & +M\left[z_{k+1}-z_{k}(t)\right] \\
\leq & M\left[z_{k}(t)-u(t)\right]+ \\
& M\left[z_{k+1}(t)-z_{k}(t)\right] \leq-M p(t) \text { with } p(0)=0 .
\end{aligned}
$$

Hence $p(t) \leq 0, t \in J$, so $u(t) \leq z_{k+1}(t), t \in J$. This shows that

$$
y_{k+1}(t) \leq u(t) \leq z_{k+1}(t), \quad t \in J .
$$

By induction, this proves that the inequalities

$$
y_{n}(t) \leq u(t) \leq z_{n}(t), \quad t \in J, \quad \text { and } \quad \lambda_{n} \leq \beta \leq \gamma_{n}
$$

are satisfied for all $n$. Taking the limit as $n \rightarrow \infty$, we conclude that

$$
y(t) \leq u(t) \leq z(t), \quad t \in J, \quad \text { and } \quad \lambda \leq \beta \leq \gamma .
$$

It means that $(y, \lambda),(z, \gamma)$ are minimal and maximal solutions of (1)-(2). This completes the proof of the theorem.

Now we are going to prove some relations between the members of sequences from Theorem 1 and sequences defined below by formulas:

$$
\left\{\begin{array}{l}
\left\{\begin{aligned}
\bar{y}_{k+1}^{\prime}(t)= & f\left(t, \bar{y}_{k}(t), \bar{\lambda}_{k}\right)-P\left[\bar{y}_{k+1}(t)-\bar{y}_{k}(t)\right], \\
0= & \bar{y}_{k+1}(0)=k_{0}, \bar{y}_{0}(t)=y_{0}(t), \quad t \in J, \\
& G\left(\bar{y}_{k}, \lambda_{k}\right)-Q\left(\bar{\lambda}_{k+1}-\bar{\lambda}_{k}\right), \\
& \bar{\lambda}_{0}=\lambda_{0},
\end{aligned}\right. \\
\left\{\begin{aligned}
\bar{z}_{k+1}^{\prime}(t)= & f\left(t, \bar{z}_{k}(t), \bar{\gamma}_{k}\right)-P\left[\bar{z}_{k+1}(t)-\bar{z}_{k}(t)\right], \\
0= & \begin{array}{l}
\bar{z}_{k+1}(0)=k_{0}, \bar{z}_{0}(t)=z_{0}(t), t \in J, \\
0\left(\bar{z}_{k}, \bar{\gamma}_{k}\right)-Q\left(\bar{\gamma}_{k+1}-\bar{\gamma}_{k}\right), \\
\bar{\gamma}_{0}=\gamma_{0}
\end{array}
\end{aligned}\right.
\end{array}\right.
$$

for $k=0,1, \cdots$.
Lemma 1. Let the assumptions of Theorem 1 be satisfied. If $M \leq$ $P, N \leq Q$, then

$$
\left\{\begin{array}{c}
\bar{\lambda}_{n} \leq \lambda_{n} \leq \gamma_{n} \leq \bar{\gamma}_{n},  \tag{5}\\
\bar{y}_{n}(t) \leq y_{n}(t) \leq z_{n}(t) \leq \bar{z}_{n}(t), t \in J
\end{array}\right.
$$

for $n=0,1, \cdots$.
Proof. Note that the relations: $\lambda_{n} \leq \gamma_{n}, y_{n}(t) \leq z_{n}(t), t \in J, n=$ $0,1, \cdots$ follow from Theorem 1 .

Let $p=\bar{y}_{1}-y_{1}$. Then

$$
\begin{aligned}
p^{\prime}(t)= & f\left(t, y_{0}(t), \lambda_{0}\right)-P\left[\bar{y}_{1}(t)-y_{0}(t)\right] \\
= & -f\left(t, y_{0}(t), \lambda_{0}\right)+M\left[y_{1}(t)-y_{0}(t)\right] \\
= & -P\left[\bar{y}_{1}(t)-y_{1}(t)\right] \\
& +(M-P)\left[y_{1}(t)-y_{0}(t)\right] \leq-P p(t), p(0)=0,
\end{aligned}
$$

which proves that $\bar{y}_{1}(t) \leq y_{1}(t), t \in J$. If we now put $q=\bar{\lambda}_{1}-\lambda_{1}$, then

$$
\begin{aligned}
0 & =G\left(y_{0}, \lambda_{0}\right)-Q\left(\bar{\lambda}_{1}-\lambda_{0}\right)-G\left(y_{0}, \lambda_{0}\right)+N\left(\lambda_{1}-\lambda_{0}\right) \\
& =-Q\left(\bar{\lambda}_{1}-\lambda_{1}\right)+(N-Q)\left(\lambda_{1}-\lambda_{0}\right) \leq-Q q,
\end{aligned}
$$

so $\bar{\lambda}_{1} \leq \lambda_{1}$. Similarly, we can show that $z_{1}(t) \leq \bar{z}_{1}(t), \quad t \in J, \gamma_{1} \leq \bar{\gamma}_{1}$. It means that (5) holds for $\mathrm{n}=1$.

Now we assume that (5) is satisfied for $n=k$. Put $p=\bar{y}_{k+1}-y_{k+1}$, so $p(0)=0$. Then, by the assumptions $2^{\circ}$ and $3^{\circ}$ of Theorem 1 , we get

$$
\begin{aligned}
p^{\prime}(t)= & f\left(t, \bar{y}_{k}(t), \bar{\lambda}_{k}\right)-P\left[\bar{y}_{k+1}(t)-\bar{y}_{k}(t)\right] \\
& -f\left(t, y_{k}(t), \lambda_{k}\right)+M \Gamma\left[y_{k+1}(t)-y_{k}(t)\right] \\
\leq & f\left(t, \bar{y}_{k}(t), \lambda_{k}\right)-f\left(t, y_{k}(t), \lambda_{k}\right) \\
\leq & -P\left[\bar{y}_{k+1}(t)-\bar{y}_{k}(t)\right]+M\left[y_{k+1}(t)-y_{k}(t)\right] \\
\leq & M\left[y_{k}(t)-\bar{y}_{k}(t)\right]- \\
& P\left[\bar{y}_{k+1}(t)-y_{k+1}(t)+y_{k+1}(t)-\bar{y}_{k}(t)\right] \\
& +M\left[y_{k+1}(t)-y_{k}(t)\right] \\
= & -P p(t)+(M-P)\left[y_{k+1}(t)-y_{k}(t)\right. \\
& \left.+y_{k}(t)-\bar{y}_{k}(t)\right] \leq-P p(t)
\end{aligned}
$$

so $p(t) \leq 0$ on $J$, and hence $\bar{y}_{k+1}(t) \leq y_{k+1}(t)$ on $J$.
If we put $q=\bar{\lambda}_{k+1}-\lambda_{k+1}$, then, in view of assumptions $4^{\circ}$ and $5^{\circ}$ of Theorem 1, we get

$$
\begin{aligned}
0 & =G\left(\bar{y}_{k}, \bar{\lambda}_{k}\right)-Q\left(\bar{\lambda}_{k+1}-\bar{\lambda}_{k}\right)-G\left(y_{k}, \lambda_{k}\right)+N\left(\lambda_{k+1}-\lambda_{k}\right) \\
& \leq G\left(y_{k}, \bar{\lambda}_{k}\right)-G\left(y_{k}, \lambda_{k}\right)-Q\left(\bar{\lambda}_{k+1}-\bar{\lambda}_{k}\right)+N\left(\lambda_{k+1}-\lambda_{k}\right) \\
& \leq N\left(\lambda_{k}-\bar{\lambda}_{k}\right)-Q\left(\bar{\lambda}_{k+1}-\bar{\lambda}_{k}\right)+N\left(\lambda_{k+1}-\lambda_{k}\right) \\
& =-Q q+(N-Q)\left(\lambda_{k+1}-\lambda_{k}+\lambda_{k}-\bar{\lambda}_{k}\right) \leq-Q q,
\end{aligned}
$$

so $q \leq 0$, and hence $\vec{\lambda}_{k+1} \leq \lambda_{k+1}$.
Similarly, for $p=z_{k+1}-\bar{z}_{k+1}$, we obtain

$$
\begin{aligned}
p^{\prime}(t)= & f\left(t, z_{k}(t), \gamma_{k}\right) \\
& -M\left[z_{k+1}(t)-z_{k}(t)\right]-f\left(t, \bar{z}_{k}, \bar{\gamma}_{k}\right) \\
& +P\left[\bar{z}_{k+1}(t)-\bar{z}_{k}(t)\right] \\
\leq & f\left(t, z_{k}(t), \bar{\gamma}_{k}\right)-f\left(t, \bar{z}_{k}(t), \bar{\gamma}_{k}\right) \\
\leq & -M\left[z_{k+1}(t)-z_{k}(t)\right]+P\left[\bar{z}_{k+1}(t)-\bar{z}_{k}(t)\right] \\
\leq & M\left[\bar{z}_{k}(t)-z_{k}(t)\right]-M\left[\left[z_{k+1}(t)-z_{k}(t)\right]\right. \\
& +P\left[\bar{z}_{k+1}(t)-\bar{z}_{k}(t)\right] \leq-P p(t), \quad p(0)=0,
\end{aligned}
$$

and as the result we have $z_{k+1}(t) \leq \bar{z}_{k+1}(t)$ on $J$. Moreover, if $q=\gamma_{k+1}-\bar{\gamma}_{k+1}$, then

$$
\begin{aligned}
0 & =G\left(z_{k}, \gamma_{k}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right)-G\left(\bar{z}_{k}, \bar{\gamma}_{k}\right)+Q\left(\bar{\gamma}_{k+1}-\bar{\gamma}_{k}\right) \\
& \leq G\left(\bar{z}_{k}, \gamma_{k}\right)-G\left(\bar{z}_{k}, \bar{\gamma}_{k}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right)+Q\left(\bar{\gamma}_{k+1}-\bar{\gamma}_{k}\right) \\
& \leq N\left(\bar{\gamma}_{k}-\gamma_{k}\right)-N\left(\gamma_{k+1}-\gamma_{k}\right)+Q\left(\bar{\gamma}_{k+1}-\bar{\gamma}_{k}\right) \leq-Q q,
\end{aligned}
$$

so $\gamma_{k+1} \leq \bar{\gamma} / k+1$.
By the above and mathematical induction, we see that (5) is satisfied. This ends the proof. $\square$

## 3. Remarks

REMARK 1. We observe that the special case when $f$ is monotone nondecreasing with respect to the second variable is covered by our theorem. To see this, it is enought to put $M=0$ in condition $3^{\circ}$.

REmark 2. If we assume that $G$ is nondecreasing with respect to the second variable, then there exists $N>0$ such that for $\bar{\lambda} \geq \lambda$ we have

$$
G(u, \bar{\lambda})-G(u, \lambda) \geq 0=0(\bar{\lambda}-\lambda) \geq-N(\bar{\lambda}-\lambda)
$$

This shows that condition $5^{\circ}$ holds.
REmARK 3. Note that, by $1^{\circ}$ and $4^{\circ}$, we obtain

$$
G\left(y_{0}, \gamma_{0}\right) \leq G\left(z_{0}, \gamma_{0}\right) \leq 0 \leq G\left(y_{0}, \lambda_{0}\right)
$$

so

$$
0 \leq G\left(y_{0}, \lambda_{0}\right)-G\left(y_{0}, \gamma_{0}\right)
$$

Moreover, if $G$ is also nondecreasing with respect to the second variable, then

$$
\begin{aligned}
& 0 \leq G\left(y_{0}, \lambda_{0}\right) \leq G\left(y_{0}, \gamma_{0}\right) \leq G\left(z_{0}, \gamma_{0}\right) \leq 0 \\
& 0 \leq G\left(y_{0}, \lambda_{0}\right) \leq G\left(z_{0}, \lambda_{0}\right) \leq G\left(z_{0}, \gamma_{0}\right) \leq 0
\end{aligned}
$$

so

$$
G\left(y_{0}, \lambda_{0}\right)=G\left(y_{0}, \gamma_{0}\right)=G\left(z_{0}, \lambda_{0}\right)=G\left(z_{0}, \gamma_{0}\right)=0
$$

In the same way we can show that

$$
G\left(y_{n}, \lambda_{n}\right)=G\left(y_{n}, \gamma_{n}\right)=G\left(z_{n}, \lambda_{n}\right)=G\left(z_{n}, \gamma_{n}\right)=0, n=0,1, \cdots
$$

It proves that in assumptions of Theorem 1, function $G$ can not be increasing with respect to the second variable on the whole interval $\left[\lambda_{0}, \gamma_{0}\right]$, but it can be increasing only on some subintervals of $\left[\lambda_{0}, \bar{\beta}\right]$ and $\left[\bar{\beta}, \gamma_{0}\right]$, where $(\bar{y}, \bar{\beta})$ is the root of the equation $G(y, \lambda)=0$.

Remark 4. Let

$$
G(u, \lambda)=G(\lambda)= \begin{cases}-\sin \lambda, & \lambda \in\left[-\frac{\pi}{2}, \pi-1\right] \\ -\frac{\lambda+1-\pi}{1+\pi}-\sin (\pi-1), & \lambda \in(\pi-1,2 \pi]\end{cases}
$$

Note that $G$ is continuous on $\left[-\frac{\pi}{2}, 2 \pi\right]$, and it is increasing on $\left(\frac{\pi}{2}, \pi-1\right)$. Condition $5^{\circ}$ is satisfied with $N=1$. Note that $\lambda=0$ is the unique solution of the equation $G(\lambda)=0$. To find this solution we can apply the method of monotone iterations. Put $\lambda_{0}=-\frac{\pi}{2}, \quad \gamma_{0}=2 \pi$. Then $\lambda_{0}<\gamma_{0}$ and $G\left(\lambda_{0}\right)=$ $1>0, G\left(\gamma_{0}\right) \approx-1.8415<0$, so $\lambda_{0}$ and $\gamma_{0}$ are lower and upper solutions of the equation $G(\lambda)=0$.

Below, in the table, there are some values of $\left\{\lambda_{n}, \gamma_{n}\right\}$ :

| $n$ | $\lambda_{n}$ | $\gamma_{n}$ | $G\left(\lambda_{n}\right)$ | $G\left(\gamma_{n}\right)$ |
| :---: | ---: | :---: | :---: | :---: |
| 0 | -1.5708 | 6.2832 | 1.0000 | -1.8415 |
| 1 | -0.5708 | 4.4417 | 0.5403 | -1.3968 |
| 2 | -0.0305 | 3.0449 | 0.0305 | -1.0596 |
| 3 | 0.0000 | 1.9853 | 0.0000 | -0.9153 |
| 4 |  | 1.0700 |  | -0.8772 |
| 5 |  | 0.1928 |  | -0.1916 |
| 6 |  | 0.0012 |  | -0.0012 |
| 7 |  | 0.0000 |  | 0.0000 |

Indeed, $\lambda_{n} \rightarrow 0, \quad \gamma_{n} \rightarrow 0$, so $\lambda=0$ is the unique solution of $G(\lambda)=0$.

## References

[1] A.Goma, The method of successive approximations in a two-point boundary value problem with a parameter (Russian), Ukr. Mat. Zh. 29 (1977) 800-807.
[2] T.Jankowski, Existence, uniqueness and approximate solutions of problems with a parameter, Zesz. Nauk. Politech. Gdansk., Mat. 16 (1993) 3-167.
[3] T.Jankowski and V.Lakshmikantham, Monotone iterations for differential equations with a parameter, J. Appl. Math. Stoch. Anal. 10 (1997) 273-278.
[4] N.S.Kurpiel and A.G.Marusiak, A multipoint boundary value problem for differential equations with parameters (Russian), Ukr. Mat. Zh. 32 (1980) 223-226.
[5] G.S.Ladde, V.Lakshmikantham and A.S.Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston (1985).
[6] T.Pomentale, A constructive theorem of existence and uniqueness for the problem $y^{\prime}=f(x, y, \lambda), y(a)=\alpha, y(b)=\beta$, Z. Angew. Math. Mech. 56 (1976) 387-388.
[7] K.Zawischa, Über die Differentialgleichung $y^{\prime}=k f(x, y)$ deren Lösungskurve durch zwei gegebene Punkte hindurchgehen soll, Monatsh. Math. Phys. 37 (1930) 103-124.

Tadeusz Jankowski, Technical University of Gdańsk Department of Differential Equations, $11 / 12$ G. Narutowicz Str., 80-952 Gdańsk, POLAND E-mail address: tjank@mifgate.mif.pg.gda.pl
Received: 01.05.98.
Revised: 18.11.99.


[^0]:    1991 Mathematics Subject Classification. 34A45.
    Key words and phrases. Monotone iterative technique, differential equations, convergence.

