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FIRST ORDER DIFFERENTIAL EQUATIONS WITH A
. PARAMETER

TADEUSZ JANKOWSKI

Technical University of Gdansk, Poland

ABSTRACT. Employing the method of upper and lower solutions and
monotone iterative technique, existence of extremal solutions to differential
equations with a parameter is proved.

1. INTRODUCTION

We concentrate our attention on the following differential equation

(1)

with the conditions:

x'(t) = j(t,x(t),>'), t E J = [O,b]

(2) x(O) = ko, G(x(b), >.) = 0,

where j E C(J x lR x lR, lR), G E C(lR x lR, lR) and ko E lR are given. Bya
solution of problem (1)-(2) we mean a pair (x, >.) E Cl (J, lR) x lR for which
(1)-(2) is satisfied. Problem (1)-(2) is called a problem with a parameter.
Problems with a parameter have been considered for many years. Some of
them appeared as mathematical model of physical systems (see, for example
[7]).

The important area of research in the qualitative theory of differential
equations is study of existence of solutions. Existence theorems can be for
mulated under the assumption that j and G satisfy the Lipschitz condition
with respect to the last two variables with suitable Lipschitz constants or
Lipschitz functions (see, for example [1]' [2]' [4]' [6]). The purpose of this
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paper is to formulate an existence theorem for problem (1)-(2) employing the
method of upper and lower solutions. This method gives a solution in a closed
set. Using this technique, we construct monotone sequences giving sufficient
conditions under which they are convergent. It is important to add that the
one-sided Lipschitz condition is assumed on f and G. This paper extends the
result of paper [3], where it was assumed that f is nondecreasing with respect
to the last variable.

2. MAIN RESULT

A pair (v,a) E C1(J,JR.) x JR. is said to be a lower solution of (1)-(2) if

{ v'(t) < f(t, v(t), a), t E J,
v(O) ~ ko,

o ~ G(v(b), a),

and an upper solution of (1)-(2) if the above inequalities are reversed.

THEOREM1. Assume that f E C(J x JR x JR, JR), G E C(JR x JR, JR) and

1° (Yo, AO), (zo, 10) E Cl (J, JR) x JR are lower and upper solutions of prob
lem (1)-(2) such that Yo(t) ~ zo(t) on J, and AO ~ 10,

20 f is nondecreasing with respect to the last variable,
30 f(t,il,A) -f(t,U,A);::: -M(il-u) for Yo ~ u ~ il ~ Zo with

M;:::O,
40 G is non decreasing with respect to the first variable,
50 G(u,~) - G(u, A) ;:::-N(~ - A) for AO ~ A ~ ~ ~ 10 with N > O.

Then there exist monotone sequences {Yn, An}, {Zn, In} such that Yn(t) -+
y(t), Zn(t) -+ z(t), t E J and An -+ A, ,n -+ I as n -+ 00 and this
convergence is uniformly and monotonically on J. Moreover, (y, A) and (z, I)
are minimal and maximal solutions of problem (1)-(2), respectively.

PROOF. For k = 0,1,'" , we construct monotone sequences by formulas:

{ Y~+1(to) f(t, Yk(t), Ak) - M[Yk+l (t) - Yk(t)], Yk+l (0) = ko,= G(Yk, Ak) - N(Ak+l - Ak),

and

(3)

{ Z~+I(t) = f(t,Zk(t)"k) - M[Zk+l(t) - Zk(t)], Zk+l(O) = ko,o = G(Zk"k) - Nbk+l -'k).

First of all, we shall prove that

{ AO ~ Al ~ II ~ 10,Yo(t) ~ Yl(t) ~ ZI(t) ~ zo(t), t E J.
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Put p = AO - AI. Then, we have

0= G(yo, AO) - N(A1 - AO) ~ - N(A1 - AO) = Np,

so p:::; 0 and hence AO :::; AI. Now, let p = Al - 'Y1. In view of 1°,4° and 5°,
we have

o = G(yO, AO) - G(zo, 'Yo) - N(A1 - AO) + N(/l - 'Yo)

< G(zo, AO) - G(zo, 'Yo) - N(A1 - AO) + N(/l - 'Yo)

< N(/o - Ao) - N(A1 - AO) + N(/l - 'Yo) = -Np.

Hence Al :::; 'Y1. Note that if p = 'Y1 - 'Yo, then

0= G(zo,'Yo) - N(/l - 'Yo) :::; -N(/l - 'Yo) = -Np,

and hence 'Y1 :::; 'Yo. As a result, we have the first part of (3).
Let p(t) = Yo(t) - Y1(t), t E J. In view of 1°, we see that

p' (t) = Yb(t) - Y~ (t) :::; j(t, Yo(t), AO) - j(t, Yo(t), AO) + M[Y1 (t) - Yo (t)]
= -Mp(t), t E J,

and p(O) = Yo(O) - Y1(0) :::; o. It shows that p(t) :::; 0, t E J, so Yo(t) :::;

Y1(t), t E J. Put p(t) = Y1(t) - Zl(t), t E J. Then, in view of 1°,2° and 3°,
we have

p'(t) = y~(t)-z~(t)

= j(t,YO(t),AO) - M[Y1(t) - yo(t)] - j(t,zo(t),'Yo)

+M[Zl(t) - zo(t)]

< j(t, Yo(t), 'Yo) - j(t, zo(t), 'Yo) - M[Y1 (t) - Yo(t) - Zl (t) + zo(t)]

< M[zo(t) - Yo (t)] - M[Y1(t) - yo(t) - Zl(t) + zo(t)]

= -Mp(t), t E J,

and p(O) = 0, so p(t) :::; 0, t E J, and Y1 (t) :::; Zl (t),t E J. Put p(t) =

Zl(t) - zo(t), t E J. Then, by 1°, we obtain

p'(t) = z~(t) - zb(t) :::; j(t,zo(t),'Yo) - M[Zl(t) - zo(t)] - j(t,zo(t),'Yo)

= -Mp(t), t E J with p(O):::; 0,

so p(t) :::; 0, t E J, and hence Zl(t) :::; zo(t), t E J. This shows that (3) is
satisfied.

In the next step, we are going to show that (Y1,A1) and (Zl,'Y1) are lower
and upper solutions of problem (1)-(2). Note that

y~(t) = j(t'YO(t),AO) - M[Y1(t) -Yo(t)]

= j(t,Y1(t),A1) + j(t,YO(t),AO) - j(t,Y1(t);Ar)

-M[Y1(t) - Yo(t)]

< j(t,Y1(t),Ar) + j(t,YO(t),Ar) - j(t,Y1(t),Ar)

-M[Y1(t) - Yo (t)]

< j(t,Y1(t),A1)+M[Y1(t)-YO(t)]

-M[Y1(t) -Yo(t)]

= j(t, Y1 (t), Ar), t E J, Y1 (0) = ko,
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and

z~(t) j(t,zo(t),-yo) - M[Zl(t) - zo(t)]

= j(t,Zl(t),"Yr) + j(t,zo(t),"Yo) - j(t,Zl(t),"Yr) - M[Zl(t) - zo(t)]

> j(t,Zl(t),"Yr) + j(t,zo(t),"Yr) - j(t,Zl(t),"Yr) - M[Zl(t) - zo(t)]

> j(t,Zl(t),"Yr) - M[zo(t) - Zl(t)] - M[Zl(t) - zo(t)]

j(t,Zl(t),"Yr), tEJ, zl(O)=ko.

Moreover, in view of 4° and 5°, we have

a = G(yo, Ao) - N(AI - Ao) ~ G(Yl, Ao) - N(AI - Ao)

= G(Yl,Ao) - G(Yl,Ar) + G(Yl,Ar) - N(AI - Ao)

< N(AI - Ao) + G(Yl,Al) - N(AI - Ao) = G(Yl,Al),

and

a G(zo, "Yo) - Nbl -"Yo) 2: G(Zl, "Yo) - Nbl -"Yo)

= G(Zl,"YO) -G(Zl,"Yr) +G(Zl,"Yr) -Nbl -"Yo)

> -Nbo -"Yr) + G(Zl,"Yr) - Nbl -"Yo) = G(Zl,"Yr).

By the above considerations, (Yl, AI) and (Zl, "Yl) are lower and upper solutions
of (1)-(2).

Let us assume that

Yo(t) ~ Yl(t) ~ ~ Yk-l(t) ~ Yk(t)

~ Zk(t) ~ Zk-l(t) ~ ~ Zl(t) ~ zo(t), t E J

and

{ y~(to) < j(t,Yk(t),Ak), Yk(O) = ko,< G(Yk,Ak),

{ z~(t) > j(t,Zk(t),"Yk), Zk(O) = ko,a > G(Zk,"Yk)

for some k > 1. We shall prove that

{ Ak ~ Ak+l ~ "Yk+l ~ "Yk,(4) Yk(t) ~ Yk+l(t) ~ Zk+l(t) ~ Zk(t), t E J,

and

{ Y~+l(tO) < j(t,Yk+l(t),Ak+r), Yk+l(O) = ko,< G(Yk+l, AkH),

{ Z~H(tO) > j(t,Zk+l(t),"Yk+r), Zk+l(O)=ko,> G(ZkH,"Yk+r)·

Put p = Ak - Ak+l, so

0= G(Yk> Ak) - N(Ak+l - Ak) 2: Np,
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and hence Ak :::; Ak+1. Let p = Ak+1 - 'i'k+l' Then, in view of 4° and 5°, we
see that

o = G(Yk, Ad - G(Zk, 'i'k) - N(Ak+l - Ak) + N(')'k+l - 'i'd
< G(Zk, Ad - G(Zk, ~fd - N(Ak+l - Ak) + N(')'k+1 - 'i'k)

< N(')'k - Ad - N(Ak+l - Ak) + N(')'k+1 - 'i'k) = -Np.

Hence we have Ak+1 :::; 'i'k+l' Now, let p = 'i'k+1 - 'i'k. Then

so ~fk+1 :::; 'i'k, which shows that the first inequality of (4) is satisfied.
Similarly as before, we can show that Ydt) :::; Yk+1 (t), and Zk+1 (t) <

Zk(t), t E J. Note that for p(t) = Yk+r(t) - Zk+1(t), t E J, we obtain

p'(t) = f(t, Yk(t), Ad - i\;I[Yk+1(t) - Ydt)] - f(t, Zk(t), Ad
+M[Zk+1(t) - Zk(t)]

< f(t, Ydt), 'i'k) - f(t, zdt), 'I'd

-M[Yk+1(t) - Ydt) - Zk+1(t) + Zk(t)]

< M[Zk(t) - Ydt)] - M[Yk+1(t) - Ydt)

-Zk+1 (t) + zdt)]

-Mp(t), t E J, and p(O) = O.

It proves that Yk+1 (t) :::; Zk+1 (t), t E J, so Ydt) :::; Yk+1 (t) :::; Zk+1 (t) :::;

Zk(t), t E J, and hence, (4) holds.
Now we are going to show that (y k+l , Ak+ r) and (Zk+ 1, 'i'k+ r) are lower

and upper solutions of problem (1)-(2). Indeed, we see that

Y~+l (t) f(t, Yk(t), Ad - M[Yk+1 (t) - Yk(t)]
= f(t,Yk+l(t),Ak+1) + f(t,ydt),Ak)

- f(t, Yk+1 (t), Ak+r) - M[Yk+1 (t) - Yk(t)]

< f(t, Yk+1 (t), Ak+r) + f(t, Yk(t), Ak+r)

- f(t, Yk+1 (t), Ak+r) - M[Yk+1 (t) - Yk(t)]

< f(t,Yk+l(t),Ak+r) + M[Yk+1(t) - Yk(t)]

-M[Yk+1(t) - Yk(t)]

= f(t, Yk+1 (t), Ak+1) with Yk+1 (0) = ko,

and

Z~+l(t) = f(t,zk(t),'i'd - M[Zk+l(t) - Zk(t)]

f(t, Zk+1 (t), ~(k+1) + f(t, zdt), 'i'k)

- f(t, Zk+l (t), 'i'k+l) - M[Zk+1 (t) - zdt)]

> f(t, Zk+1 (t), 'i'k+r) + f(t, zdt), 'i'k+r)

- f(t, Zk+l (t), 'i'k+1) - M[Zk+1 (t) - zdt)]

> f(t,Zk+l(t),"t'k+r) - M[Zk(t) - Zk+1(t)] - M[Zk+l(t) - Zk(t)]

f(t,Zk+l(t),'i'k+r) with Zk+1(0) = ko·
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Moreover, in view of 4° and 5°, we have

o G(Yk, Ak) - N(Ak+l - Ad ::; G(YHl, Ad - N(AHI - Ad

G(Yk+l' Ak) - G(YkH, Ak+d + G(YHl, Ak+l) - N(Ak+l - Ak')

< N(AHI - Ad + G(Yk+l, AHd - N(AHI - Ad = G(Yk+l, Ak+d,

and

o G(Zk"k) - NbHl - Id ~ G(Zk+l"d - NbHl - Ik)

G(ZkH,~fk) - G(ZHl,'Hd + G(ZkH,'Hd - NbHl - Id
> -Nbk - Ik+d + G(Zk+l, Ik+d - Nh"k+l - ,d = G(Zk+l, IHd·

It proves that (YkH, AHl), (Zk+l, IHl) are lower and upper solutions of
problem (1)-(2).

Hence, by induction, we have

AO ::; Al ::; ... ::; An ::; In ::;... ::;II ::;/'0,

Yo(t) ::; Yl (t) ::; ... ::; Yn(t) ::; Zn(t) ::; ... ::; ZI (t) ::; ZO(t), t E J
for all n. Emploing standard techniques (see [5]), it can be shown that the
sequences {Yn, An}, {zn, In} converge uniformly and monotonically to (y, A),

(Z")' respectively. Indeed, (y,A) and (Z'T) are solutions of problem (1)
(2) in view of the continuity of f and G, and the definitions of the above
sequences.

Now, we need to prove that if (u, (3) is any solution of problem (1)-(2)
such that

yo(t) ::; u(t) ::; zo(t), t E J, and Ao ::; (3 ::; /'0,

then the following inequalities

Yo(t) ::; y(t) ::; u(t) ::; z(t) ::; zo(t), t E J, and

are satisfied.

First, let p(t) = Yl(t) - u(t), t E J. Then

p'(t) Yi (t) - u'(t) = f(t,Yo(t), AO) - M[Ydt) - Yo(t)] - f(t, u(t),{3)

::; f(t,Yo(t),{3) - f(t,u(t),{3) - M[Yl(t) - Yo(t)]

::; M[u(t) - Yo(t)] - M[Yl(t) - Yo(t)] = -Mp(t) with p(O) = 0,

so Yl (t) ::; u(t), t E 1. Now, let p(t) = u(t) - ZI (t), t E 1. Then

p'(t) u'(t) - zi (t) = f(t, u(t), (3) - f(t, zo(t), ,'0) + M[ZI (t) - zo(t)]

::; f(t, u(t), /'0) - f(t, zo(t), 10) + M[ZI (t) - Zo (t)]

::; M[zo(t) - u(t)] + M[ZI (t) - zo(t)] = -Mp(t) with p(O) = 0,

and hence u(t)::; ZI(t), t E 1.
Put p = Al - (3. Then

o G(yO, AO) - N(AI - AO) ::; G(u, AO) - N(AI - Ao)

G(u, AO) - G(u, (3) - N(AI - AO)

< N({3 - AO) - N(AI - AO) = -Np,
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so p ~ 0, and hence Al ~ (3. Now, we put p = (3 - ')'1. Then

a = G(U,(3) ~ G(Zo, (3) = G(Zo,(3) - G(zo,')'o) + Nbl - ')'0)

~ Nbo - (3) + N(')'l - ')'0) = -Np,

and p ~ a which means that (3 ~ ')'1. From the above we have

Yo(t) ~ Yl(t) ~ u(t) ~ Zl(t) ~ zo(t), t E J, and AO~ Al ~ (3 ~ ')'1 ~ ')'0·

Let us assume that

Ydt) ~ u(t) ~ Zk(t), t E J, and

for some k > 1. Put p = AHI - (3. Then, in view of 40 and 50, we have

a = G(Yk, Ak) - N(AHI - Ak) ~ G(u, Ak) - N(Ak+l - Ak)

= G(u, Ak) - G(u, (3) - N(Ak+l - Ak)

~ N((3 - Ak) - N(Ak+l - Ak) = -Np,

so p ~ a and hence AHI ~ (3. Let p = (3 - ')'Hl. Then we obtain

a = G(u,(3) ~ G(Zk, (3) = G(Zk,(3) - G(Zk,')'k) + NbHl - ')'k)

~ NbA, - (3) + NbHl - ')'k) = -Np,
and hence p ~ 0, so (3 ~ ')'Hl. This shows that

AHI ~ (3 ~ ')'Hl.

As before, we set pet) = Yk+l (t) -u(t), t E 1. Then, in view of 20 and 30,
we obtain

p'(t) = Y~+l -u'(t) = f(t,Ydt), Ak)

-M[YHl(t) - Yk(t)] - f(t,u(t),(3)

< f(t,Yk(t),(3) - f(t,u(t),(3) - M[Yk+l(t) - Ydt)]

< M[u(t) - Yk(t)]

-M[YHl(t) - Yk(t)] = -Mp(t), t E J with p(O) = 0,

hencep(t) ~ 0, t E J, and Yk+l(t) ~ u(t), t E 1. Putp(t) = U(t)-Zk+l(t), t E
J. Indeed, in this case, we have

p'(t) = u'(t) - z~+l(t) = f(t,u(t),(3) - f(t,Zk(t),')'k)

+M[Zk+rCt) - Zk(t)]

< f(t,u(t),')'d - f(t,zdt),')'k)

+M[ZHI - Zk(t)]

< M[Zk(t) -u(t)]+

M[Zk+l(t) - Zk(t)] ~ -Mp(t) with p(O) = O.

Hence pet) ~ 0, t E J, so u(t) ~ ZHI (t), t E J. This shows that

YHI (t) ~ u(t) ~ Zk+l (t), t E J.

By induction, this proves that the inequalities

Yn(t) ~ u(t) ~ zn(t), t E J, and
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are satisfied for all n. Taking the limit as n -+ 00, we conclude that

y(t) :::: u(t) :::: z(t), t E J, and A:::: /3:::: '".

It means that (y, A), (z, ~f) are minimal and maximal solutions of (1)-(2).
This completes the proof of the theorem. D

Now we are going to prove some relations between the members of se
quences from Theorem 1 and sequences defined below by formulas:

{ Yk+' (t;

{ 'k+' (t;

for k = 0,1, ....

f(t, ydt),).d - P[Yk+1 (t) - Ydt)]'

Yk+1(0) = ko, Yo(t) = yo(t), t E J,
G(Yk,).",) - Q().k+1 - ).,J,
).0 = Ao,

f(t, zdt), ')',J - P[Zk+r(t) - zdt)],

2k+1(0) = ko, zo(t) = zo(t), t E J,
G(z],-, ;';-,J - Q("ik+1 - "Id,
"10 = ,"0

LE~I!\IA 1. Let the assumptions of Theorem 1 be satisfied. If AI <
P, 1'1:::: Q, then

(5)

for n = 0,1, ....

PROOF. Note that the relations: An :::: ~fn, Yn(t) :::: Zn(t), t E J, n =
0,1,'" follow from Theorem 1.

Let p = Y1 - Y1' Then

p'(t) f(t,yo(t),Ao) -P[Y1(t) -yo(t)]

-f(t,yo(t),Ao) +lU[Y1(t) -yo(t)]

-P[Y1(t) - Y1(t)]

+(M - P)[Y1(t) - Yo(t)] :::: -Pp(t), p(O) = 0,

which proves that Y1 (t) ::::Y1 (t), t E J. If we now put q = ).1 - AI, then

o = G(yo, Ao) - Q().l - Ao) - G(yO, Ao) + N(A1 - Ao)

= -Q().l - Ar) + (1'1 - Q)(A1 - Ao) :::: -Qq,

so ).1 :::: AI. Similarly, we can show that Zl(t) :::: 21(t), t E J, ~i1:::: "11. It
means that (5) holds for n=1.
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Now we assume that (5) is satisfied for n = k. Put P = Yk+1 - Yk+I, so
p(O) = O. Then, by the assumptions 2° and 3° of Theorem 1, we get

p'(t) f(t, Ydt), >-d - P[)]k+1 (t) - ih(t)]

- f(t, Ydt), Ad + M[Yk+1(t) - YI.·(t)]

< f(t, Ydt), Ad - f(t, Ydt), Ad
-P[Yk+l(t) - 17dt)] + M[Yk+l(t) - Yk(t)]

< I\I[ydt) - 17k(t)]-

P[17k+I(t) - Yk+r(t) + Yk+l(t) - 17.",(t)]

+M[Yk+1(t) - yk(t)]

-Pp(t) + (M - P)[Yk+1(t) - Yk(t)

+Ydt) - 17dt)] ~ -Pp(t),

so p(t) ~ 0 on J, and hence 17k+l (t) ~ Yk+1 (t) on J.
If we put q = >-1.'+1- Ak+l, then, in view of assumptions 4° and 5° of

Theorem 1, we get

o GUh, >-d - Q(>-k+l - >-d - G(Yk: Ad + N(Ak+1 - Ad
< G(Yk, >-d - G(Yk, Ad - Q(>-Hl - >-d + N(Ak+l - AI.')

< N(Ak - >-d - Q(>-k+l - >-d + N(/\k+1 - Ad
-Qq + (N - Q)(Ak+1 - AI.' + AI.' - >-d ~ -Qq,

so q ~ 0, and hence AHI ~ Ak+l.

Similarly, for p = Zk+l - Zk+l, \ve obtain

p'(t) = f(t,zdt),~(d

-M[Zk+l (t) - zdt)] - f(t, 2k, 'Yd
+P[Zk+1(t) - Zk(t)]

< f(t, zdt), 'Yd - f(t, zdt). 'Ykl

-l\I[ZHl(t) - zdt)] + P[ZHl(t) - zdt)]

< M[zdt) - zdt)] - M[Zk+1(t) - zdt)]

+P[Zk+1(t) - zdt)] ~ -Pp(t), p(O) = 0,

and as the result we have Zk+l(t) ~ 2Hl(t) on J. :~doreover, if q = :k+l -'YHl,
then

o G(zk,,·d - Nhk+l - -II.-) - G(zk,'Yd + Q('YHI - 'Yk)

< G(Zk, :1.') - G(Zk, 'Yd - Nhk+l - ~fd + Q('Yk+1 - 'Yk)

< lV('Yk -:d - Nhk+l - ~/d + Q('Yk+l - ;'id ~ -Qq,

so ~(I.+1~ 'Yk+1'

By the above and mathematical induction, we see that (5) is satisfied.
This ends the proof. 0

3. REMARKS

RE:\IARK 1. We observe that the special case when f is monotone non
decreasing with respect to the second variable is covered by our theorem. To
see this, it is enought to put Al = 0 in condition 3°.
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REMARK 2. If we assume that G is nondecreasing with respect to the
second variable, then there exists N > 0 such that for 5. 2: A we have

G(u,5.) - G(u, A) 2: 0 = 0(5. - A) 2: -N(5. - A).

This shows that condition 5° holds.

REMARK 3. Note that, by F and 4°, we obtain

G(yo, 'Yo) ~ G(zo, 'Yo) ~ 0 ~ G(yo, AO),

so

o ~ G(yo,AO) - G(yo, 'Yo).

Moreover, if G is also nondecreasing with respect to the second variable,
then

so

In the same way we can show that

G(Yn, An) = G(y", 'Yn) = G(Zn, An) = G(Zn, ')'n) = 0, n = 0, 1,'" .

It proves that in assumptions of Theorem 1, function G can not be in

creasing with respect to the second variable on the whole interval [AO, 'Yo], but
it can be increasing only on some subintervals of [AO, ,8] and [iJ, 'Yo], where
(fj, iJ) is the root of the equation G (y, A) = O.

REMARK 4. Let

G(u,>') = G(>') = {

- sin A,
A+l-71

------ - sin(71 - 1).1+71 .

A E [-~, 1r - 1]'

A E (1r - 1, 21r].

Note that G is continuous on [-~,21r], and it is increasing on (~,1r - 1).
Condition 5° is satisfied with N = 1. Note that A = 0 is the unique solution
of the equation G(A) = O. To find this solution we can apply the method of

monotone iterations. Put Ao = -~, 'Yo = 27f. Then Ao < ~io and G(Ao) =
1 > 0, G('Yo) ~ -1.8415 < 0, so Ao and 'Yo are lower and upper solutions of
the equation G(A) = O.

Below, in the table, there are some values of {An,'Y,,}:
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11, AnTnG(An)Gbn)
0

-1.57086.28321.0000-1.8415
1

-0.57084.44170.5403-1.3968
2

-0.03053.04490.0305-1.0596
3

0.00001.98530.0000-0.9153
4

1.0700-0.8772
5

0.1928-0.1916
6

0.0012-0.0012
7

0.0000 0.0000

Indeed, An -+ 0, ~(n -+ 0, so A = 0 is the unique solution of G(A) = O.
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