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PARABOLIC INDUCTION AND JACQUET MODULES OF
REPRESENTATIONS OF 0O(2n,F)

DuBRAVKA BAN
University of Split, Croatia and Purdue University, USA

ABsTrAacT. For the sum of the Grothendieck groups of the categories
of smooth finite length representations of O(2n,F) (resp., SO(2n, F)),
n > 0, (F a p-adic field), the structure of a module and a comodule over the
sum of the Grothendieck groups of the categories of smooth finite length
representations of GL(n, F), n > 0, is achieved. The multiplication is de-
fined in terms of parabolic induction, and the comultiplicitation in terms
of Jacquet modules. Also, for even orthogonal groups, the combinatorial
formula, which connects the module and the comodule structures, is ob-
tained.

1. INTRODUCTION

In this paper, we deal with

R(0) = @ Ra(0)

n>0

where R,(0) denotes the Grothendieck group of the category of smooth fi-
nite length representations of O(2n, F), F a p-adic field. R(O) is a module

and a comodule over the Hopf algebra R = € Ry; here R, denotes the
n>0

Grothendieck group of the category of smooth finite length representations of
GL(n,F).

The structure of R was described by Zelevinsky in [Z1]. The definition
of the multiplication m : R ® R — R and the comultiplication m* : R —
R ® R is based on the fact that for 0 < k < n there exists a standard
parabolic subgroup of GL{n, F') whose Levi factor is isomorphic to GL(k, F') x
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GL(n—k, F). The multiplication is defined using parabolic induction, and the
comultiplication by Jacquet modules (see the third section of this paper). The
structure of a Hopf algebra on R includes the Hopf axiom; it is the property
that m* is a ring homomorphism.

For O(2n,F) and 0 < k < n, there is a standard parabolic subgroup
whose Levi factor is isomorphic to GL(k, F) x O(2(n — k), F'). So, there is a
natural way to define (using parabolic induction) the action x of R on R(O),
and (using Jacquet modules) the mapping p* : R(O) — R x R(O). This is
done in the sixth section. '

There is also a connection between the module and the comodule struc-
tures on R(O). Let

M*=(m®1l)o(~®m*)osom”,

where s : R® R — R ® R is the homomorphism determined by s(r; @ r2) =
T ®T1, 71,72 € R. Then we have

*) (@ 0) = M™(m) x u*(0),

so R(0O) is an M*-Hopf module over R (see [T1] for the definition). The
formula (*) can be used to find a composition series for Jacquet modules of
parabolically induced representations.

The kind of work we have done for even orthogonal groups was first done
by Tadi¢; in [T1] he introduced such a structure in the cases of symplectic
and special odd-orthogonal groups, and he proved the combinatorial formula
(*) for those groups. He also raised the question of the existence of such a
structure for other series of classical p-adic groups.

We now give a short summary of the paper. In the second section, we
give the definitions and some results of Bernstein and Zelevinsky, and Cas-
selman, about parabolic induction and Jacquet modules. The third section
describes the structure of R, as it is done in [Z1]. The fourth section is about
standard parabolic subgroups of SO(2n, F') and about R(S) (the definition is
analogous to R(0)). R(S) is an R-module and R-comodule. The fifth section
contains calculations in the root system for the case of Dy, i.e., for the group
SO(2n, F'). This is used in the sixth section to find double cosets of O(2n, F).
In this section we also define the module and the comodule structures for even
orthogonal groups. In the seventh section, we have applied the proof of the
combinatorial formula from [T1] to our case.

I would like to close the introduction-by thanking Marko Tadié, who
suggested this project and helped its realisation. Also, I am very grateful to
the referee for his valuable comments and English corrections.
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2. PRELIMINARIES

In this section, we shall introduce some basic notation and recall some
results that will be needed in the rest of the paper. Our presentation follows
the papers [BZ2] and [C].

A Hausdorff topological group G is called an [-group if any neighbourhood
of the identity contains an open compact subgroup.

Let G be an l-group, M, U closed subgroups, such that A normalises U,
M NU = {e} and the subgroup P = MU C G is closed; let 8 be a character
of U normalised by M. In such a situation, we define the functors

IU,g, ’L.U,g : Alg]\/f - .4lgG,
rug : AlgG — AlgM.
(Here AlgG denotes the category of algebraic (=smooth) representations of
G.)
(a) Let (p, L) € AlgM. Denote by I(L) the space of functions f: G — L
satisfying the following conditions:
L f(umg) =6(u) Af*(m)p(m)(f(9)), u€U, meM, g€G.
(Here Ay denotes the modular character.)
2. There exists an open subgroup Ky C G such that

flgk) = f(g), forgeG, ke Ky.

Define the representation (4, I(L)) € AlgG by (6(g)f)(¢') = f(¢'g). We
call § an induced representation and denote it by Iy g(p).

Denote by (L) the subspace of I(L) consisting of all functions compactly
supported modulo the subgroup P = MU. The restriction of § to the space
i(L) is called compactly induced and is denoted by iy,g(p).

(b) Let (7, E) € AlgG. Denote by E(U,8) C E the subspace spanned by
the vectors of the form
m(w)€ — 8(u)é, uel, E€E.

The quotient space E/E(U,8) is called the #-localisation of the space E and
is denoted by ry¢(F). Define the representation (8, ry¢(E)) € AlgM by

§(m)(€ + E(U,0)) = Ag*(m)(x(m)E + E(U,0)), me M, €€ E;

it is easily verified that & is well-defined. Call the representation ¢ the 8-
localisation of w and denote it by ry¢(n).

We shall now state a result of Bernstein and Zelevinsky (Theorem 5.2 of
[BZ2]).

Let G be an l-group, P, M,U and Q, N,V be closed subgroups, 8 be a
character of U and ¢ be a character of V. Suppose that
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(1) MU=P, NV =Q, MNU=NNV ={e}, M normalises U and
8, N normalises V and .
Then there are defined functors

iyg: AlgM — AlgG  and rvy : AlgG — AlgN.
We want to compute the functor
F=ryyoiyg: AlgM — AlgN.

It requires some complementary conditions. Suppose that
(2) The group G is countable in infinity, and U, V are limits of compact
subgroups.
Consider the space X = P\G with its quotient-topology and the
action § of G on X defined by

8(g)(Ph) = Phg™', g,h€ G,Phec X.

Suppose that

(3) The subgroup Q has a finite number of orbits on X. Acording to ([BZ1],
1.5), one can choose a numbering Zi, ..., Z; of the Q-orbits on X such
that all sets

Yi=2Zy, Yo=2Z1UZ3,.. Ye=2Z1U..UZ,=X

are open in X. In particular, all Q-orbits on X are locally closed.

Fix a Q-orbit Z C X. Choose w € G such that Pw~! € Z and
denote by w the corresponding inner automorphism of G: w(g) =
wgw 1. Call a subgroup H C G decomposable with respect to the
pair (M,U),if HN(MU) = (HN M)(HNU). Suppose that

(4) The groups w(P),w{M) and w(U) are decomposable with respect to
(N,V); the groups w™(Q),w™1(N) and w=(V) are decomposable
with respect to (M, U).
If the conditions (1)-{4) hold, we define the functor ®z : AlgM — AlgN.
Consider the condition

(*) The characters w(f) and v coincide when restricted to the subgroup
w(U)NV.

If (*) does not hold, set &z = 0. If (*) holds then define the functor &4
in the following way.

Set
M = Mnwl(N), N =wM)=w(M)NN,
Vi = Mnw V), ¢ =wlE)|v,
U' = NnuwU), ¢ =wd)|v.

It is clear that the following functors are defined
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vy o AlgM — AlgM’,
w : AlgM' — AlgN’,
’L'Ul,gf : AlgN' — AlgN.
Let £1 = Ay 2 AY2 1 o) be a character of M', & = AY?AY2 ) bea
character of N’ and € = ¢;.w(es) be a character of M’. We define 7 by

Pz =iyg owoeory y : AlgM — AlgN
(here € is considered as a functor, see [BZ2] 1.5). In a more symmetric form,
Dz =iy g 0E3OWOEL O Ty yi.

THEOREM 2.1. Under the conditions (1)-(4) the functor F = ry yoiyg
AlgM — AlgN 1is glued from the functors ®z where Z runs through all Q-
orbits on X. More precisely, if orbits Z1, ..., Zy, are numerated so that all sets
Y,=2,U...UZ; (i =1,...,k) are open in X, then there exists a filtration
0=Fy,CF, C...CF;=F such that Fi/Fi+1 ~ (I)Z.-~

(Let A be an abelian category and C;,Cs, ... ,Cr € A. We say that the
object D € A is glued from C7,Csy,... ,Cy if there is a filtration 0 = Dy C
D, C --- C Dy = D in D, such that the set of quotients {D;/D;_1} is
isomorphic after a permutation to the set {C;}.)

Let F' be a locally compact nonarchimedean field. By an algebraic F-
group we mean the group of F-points of some algebraic group, defined over
F. In a natural locally compact topology such groups are l-groups.

Let G be a connected (in an algebraic sense) reductive F-group. Fix from
now on a minimal parabolic subgroup Py C G and a maximal split torus
Ag C B.

Let P be a parabolic subgroup containing Pp. We call such a group a
standard parabolic subgroup. Let U be the unipotent radical of P. There
exists a unique Levi subgroup in P containing Ag; denote it by M (it is a
connected reductive F-group). It is known that P normalises U and has the
Levi decomposition P = MU, M NU = {e}. We define the functors

ig,m : AlgM — AlgG and ru,c : AlgG — AlgM
by
ig,M = iU, T™M,G = TUL-

For o € AlgM we call ig (o) the parabolically induced representation of G
by o from P, and for 7 € AlgG we call rpr,g(w) the Jacquet module of 7 with
respect to P.

Denote by I the set of (reduced) roots of G relative to Ag. The choice
of Py determines a basis A of ¥ (which consists of simple roots). It also
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determines a set of positive roots £*. Denote by W the Weyl group of G.
For 8 C A, we denote by Wy the subgroup of W generated by all reflections
{wo |a€8}. f P =PF = MU is the standard parabolic subgroup of G
determined by 6, then Wy is also denoted by Wyy.

Let 2, 8§ C A. Now, we shall describe the set [Wp\W/Wg], a set of
representatives of Wy\W /W, defined in [C].

For a € A, set

W* ={we W |wa >0}, W={weW|w'la>0}.
We have

WiWwa] = (W, Wa\W]= (] °W,
a€ef) aef
We\W/Wq] = [We\W]n[W/Wq].

If P= Py = MU and Q = Py = NV are standard parabolic subgroups
of G, then we have a bijection Wy \W/Wyx = P\G/Q (see [BT], 5.15,5.20).
From this relation and Theorem 1.1 Bernstein and Zelevinsky obtained the
geometric lemma ([BZ2]). The same result was obtained independently by
Casselman in [C].

THEOREM 2.2 (Geometric lemma). Let G be a connected reductive p-adic
group, P = Py = MU, Q@ = Pq = NV parabolic subgroups. Let o be an
admissible representation of M. Then rn g oic,m(0) has a composition series
withfactors

inN 0wt ora m(o)
where M' = M Nw(N), N' =w 1 (M)NN and w € [Wp\W/Wq].

Let 7 be a smooth finite length representation of G. We identify it canon-
ically with an element of the Grothendieck group of the category of all smooth
finite length representations of G. We denote this element by s.s.(7) and call
this map semi-simplification.

3. GENERAL LINEAR GROUP

In this section, we shall recall some results of the representation theory
of p-adic general linear groups. The proofs can be found in [BZ2] and [Z1].

Fix the minimal parabolic subgroup of GL(n, F) which consists of all
upper triangular matrices in GL(n, F'). The standard parabolic subgroups of
GL(n, F) can be parametrized by ordered partitions of n: fora = (n1,... ,nk)
there exists a standard parabolic subgroup (denote it in this section by Py) of
GL(n, F) whose Levi factor M, is naturally isomorphic to GL(n;, F) x --- %
G L(Tl,k, F ) .
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Denote by R, the Grothendieck group of the category of smooth repre-
sentations of GL(n,F). Ry is a free abelian group; it has a basis consisting
of equivalence classes of irreducible smooth representations of GL(n, F). Let

R=DR..

n>0

We shall define a multiplication and a comultiplication on R. Let 7y, 7y
be admissible representations of GL(ny, F),GL(ns, F), resp., n; + ny = n.
Define

My X T2 = G L(n,F),M(n,na) (T1 ® T2).

Now, for irreducible smooth representations 7,7 € R, we put m# x 7 =
s.s.(mx7). We extend x Z- bilinearly to R x R. The induced mapping RQR —»
R, 7 ® 7 — 7 X 7 is denoted by m.

Let m be a smooth representation of GL(n, F) of finite length. For a =
(n1,...,ng) we define

Ta,(n) (m) = TMq,GL(n,F) (7).

This is a representation of My & GL(n,, F) % - - - x GL(ng, F), so we may
consider s.5.(r4,(n)(7)) € Rp, ® -+ ® Ry,. Now we define

m* (7)) = Z 5.5.(T(k,n—k),(n) (7)) € RO R.
k=0
We extend m* Z-linearly to all R.

With the multiplication m and the comultiplication m*, R is a graded
Hopf algebra. This means that R is Zi-graded as an abelian group, m and
m* are Z-graded, R has an algebra and coalgebra structure, and the comul-
tiplication m* : R -+ R ® R is a ring homomorphism.

Let g € GL(n, F). We denote by *g the transposed matrix of g , and by
7g the matrix of g transposed with respect to the second diagonal.

4. SPECIAL ORTHOGONAL GROUP SO(2n, F)

From now on, F will be a fixed local non-archimedean field of character-
istic different from two.
The special orthogonal group SO(2n, F), n > 1, is the group

SO@2n,F)={X € SL(2n,F)| "XX = L,}.
For n = 1, we get

SO(2,F)={[3‘ °. ”AeF"}&'F".

SO(0, F) is defined to be the trivial group.
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Denote by Ap the maximal split torus in SO(2n, F) which consists of all
diagonal matrices in SO(2n, F). Hence,

Ao = {diag(zs,... ,zn,2z7",... ,zfl)lzi € F*} = (F*)™.

Denote by a the natural isomorphism of (F*)™ to Ag defined by
a(z1, .., Zn) = diag(zy, ... ,Tn, ;... ,270).

We fix the minimal parabolic subgroup Fp which consists of all upper
triangular matrices in SO(2n, F').

The root system is of type Dy, :

the roots: *e; L ey, 1<i<j<mn,
the positive roots: e; — e; 1<i<j<mn,
e; +€e;, 1<i<j<n,

the simple roots: a; =e;—e€;+1, 1<i1<n—-1, ap,=-ep 1 +en.
The set of simple roots is denoted by A. The action of the simple roots
on Ag is given by
ai(a(zy,...,Tn)) = ziz;_ll, 1<1<n—1,
an(a(zy,....Tn)) = Zp-1Tn.

Let us describe the standard parabolic subgroup Py = MUy, 6 C A. For
i=1,...,n we define

_ [ A\{a}, i#Fn—1,
= { A\{an,an-1}, t=n-1.

For i = 0, we put Qg = A. If 8 can be written in the form 8 = (| Q;, I =
il
{il,...,ik}, 11 < i3 < ... <1, then
M9 = {dla’g(gla "':gkvh‘7 Tgk_17 ey Tgl_l) | gi € GL(TL,;,F),
h e S0(2(n - m),F)},

where ny = iy,n1 +ng = 42,...,71 + -+ ng = i = m. Put @ = (nq,...,nk).
My is also denoted by M. In this case we have

My = GL(n1,F) X GL(ny, F) x --- x GL{ng, F) x SO(2(n — m), F).

If 8 cannot be written in such a form (this happens when a,_1 ¢ 6, a, €
), then we have -

My = sMgqgs ', where Q= (0\{an})U{an_1},
I
0 1
1 0

»
I
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Note that the presentation of 6 in the form 6 = [) ; is not always
i€l
unique. Namely, when a,—1 ¢ T and a, ¢ I, we may taken—-1€ I, nel
orn—1€l, n¢l. Inthat case we have

Mo = {diag(g1, -9k, 1, "9 "5 T91Y) | i € GL(ns, F),
h = diag(z,z7'), z € F*},
so we may consider
My = GL(n1,F) x GL(ng, F) x - -+ X GL(ng, F) x GL(1, F),
or
My = GL(n1,FY x GL{ng, F) x --- x GL(ng, F) x SO(2, F).

For us, it will be important that for any ordered partition a = (n1, ..., ng)
of a non-negative integer n < n we have a standard parabolic subgroup of
SO(2n, F) whose Levi factor My, is isomomorphic to GL(n1, F) x GL(ns, F) x
-+ X GL(ng, F) x SO(2(n —m), F).

Now, take smooth finite length representations = of GL(n, F) and o of
S0(2m, F). Let P(ny = M(n)U(n) be a standard parabolic subgroup of SO(2(m
+n), F). Hence, My = GL(n, F) x SO(2m, F), so 7 ® o can be taken as a
representation of M(,).Define

TXRO= ihf(n),SO(2(m+n),F)(7r ® O’).
PROPOSITION 4.1. Let w,m and mo be finite length smooth representa-
tions of the groups GL(n, F), GL(n1,F) and GL(nq, F) respectively, and let
o be a finite length smooth representation of SO(2m, F). Then

(1) T X (’/T2 x4 0’) = (ﬂ'1 X 7('2) X o,
(i) (mxo)” =7 xa.
(Here 7 denotes the contragredient representation of .)

PRrROOF. The proof is straightforward and follows from [BZ2], Proposition
2.3. a

Denote by R,(S) the Grothendieck group of the category of all finite
length smooth representations of SO(2n, F). Define

R(S) = P Ra(S).
n>0
The multiplication of representations x we introduced above gives rise to
a multiplication x : Rx R(S) — R(S). For irreducible smooth representations
m € R and o € R(S), we put
TXo=3s.8(rxo),
and extend x Z-bilinearly to R x R(S). Now, we can get a Z-linear map-
ping, denote it by 1 : RQ R(S) — R(S), which satisfies u(7®0) = s.5.(r x 0)
for 7 € R and ¢ € R(S).
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ProprosITION 4.2. (R(S),u) is a Z, -graded module over R.

PROOF. See [Sw] for the definition of a module over a Hopf algebra. We
are interested in the property of associativity, i.e., that the following diagram
commutes:

R®R®R(S) “® R@R(S)

mQid l ‘L[.L
R®R(S) L  R©).
The proof of this property relies on the previous proposition. a

Let ¢ be a finite length smooth representation of SO(2n,F). Let a =
(n1,...,nx) be an ordered partition of a non-negative integer m < n. Define
5a,(0)(7) = TM.,50(2n,F)(0)-

This is a representation of M, = GL(ni,F) x GL(ny,F) x --- x
GL(n,F) x SO(2(n — m), F), so we may consider 5.5.(s4,(0)(¢)) € Rn, ®
-+ ® Ry, ® Ry_1n(S). Now we shall define a Z-linear mapping p* : R(S) —
R ® R(S). For an irreducible smooth representation o € R(S), we define

p(0) = 5.5.(s(k),(0)(0))-
k=0

We extend u* Z-linearly to p* : R(S) - R® R(S).
PROPOSITION 4.3. (R(S),p*) is Z-graded R—comodule.

ProOOF. The definition of a comodule over a Hopf algebra can be found
in [Sw]. We are interested in coassociativity, i.e., that the following diagram
commutes:

R(S) *  ReR(S)

u* l J}'d@#‘
R®R(S) ™% R®R®R(S).
The proof follows from [BZ2], Prop.2.3. 0

The above construction is analogous those Tadié¢ did in [T1] for Sp(n, F)
and SO(2n + 1, F).

5. CALCULATIONS IN THE ROOT SYSTEM, THE CASE OF D,

In this section we shall make the calculations in the Weyl group we need
for the geometric lemma. Precisely, for 43,72 € {1,2,...,n} we shall find
[Wa., \W/Wq,,] and for w € [Wo, \W/Wq,,], determine Q;, N w(,).

First, we shall describe the Weyl group:

W = {£1}™! x Sym(n),
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where
{1}t = {(61,...,en) € {+1}"| He,- = 1}.

Sym(n) acts on the roots +e; + e; by permutations of the set {ey,...,e,}, and
(€1, ..., €n) acts as sign changes (—1 in the i-th place of € = {1, ..., €5) denotes
the interchange of e; and —e;). For p € Sym(n) and (e1,...,€,) € {£1}"71,
we have

pler, ey 6rL)pml = (6p“(1)a ) 6p_l(n))'
It follows that
[p(elr"’En)]—l = p_l(ep’l(l)v"'76p_1(n))7
[(617 "'76n)p]_1 (ep(l)a "'aep(n))p—'l-
Now we shall use the formulas from [C] for [We \W/Wq] we listed before.
The beginning of our calculation is almost the same as in [T1], and the first
four lemmas are very similar.

By the definition of the action of W on roots, for p € Sym(n) and
(€1, ---, €n) € {£1}™ we have

pe(a;) = pe(ei — eir1) = pleiei — €ip1€it1)
= €i€p(i) — €i+1€p(i+1)s 1 < 1 <n- 17
pe(an) = pe(en—1+en) = P(en—1€n—1+ €n€n) = En_1€p(n—1) + En€p(n)-

As we said, W* = {w € W | wa; > 0}. If we check when pe(a;) > 0,
1 < i < n, then we easily get the following lemma.

LEMMA 5.1. a) For 1 < i < n—1, W is the disjoint union of the
following three sets:
(i) {pe€ W |ei=eir1 =1, p(i) <p(i+1)};
(il) {pe€e W lei=1, €41 =1}
(iti) {pe € W | & = €iy1 = ~1, p(§) > p(i + 1)}
b) Wen is the disjoint union of the following three sets:
(i) {pe € W | €n-1 =€n =1};
(i) {pe€e W |en-1=1, en = =1, p(n - 1) < p(n)};
(ili) {pe€ W |en-1=-1, €, =1, p(n—1) > p(n)}.

In the same way, we can compute “W = {w € W | wle; > 0}.
LEMMA 5.2. a) For 1<i<n—1, %W is the disjoint union of the
following three sets:
() {pe€ W | ep-10s) = 10331y = 1, p71(0) <p i+ 1)},
(ii) {pe eEw I Ep—l(i) = 1, Ep-—l(i_*_l) = —1};
(iti) {pe € W | epmr(sy = -1(ip1) = —1, p7(E) > p~H(i+1)}.
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b) ®~W is the disjoint union of the following three sets:
(i) {pe ewW| €p=1(n-1) = €p~i(n) = 1},’
(ii) {pe ew l €p-1(n-1) = 1, €p-1(n) = -1, p~ (n -1 (n },
(ili) {pe € W | ep-1(n—1) = —1, p-1(m) =1, p~}(n — 1) (n)}.
In the next lemma, we shall use the formula [W/Wg] = ﬂaen we, for
QCA.

LEMMA 5.3. Let 1 <i<n and let 0 < j <i. Denote by Y} the set of all
pe € W such that the following siz conditions are satisfied:

(i) e« =1, for1<k<j;

(i) p(k1) < p(k2), for1< ki <ks <jj
(iil) e = -1, forj+1<k<yq;

(iv) p(k1) > p(k2), forj+1<ki <k <y
(v) ex =1, fori+1<k<n-—-1

(Vl) (kl) < p(kz) fOT‘ 1+1<k <ky<n.
Denote by Yjn the set of all pc € W which satisfy the same conditions
(for i = n), but instead of (iii), the condition
(iii") ex=—1, forj+1<k<n—1, e, =1L

Then
W/wal= | Y
0<j<i
Wwiwa,l= U ¥~
0<j<n—1

Here Q, = A\{an_1}.

PROOF. Take pe € [W/Wq,] = Nyeq, W I i < n—1, then pe €
Wen N Wen-1. FromLemma 5.1 a) for n — 1 and Lemma 5.1 b) for n we get

€n-1 =1, ¢n =—1, p(n-1)<p(n),
or
en-1=1, e, =1, p(n—1) < p(n).
Anyway, €,_1 = 1, p(n — 1) < p(n). Further, Lemma 5.1.a) implies
€41 =€iqp = - =€p1 =1, p(i+1)<p(i+2)<---<p(n).
Now, we have
eg =1, fori+1<k<n-1, and
plk1) < plks), fori+1<k; <k <nm.
This condition is also satisfied for 1 = n — 1 or 1 = n, because in those cases
it is empty.
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Since pe € W* Vk € {1,...,i — 1}, Lemma 5.1 implies that for any
ke{l,...,i—1}, wehave g = €p11 = lore =1, €41 = -1l or g =
€x+1 = —1. We cannot have ¢, = —1, €x4+; = 1. So we conclude that there
exists 7 € {0,1,...,i} such that ¢, = 1 for 1 < k < j—1 and ¢ = -1 for
j+1<k<i-—1 Lemma 5.1 also implies p(k) < plk+ 1) for 1 <k <j-1
and p(k) >plk+ 1) forj+1<k<i-1. Hence,peeY; where 0 < j <i.

If pe € Upejc: ¥y sthen we see from Lemma 5.1 that pe € W for I # 1,
inthecasei#n—1,andpe € W* forl#n—1,l #ninthecasei=n— 1.
This proves the other inclusion.

Let pe € [W/Wq, ] = Nipns W*.
Suppose that e,—; = 1. Then by Lemma 5.1 a), we get ¢ = €3 = --- =
en—1 =1, p(k1) < plka), for 1 < k; < k3 < n— 1. The condition Hei =1

1
gives us €, = 1. Put j = n — 1. Then, the conditions (3), (i7) and (i7i’) are
satisfied, and the others are empty.
Let €51 = —1. Then by Lemma 5.1 b) wegete, =1, p(n—1) > p(n).It
follows from Lemma 5.1.a) that there exists j € {0, 1,...,n — 2} such that
ex =1, for1<k<j, plki)<p(ks), forl<ki <k <y,
and
e, =-1, forj+1<k<n-1, plk) > plks),
forj+1§k1<k2_<_n—1.
Together with the first condition, we get
eg=-1, forj+1<k<n-1, plki)>plks), forj+1<k; <ky<n.

Therefore, the conditions (%), (¢1), (%4i') and (iv) are satisfied, and the others
are empty.
The other inclusion can be proved as before. O

n
REMARK 5.1. If pe € W, € = (€1, €n), then [] ¢, = 1. Thus we have
=1

fori<n: pee€ Yj" implies €, = (—1)*7,
fori=n: ifn—j odd, thean":_@,
ifn—j >0 even, then Y* = 0.

Ifj=n, then Y,* = {id} C Y,* |, so we can write
wiws.l= U Y

0<j<n

For the set [Wq \W], we can simply use the relation [W/Waq] ™' = [Wa\W]
and the previous lemma to obtain the following:
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LEMMA 5.4. Let 1 <4 <n and let 0 < j < i. Denote by X} the set of all
pe € W such that the following siz conditions are satisfied:

() e =1, for 1<k <j;

(i) p~' (k1) <pl(k2), for 1<k <ky<j;
(iii) €p-1(k) = -1, forj +1<k<q;
(iv) p7 (k1) > p M (k2), forj+1<ki <ka <53
(v) &) =1, fori+1<k<n-1;

(vi) p~H (k1) <p~l(k2), fori+1<k <k <n.
Denote by X']'-‘ the set of all pe € W which satisfy the same conditions
(for i = n), but instead of (iii), the condition

({i") eim=-1 forj+1<k<n-1, egm=1L1
Then,

Wo\W]= |J X;,

0<j<i

Wa,\W]= |J Xp
0<j<n-1

Let 41,12 € {1, ...,n}. For integers d, k such that
0 S d S min{il,iz},

maz{0, (i1 + iz —n) —d} < k < min{iy, iz} — d,

we define a permutation p,(d, k)i, i, in the same way as in [T1]:

(4, for 1<j<k;
j+ii—k, for k+1<j<iy—d;
(i1+’i2—d+1)—j, for i3 —d+1<j <1y

Pn(d, k)i i, (J) = ¢ J —i2 +k, for i2+1<j
<1+ io—d—k;
I for 41+ i9—-d—-k+1

L <jsn

The conditions on d and k imply that p = pn(d, k)i, 4, is well-defined.
For k > 0, we set

1=1,1,..,1 and -1 =-1,-1,..,—1.
SN —
k times k times

a) 41,12 <n, 0<d<min{i, iz}, deven, maz{0,(i; +1i3 —n) —d} <
k < min{i1,i2} — d, then we define

an(d, k)f??ﬁ = pnld, K)iy i (Liz—d, —1a, Ln—iy)-



INDUCTION AND JACQUET MODULES 161

Ifi1,i2 <n, 0<d<min{i, iz}, dodd, maz{0,(i; +i2—n)—d+1} <
k < min{iy,is} — d, then we define
Qn(d, k)‘sffz) = pﬂ(d) k)‘i1 ,ig (1i2~d7 _1d7 ln—iz—l) _1)'
b) If i1,i2 < n, 0<d < min{i,iz},deven, k=14 +ip—n—d >0,
then we define
(d k)fll 112) = pn(d7 k)ix ,iz(liz—d—la —Yat1, ln-ip-1, _1)-
c)Ifi; <n,ix<n, 0<d<min{i,iz},dodd, k=41 +ia—n—-d>0,
then we define
Qn(da k)s:,‘?z) = pﬂ(d7 k)‘i] ,iz(liz—d7 —]-d) ln—iz—ly _1)'
d)Ifi; <n,i2<n, 0<d<min{i, iz}, dodd, k=13 +ia—n—-d>0,
then we define

Gn(ds £) ) = Pa(d, )iy i (Lig—am1, ~ a1, Tnmss)-
gn(d, k)g) Z),qn(d, Ic)fl1 ,lz),qn(d, k)(-l’q) and ¢, (d, Ic)(0 ) are elements of W.

11,12 1 12

LEMMA 5.5. Letiy,is € {1,...,n}. Suppose that integers j1 and jo satisfy
0< i <4y and 0 < jp < iy, If X33 NY2 # 0, then one of the following three
conditions is satisfied:

(@) 41 —j1 =iz — J2;

(i) 41 —j1 =t2 — j2 + 1 even;
(iii) 22 — jo =41 — J1 + 1 even.

In that case, we have:

. L . i ia _
(a) If iy — j1 =iz — jo is even, then Xj; nY;z2 =

{qn(d, K)®Y | d =iy ~ j1,maz{0, (iy + iz — n) — d} < k < minfi,ip} - d}
(b) Ifis— j1 = iz — ja is odd, then X NY}2 =
{q,,(d, KO | d =i - 41,

maz{0, (i +iz —n) —d + 1} gkgmin{il,iz}—d}
U{aa(@ B3 ld=ir—j1 - Lk=i1+is—n—d>0}.
(c) Ifiy —j1 =142 — j2 + 1 is even, then
Xhny —{q,,(d k)0 |d=i2—j2,k=i1+i2—n—d20}.

(d) Ifis — j2 =41 — j1 + 1 is even, then
Xiny? —{qn(d k)& |d:i1-—j1,k:i1+i2—n—d20}.

11,22
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PrOOF. Let pe € W . Then pe € X J’; N Y;: if and only if the following
twelve conditions are satisfied:

—~
—
~—

Cp—l([) = 1, for 1 S l S ]1,

p () <p7H(l2), for 1<l <y < gy;
€p-1(l) = —-1, for j1 +1 < l < il;

p_l(ll) > p_l(lz), for n+1<; <ly <1y,
ep-1y =1, fori; +1<1I<n—-1;

p i) <pl(lp), foriy +1<l <l <m;
g=1,for 1 <I<jo;

p(l1) < p(lz), for 1 < Iy <y < go;

g =—1,for jo +1 <1<y

p(l1) > p(l2), for jo +1 < 1y <y <idy;
g=1foris+1<Ii<n—-1;

p(l1) <p(la), foris +1 <l <lp < n.

Suppose that there exists pe € X ]’; ﬁYj’:. Then conditions (1),(3) and (5)
give that the number of —1’s which appear in € must be 7; — j; if i1 — 71 is
even, or 1; — j1 + 1 if 43 — 71 is odd. Conditions (7),(9) and (11) give that the
number of —1’s which apear in € must be i3 — j3 if i3 — j is even, or i3 — jo +1
if 42 — 7o is odd. We conclude that the difference between i3 — j; and i3 — j2
is at most 1, and, if they are not equal, the bigger one is even. Thus, we get
conditions (%), (47) and (iii) from the lemma.

—~

— N TN
SIEEEOREENNeS

| i e o e e et T
N e N N N e N N e ND N

~—~

a) If iy — j1 = i2 — jo even, then €, = 1, €p-1(n) = 1, 50 pe satisfies
conditions (1)-(12) from Lemma 4.5 [T1], which gives the statement.

b) Let 13 — j1 = i2 — Jo odd. If i3 =nor ?2 =n, then thereisno pe € W
which satisfies conditions (1)-(12), so X;} NY;? = @. Suppose 41,z < n. From
(7),(9) and (11), we conclude that

€= (1,121 _11'2—]'2, ln—iz—la _1)
Conditions (3),(7),(9) and (11) imply
p([j2 + LiizlnU{n}) = [j1 + Lia]n U {n}.
If p(n) = n, then conditions (1)-(12)restricted to the set {1,...,n — 1} are
the same as in Lemma 4.5[T1]. It follows that p = pn(d, k);, i, and 41 + @2 —
d—k+1<n,ie, k>i +ig—n—-d+1.
If p(n) # n, then from (4) and (10) we see that

p(.72 + 1) = n,
p_l(jl + 1) = n,
p([j2 +2,i2)8) = [i1 +2,01]n

Set d = i3 —j2 — 1. By (10), p is order-reversing as a mapping p : [j2+2,i2]n —
/1 + 2,41]n. It follows that

p(J)=i1—(J—Je—2)=(l1+i2—-d+1)—j, for i —-d+1<j<1,.
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From p(js + 1) = n we have p~!(n) = j» + 1. Together with (6), this implies
p~ ([ia + L,n — 1In) C [1, J2]N.
In the same, way we get
p([i2 + 1,n — 1]n) C [1,51)n-
Let K = p~!([is +1,n — 1]n), L =[1,72]n \K. Suppose that L # §. Since
p(KU{js+1}) = [i1 + 1, n]n, we have p(K) > p(L), and from (8) we see that
K>L,(ie,p>q, Vp€ K, Vqe€ L) Thus, there exists k € {1,...,52}
such that
p (i +1,n — 1n) = [k + 1, J2]n.
If L =0, we put k = 0, so the above condition is satisfied. Now, we have

* p (i +Lnn) =[k+ L2+ Uy = [k + 1,4 — d]n,
’I’L—il—l = ’iz—d—k—l,
k = 41+i—-n—-d>0.

In the same way, we get

p([i2 + 1L,n]n) = [k + 1,41 — d]n-

From (12), we obtain
p(f)=k+14+j—da—1=j—42+k, i2+1<j<n

By (), we have

p([k + 1,42 — dln) = [i1 + 1, n]n,
and from (6) we see that

p(=u1+1+j—-k-1=j+i1 -k, E+1<j<ip—d
It remains to determine p on [1, k]n. From the above observations, we get
p((1, k) = [1, k]~,
so by (8), we have
p(j) =4, for 1<j<k

We conclude that p = pr(d, k)i, 4, -

It remains to prove that ¢ = g, (d, k)
iz - jz and

(0,0)
i1,i2

€XNY? whend=1i; —j1 =

max{0, (i1 + i3 —n) — d} < k < min{iy, iz} — d,
and ¢' = gn(d, k)71 € XANY? whend =4 —j1 —1 =12 —j> — 1 and

i1,
k=i +is—n—d>0.
One sees directly from the definition of g and ¢’ that conditions (7)-(12)

are satisfied. In the same way, one sees that conditions (1)-(6) are satisfied.
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c)Leti; —j1 =iz —ja+1 even. If i3 = n, then there is no pe € W which
satisfies conditions (1)-(12), so X3! NY;? = 0.

Suppose that i2 < n. Set d = i3 — j2. From (1),(3),(5),(7) and (9), we see
that

& = =1, €1n =1,
e = (lip—dg,—1a,1n—i-1,—1),
p([j2 + Li2lnU {n}) = [i+1, 0l
From (4), we get
p i+l = m
p(li2 + Li2N) = [1 +2,4]N,

pi)=i1—(G~j2—1)=(1+i2—d+1)—j, i2—d+1<j<is
In the same way as in (b), it follows from p(n) = j; + 1 that
p(fiz +1,n— 1) = [k + 1, j1]N, where k =4; +ia —n—d > 0,
and
p(j)=j—da+k, d+1<j<n.
We conclude that
p([1,%2 —d]n) = [1, kN U [i1 + 1,n]N.
From (8), we have

p([L,kln) = [1,k]w,
p([k + 1$i2 - d]N) = [21 + 1,TL]N,
and
Cp(3) = 1<j <k,
cp(f) = uw+l+ji—-k-1=j+1i; -k, k+1<j<iy—d.

Therefore, p = pn(d, k)i, iz -
The rest of proof is same as in (b).

(d) Analogous to (c). a
Foriyz=n, i2<n, 0<d<is, dodd, k=1i3—d, wedefine
Qn(d, k)SIj’iIQ’_I) = p‘n(d7 k)‘h ,iz(liz—d+17 _ld—lx ln—iz)-
Fori; =n, is<n, 0<d<is, deven, k=1i;—d, wedefine
q‘n(d? k)sfﬁlz,_l) = Pn(da k)i] ,i2 (liz—d-l-l) _ld—17 1n—i2-—17 _1)
Fori; =n, is<n, d=0,k =13, we define

gn(d, K)ELY = o (d, )iy -

nyiz
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Foriy=i3=n, 0<d<mn, deven, k=n—d, we define
qn(d) k)g,_r?’_” = pﬂ(da k)ﬂ,ﬂ(ln—d-i-l: _1d—27 1)
Fori, =is =n, d=0,k=n, we define »

an(d, k)27 = po(d, k)nin

An argument analogous to that for Lemma 5.5 gives
LEMMA 5.6. Let i, € {1,...,n}. Suppose that integers j1 and ja satisfy
0<ji<n—1and1<js<ip If X} NY2#0, then one of the following
two conditions is satisfied:
(i) (n—1) —j1 =iz — j2 even,
(ii) (n—1)—j1 =42 —J2 + 1 even.
In that case, we have:
(@) If (n—1) — j1 =142 — j2 > 0 is even, then
5 i -1,-1 _ .
x5 0¥ = {q@ Bt [d=n—ji,k=ir—d},
and for (n — 1) —j1 =12 — Jo = 0, we have)-(?l ﬁYj‘: =

{am@ W™ [d=1k=1is - d} U {gad, 7" 1d =0,k =i - d}.
(b) If(n—1) —j1 =iz2—jo+ 1 is even, thenn—1—j; > 0 and
on i2 +1,— _ . .
Xz 0vg ={a.@n5n " ld=n—ji - Lk=i2—d}.
PROPOSITION 5.7. Let i1,i2 € {1,...,n}. Then, [Wa, \W/Wq, | =

11, 12

{qn(d k)(o 0) | maz{0,(i1 +i2 —n—d)} <k

= U . S_min{il,iz} - d}
o<d<
"\ u{qndkfjjz)|k:i1+z’2—n—dzo}

21,12

{qn(d, £ | maz{0, (iy +is —n —d) + 1} W

<k <min{iy, iz} — d}

ul U

(1,0) . . :
<d N = —n—-d>
if:qils’iz} U {qn(d, k:)l1 ia lk=i1+i3—n—d O}
d—odd
\ U{qndkf?;)|k=i1+i2—n—d>0})

Particularly:
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(a) If iy =n, i3 <n, then

[Wa \W/Wq,| = [UO(d(zg {qn(d k 5101'2) |k =iq — d}J

d—even

U I:U0<d<12 {qn(d k)flliz) |k =iy — d} :I
d—odd

(b) If iy <m, iy =mn, then

[Wa., \W/Wa,] [Uogdg, { n(d, B)OD | k=14 — d}]

d—even

-

[UOSdSil {Qn(d, k)f?,ll) | k=11 — d}] .

d—odd

(c) If iy = i3 = n, then

Wa \W/Wa,1= | {g.(d B [k=n-d}.

0<d<n
d—even

PRrROOF. We know that [We\W/Waq] = [We\W|N[W/Wq], for 6,0 C A.
From Lemmas 5.3 and 5.4, we have

[WQ'.1 \W/WQ‘-z] = [WQ,.1 \W] N [W/WQ‘.J

( U X;%)n( U Y;:)
0<41<4; 0<j2<i2

U U &iny?).

0<]1<11 0<]2<12

Now, Lemma 5.5 tells us when X;; n YJ‘: is nonempty and gives the proposi-
tion.

(a) If i1 = n, 12 < n, then g,(d, k)s,;i) and g, (d, k) (0 1) are not defined and
gn(d, k)sggz) is not defined for d odd. For d even, the 1nequa11ty maz{0, (i1 +
i3—n)—d} < k < min{i;, i} —d becomes maz{0,i2—d} < k < min{ii,i2}—d,
and its only solution is k = i3 — d.

(b),(c) Analogously. O

In the same way, we get
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PROPOSITION 5.8. Let iz € {1,...,n}. Then,

@ Wa \W/Wa,]= | U {@@nis™ k=i-d}
s
d—o

U U { (dk)nl') 1)|k_l2_d}
0<d<is
d—even

(i)  [Wa, \W/Wa,] = U {a@ni2? 1k=n-d}.
0<d<n
d—even

In particular, for ia = n, (i) reduces to

[(Wa, \W/Wa,] = U {qn(d, Ko™V k=n- d} :
A

LEMMA 5.9. Fiz iy, is € {1,2,...,n}. Suppose that integers d, d' and k,
k' satisfy the following conditions:
0 S d, d S min{il, ig},
maz{0, (i1 + 12 — n) — d} < k < min{iy, iz} —d,
maz{0, (i1 + iy —n) — d'} <k < minfiy, i} - d".
Then,
() (
(i)

n(d k)ll 12) ll— pn(d k)ig i1 .

@ BTN) = a@d RS, (ad L) =@ R0,
-1

a(d R = aald RS,

i~ ]

11,12 12,21
etw = gn(d, k)7, w' = gu(d K’ )%, where (%), (xx) € {(0,0), (1,1),
1,0), (0, 1)}. If w =w', then (x) = (xx), d=4d', k =k

TN TN

h

(iii)

—

PRroOF. The proofs of (i) and (ii) are straightforward calculations (also,
cf. Lema 4.7 [T1]).

(iif) Write w = pe and w' = p'e’, where p = pp(d, k)i, 4, and p' =
pn(d' k"4, i, Suppose that (%) = (xx), and that d and d' are both odd or both
even. If we compare the numbers of —1’s which appear in ¢ and €, we get
d = d'. Therefore, pn(d, k) ,i;» = Dn(d, k'), ;- The definition of p,(d, k), 4,
implies that k is the maximal integer which satisfies 0 < k < min{i1,i2} —d
and pn(d, k)i, i, (1) =1 for all 1< < k. This implies k = k.

We are now going to prove that in other cases we cannot have w = w’.
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a) Let (x) = (0,0), d even. Suppose that (*+) = (0,0), d' odd. Then
w = w' implies n — i3 = 0,n — 13 — 1 = 0, which is impossible. We can use
the same reasoning in the cases (**) = (1,1) and (xx) = (1,0). In the case
(#%) = (0,1), we consider w™! and (w')~!. They are of type (0,0) and (1,0),
so w™! # (w')~!, which implies w # w'.

b) Let (%) = (0,0), d odd. Then i;,i3 < n. Suppose that (xx) = (1,1).
Then w = w' implies d=d +1, k=k'"=1; + i, —n —d. Now we have

11 +ia—d—k = 1 +i2—d——(i1 +i2—n—d+1)=n—1,
i1+’i2—d’—k = n,
and by definition
pn(d’ k)il,iz (n) =n, p‘n(dla k)il,’iz ('ﬂ) =n- iZ + k= il - dl <n,
which contradicts the assumption w = w'.

If we suppose (%) = (1,0), then we get d = d’, k = k'. But the condition
forwis k > i3 +i2 —n —d, and for w' k = i; + i3 — n — d. This is again a
contradiction.

In the case (xx) = (0,1), the equality w = w' implies n — i = 0 and
n — iy — 1 = 0, which is impossible.

¢) Let (*) = (1,1), d even. Suppose that (xx) = (1,0). Then w = w'
implies d = d+1, k = k'. But we have ¥k = 4 + i3 —n—d and k' =
i1+1i2—n—d =i +iy —n—d— 1, which is impossible. The assumption
(¥x) = (0,1) gives n — i3 — 1 = 0 and n — i3 = 0, a contradiction.

d) Let () = (1,0), (**) = (0,1). Then w = w' implies n — i, — 1 = 0,
n — 12 = 0, which is impossible. 0

Define g, (d, k)i, o = pn(d, k)iy i, (Li;—d; —1a, 1n—i,). This is an automor-
phism of ¥. If d is even, then g¢,(d, k);, i, is an element of W. Recall that for
1 € {1,...,n}, we defined

[ A\{ai}, i#Fn-1, ~ _
%={ Mo, i2n 1)+ B=AMarid Bo=a

LEMMA 5.10. Let w = gn(d, k)i, i, Then,
Qi Nw(y) = Ok N Q- N, O iy —dre
PRrROOF. The conditions on d and k imply
0 < k<ij—d<is<iy+is—d—Fk<n,
0 € k<ig—d<iz<ig+ig—d—-k<n.

Set

,Bi = Q, i:l,...,n——l,

Bn = en.
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Then I' = {f1,...,B8n} is the set of simple roots of the root system of type
B,,, into which our root system embeds. We shall use the following formula,
proved in [T1]:

™ T \ {:311}) Nw(l \ {:Biz})z
L\ {8 | le{k,iy — d,i1,i1 +i2 —d— k} \ {0}}.
Since we have

L\ {Bn}=A\ {an},
TNBD\ {Br}=25\ {an}, (for j #0),

it follows that

(**) (Qi1 N w(ﬂiz)) \ {amw(an)}:
(% N Qi —aNi, N Qiyiz—a-k) \ {an, wlam) }-

We consider several cases.

(a) Let 41,72 < n — 1. First, suppose that 4y +i —d —k < n — L.
Then k,i3 —d < n — 1. From the definition of w = g¢,(d, k)i, i,, We get
wlen—1) = en—1, wlen) = ep, $0 w(an_1) = an_1, wlo,) = a,. We apply
this to formula (*) and we get

(AN {oi, }) Nw(A\ {as, })=
A \ {al | lE{k,’il —d,iy,1 +ia—d— k} \ {0}}

Since 41,42, k,11 — d, 41, +i2 —d — k < n — 1, this is exactly the formula from
the lemma.
Next, we consider the case when i; + i —d — k =n — 1. Then,

wHan_1) = W (en—1 — €n) = Dnld, k)ii, (En—1 — €n) = €iy—d — €n

This is an element of A if i3 —d = n — 1, which is impossible since i < n—1.
So, wHan—1) ¢ A and an-1 ¢ w( ) In the same way, we see that a, ¢
w(Q;,). Hence,

Qil N ’I.U(Qiz) g A \ {an_l,an} = Qn——1~
Similarly, w(a,) ¢ A. Now from (**), we have
(i, Nw(:;)) \ {on} = (e N Qi —a N Qi N Qi i—a—k) \ {an ).

Since Q;, N w(Qiz) C Q.1 and iy +i3 —d— k = n — 1, if we intersect the
above equality with Q,_,, we get the formula we need.
It remains to consider the case when ¢; + i3 — d — k = n. We have

w™(@n) = ei—a-1 + €,
and this is not in A because i» < n — 1. Hence, a, ¢ w(f2;,). Also, we have

w(an) = ei1—d—l + ei1—d7
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and again this is not in A. Now, the relation (**) becomes
Qi Nw(@iy) = (N Qi—a N Qi Ny 4i—a—k) \ {an}
= QN _anN Qi N riy—dsk,
since Qi 4ip—a—k = On = A\ {an}.
(b) Let iy > n—1.1f4; +i2 —d—k = n—1 (this is possible for i; = n—1),

then we have

w(an) = w(en1 +e,) = €n—1—iy+k + €En-
If11 +12 —d— k =n, then

w(an) = w(en-1 +€n) = €n—i—irtk + En—irtk-
Anyway, w(a,) € A implies w(a,) = a,, and the relation (¥*) becomes
(Qi1 N w(le)) \ {an} = (‘Qk n Qil—d n Qi1 N Qi1+iz—d—k) \ {a"}

Since ay, ¢ €, , the relation we want follows immediately.

(c) Now, consider the case when iy < n—1,4i; = n—1. First, suppose that
i1+ia—d—k=n—1.1fd =0, then w(a,) = w(e,_1+en) = €n_1+€n = an,
50 an ¢ w(Qy,) and w(a,) = an ¢ Q4. If d > 0, then

w i an) = wl(en-1+en)
= pn(d,K)is,i;(en—1+€n) =€ip_a+en & A,
w(an) = w(cfn—l + en) = pn(d7 k)il,iz(_en——l + en)

= —ej-a+1ten ¢ A

Anyway, the relation (**) becomes

Qi Nw(s,) = (N —a N N Qi gis—a—k) \ {0},
and since ¢; +i—d—k = n—1, we are done. Now, suppose that i;+is—d—k =
n. Then

w (an) = Pald, k)iyi; (€n—1 + €n) = €iy—a—1 + €ir—a,
and this is not in A since is —d <n—1.If d =0, then

w(an) = wlen—1 + €n) = Pn(d, k)i i (€n—1 +€n) =en +ey ¢ A,

and the relation (**) gives the result.
If d > 0, then

w(an) = w(en—1 +en) = pnld, k)i iy (—en—1 + €n)
= —€j;—d+1 + € —d = Qi 4.
Now from (**), we have
(i, Nw(:,)) \ {ai,—a} = (% N Qi —a Ny Ny 4iy—a—k) \ {@n, @iy —a}-

But a;, —q ¢ w(,;) since a;, —q¢ = w(ay,). Also, ap € Q4 1i,—a-r and a;,—q ¢
Q;, —g- The result follows.
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(d) It remains to consider the case iy < n—1,i2 = n. Theni;+io—d—k =
n and we have

wHan) = pa(d, k)iy.iy (€n—1 + €n) = €n—1—i1+k + €n—iytk = €n—1-d + En—a-

We see that w(ay) ¢ A, for d > 0, and w™{a,) = a,, for d = 0. Since
i =n, in both cases we have a, ¢ w({;,). Now for d > 1, we have

w(an) = pn(d; k)iy.iy (—en-1 — €n),
and ford =1
w(an) = pald, k)i iz (en—1 — €n) = €n — €4y,
and in both cases w(a,) ¢ A. Hence, relation (**) becomes
Qi Nw(Q4,) = (N Q_a Ny Ny 4i—a—r) \ {an},
and the result follows from the condition i; +is —d — k = n. g

LEMMA 5.11. (i) If w = qu(d, £)!*Y or w = gu(d, k)", then

1,12 11 22

Qi Ow(Qi,) = [ where T = {k,iy — d,i1, i1 + 142 — d ~ k}\{0},
JEI '

or, equivalently,
Qi1 N w(Q, ) - Qk N Qil—d N Qil N Qi1+i2—d—k-

(ii) If w = gn(d. k)ill i or w = qn(d, k)L? 112), then

Qi Nw(Qiy) = U N Qg NQ, N Oy,

or, equivalently,

Qi Nw(@y,)=s| (| T={ki—dii+ir—d-k=n},
jell

where s = (1,1, —1) denotes the automorphism of ¥ which interchanges
Qpn_1 and a,.

ProoF. (a) Let w = q,(d, k)(o ) If d is even, then w = gn(d, k)i, in» and
the statement follows from Lemma 5.10. If d is odd, then 71,92 < n. Now
w = w's, where w' = ¢,(d, k)i, i, Note that s(Q;,) = Q, for i3 < n, so we
have

Qil n w(QiQ) = Qi1 n w's(Qiz) = Qil n w'(Qiz).

The result follows from Lemma. 5.10.
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(b) Let w = gn(d, k)fll’llz) Then, ¢;,i2 < n,41+is—d—k =nand w = sw's,
where w' = g,(d, k), i, Now, we have
Qp Nw(Qy,) = Q) Nsw's(Qy,) = s, Nw's(Qy,)) =
s(9, Nw'(£Yy,)) = (Lemma 5.10)
s NQiyanN Qi NQ,) =

QNQy_anNQy N Qn.

{c) Let w = gn(d, k)Ellfz) Then, iz < n and w = w's, where w'
= gn(d, k)i, ip- It follows that
Qi1 n ’UJ(QiQ) = Qil N ’LUIS(Qiz) = Qi1 ﬂ’UJ,(Qiz)
and Lemma 5.10 gives the result.
(d) Let w = gn(d, k)s?llz) Then, i, < n and w = sw', where w' =
gn(d, k)i, ip- Now, we have
Qil n w(Qiz) = Qh n sw’(Qiz) = S(Qil ﬂw'(Qiz)) =
= (Lernma 5.10) =s(2 N Qi—aN QN Qn) =
= QN _any N Qn.

_In the same way, we get

LEMMA 5.12. Let w = ¢,(d, k)(—l’_l) or w = gn(d, k)(ﬂ’ml). Then,

n,’iz n,iz

Qn n ’LU(Qi2) = S(Qk NQ_an Qn)

6. ORTHOGONAL GROUP O(2n, F)
The orthogonal group O(2n, F), n > 1, is the group
O@2n,F)={X € GL(2n,F)| "XX = I,,}.

0O(2n, F) has two connected components. The first is SO(2n,F) = {X €
O(2n,F) | detX = 1}, and the second is {X € O(2n, F) | detX = —1}. We
have

O(2n,F) = SO{2n,F)Us-SO(2n, F),

where

== O
O b

I

Let A denote the set of simple roots of SO(2n,F), W the Weyl group. Let
a = (ny,...,ng) be an ordered partition of m < n. Denote by P, = M,U, the
standard parabolic subgroup of SO(2n, F') with Levi factor My = GL(n,, F)x
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-+ X GL(ng, F) x SO(2(n —m), F). We shall consider the following subgroups
of O(2n, F): ‘

Qo = P,uUsP,, form <n,
71 P,, for m = n.

It follows that Q, = N,U,, where

N = M,UsM,, form <n,
7 M,, for m = n.

We have

ND! = {diag(gla"wgk,ha Tg]:17~-'7 Tgl_l) I gi € GL(niaF)a
he 0(2(7'L - m),F)},

SO

No 2 GL(ny,F) x -+~ x GL(ng, F) x O(2(n — m), F).

Let @ = (4). The subgroups N = N, and V = U, are closed, N normalises
V and NNV = {e}, so by the first section, we have functors iyv; and rv ;.
Define ig ¥ = iv,1 and rn,g = Tv,1. Hence,

ig, N+ AlgN = AlgG, vy : AlgG — AlgN.

Leta = (i1), 8= (i2), P = Qa = MU, Q = Q3 = NV.Let ¢ be an admissible
representation of O(2n, F). We consider
TN,G© iG,M(U)-

By Theorem 2.1, we can find a composition series of ry g 0 ig,m(0). We need
to calculate representatives of

P\ O@n,F) ] Q.
LEMMA 6.1. Let 11,15 € {1,...,77,}, a = (il)’ b = (1:2), P =Q, =
MU, Q= Qs = NV. '

(i) {qn(d, k)il,iz j0<d< min{il,ig},maz{o, (i1 + i — n) - d} <k
< min{iy, iz} — d} is a set of representatives of P\O(2n,F) / Q.

(ii) Let w = gn(d, k)i, ip- The groups w™1(P), w1 (M) and w1 (U) are
decomposable with respect to (N,V'), and the groups w(Q), w(N) and
w(V) are decomposable with respect to (M,U).

Proor. (a) Suppose that i;,i2 < n. Then,

P =Qy=PyaUsP,, Q:Qg:PﬁUSPg.
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Let z € SO(2n, F). Then,
PzsQ = (P, UsP,) z (sP3U Pg) = PzQ,

so [z] = [zs]. Analogously, [z] = [sz]. Thus, we can choose representatives
from SO(2n, F). Let z,y € SO(2n, F) with [z] = [y]. Now, we have

Pz@Q = PyQ,
(PyUsP,) z (sPsUPg) = (PyUsP,)y (sP3UPg),

(PazP3) U (sPyzP3) U (f’a:cng) u (Pyszs™1P3) =

(PayP3) U (sPayP3) U (PaysP3) U (Pasys™ ' Pg).
It follows that
(PazP3) U (Paszs ' P3) = (PayPs) U (Pasys ' Ps),

SO

PozPs = PoyPs or
Paa:Pg = Pasys_ng.

We know that [IWo, \IW/ T"VQ,.J is a set of representatives of P, \ SO(2n, F)
/ P3. By the above considerations, a set of representatives of P\ O(2n, F) / Q
can be chosen from the set [Wo, \IW/Wq, ] in the following way: we take
all elements which satisfy PawP; = P,sws™'Pj3, and from the remaining
set we choose w or a representative of Pysws™!P3. For w = g,(d, k)s1 ia
[Wa, \W/Wq,,] and i1 +ia—d—k < n, we have w = sws™". For i1 +iy—d— k =
n, we have

sqn(d, A)lf ?2) = gu(d, L)fllllz if d is even,
san(d, k)™ = ga(d, K™Y, if d is odd.

We conclude that

{gn(d, k) g?? [0 £d <min{iy,ia}, ford even
max{0, (i1 + 2 —n) —d} <k <minfi, 2} — d,
maz{0, (i1 +i2 —n) —d} < k < min{i1, i} — d for d odd}
U{gn(d, )Y | 0 < d < min{iy, iz}, dodd, k=i +is —n—d >0}

11 12
is a set of representatives of P \ O(2n, F) / Q. We have
5? i for d even,
n(d K)iri; = { an(d, k)05, for d odd and i +i2 —d — k < n,
(s, fordodd and i, +i» —d — k = n.
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Then, from the relation [z] = [sz], it follows that the set
{gn(d. k)iy 50 | 0 < d < minfir,is}, maz{0.(i1 +io—n)—d} <k <
< minfiy,ia} — d}
is a set of representatives of P \ O(2n,F) / Q.
Let w = ¢,(d, k);, ;- We shall show that the group w(Q) is decomposable
with respect to (M, U). _
Ifi1 +io —d—k < n, then w and s commute, so
w(s) = wsw™! = s.
Then,
w(Q)N(MU) = wQuw™ N (MU)
= w(PsUsPz) N (MyU, UsMU,)
= [w(P3) N MaU,] U s [w(Ps) N MaUs) =
(because w(P3) is decomposable with respect to (M,, Us))
= [(w(Ps) N Ma) (w(P3) N Ua)]
U s [(w(Ps) N Ma)(w(Ps) N Us)]
= [(w(P3) N My) Us(w(Psz) N M) [w(Ps) NUs]|.
On the other side,
@) NM)w(@)NU) =
[(w(Psg) U's - w(Pg)) N (Mo UsMa)l [(w(Ps)Us - w(Ps)) NUa] =
[(w(Ps) N Ma)Us - (w(Ps) N Ma)] [w(Ps) NUa],

so w(Q) is decomposable with respect to (A, U).
Ifll +i2—d—k:n, then

w(@Q)NP =w(PsUsP3) N (PaUsP,) = (w(Ps)NP,) U (w(sP3)NsPy).
It can be shown that
w(sP3)NsPy =0,
which implies w(sP3z) N sMy = 0. It follows that
w(@NP = w(P3)NFy,
w@)NM = w(Ps)NM,.
If w e [Wa, \W/Wq,, |, we have
w@NMU = w(Ps)N Py=w(Ps)N MUy =
(since w(Pg) is decomposable with respect to (M,, Uy))
= (w(Ps) N M) w(Pz)NUy) = (w(Q) N AM){w(@Q)NU).
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Ifw ¢ [Wa, \W/Wa,, | then v’ = ws € [Wq, \W/Wq, ] and

w'(Pg) = w'Ps(w') ™! = wsPasw™! = wPw™ .

Now, we have
w(@)NMU = w(Ps)NP,=w(Ps)N MU, =
= (w'(Pp) N Ma)(w'(Pp) NUa) = (w(Q) N M)(w(Q) N ).

Hence, w(Q) is decomposable with respect to (M, U).
For the other groups, the proof is similar.

{(b) Let iy =n, iy <n.Forz e SO(2n,F), we have
PzsQ) = P, z (sPg U Pg) = PzQ,

so [z] = [zs] (but the classes [z] and [sz] are not the same in general). Hence,
we can choose representatives from SO(2n, F') again. Let z,y € SO(2n, F)
and [z] = [y]. Now,
P,z (SPgUPg) = P,y (ng U Pg),
(PozPp) U (PyzsPp) (PayPp) U (PaysPs).

I

It follows that
Pa.'l:Pg = Paypg,

S0 [WQ‘.I\W/WQiz] is a set of representatives of P \ O(2n,F) / Q. Recall
that

Wa, \W/Wa,] = | U {a@00 k=i, -d}
2§d5i2

Ul U {a@hi2 k=i -d}
0<d<ip .
d—odd

Since

gn(d, k)(o,o) for d even,

n,ip ?

an(d, k)95, for d odd,

7. (d, K)n,i = {
71,2'2

the equality [z] = [zs] implies that

{qn(d7 k)n,iz | 0<d< min’{il’i2}1
maz{0, (i1 + i, — n) —d} < k < min{i1, iz} — d}

is a set of representatives of P \ O(2n,F) / Q.
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Let w = ¢n(d, k)n,i,- Then, w € [Wo, \W/Wq,, ] or
ws € [Wo, \W/Wq,_ ] . Since iy < n, we have (ws)(Ps) = w(Ps). Now,
w(@Q) NMU = w(PsUsPs)N MaUa = w(Ps) N MaUy =
= (w(Pp) N Ma)(w(Ps) NUa) = (w(Q) N M)(w(Q) NU).

Tho proof for w(MN) and w (V) io oimilor. If w C [TI’“‘-I \VV/VT"Qiz] , blient I1u 1s
caocy to chow tlic statcimeut fur w—" (). If ws < [VVQiI '\VV/'VVQiQJ , tlien

w (PYNNV = w ™ (Pa) N (Ps UsPs) = w™l(Py) N (Ps)
=5 (sw™ (Pa) N (Pg)) - 5
(since (sw™!)(P,) is decomposable with respect to (Mg, Ug))
= s ((sw™)(Pa) N Mp)((sw™")(Pa) NUp) - s
= (W™ (Pa) N Mp)(w™" (Pa) N Up)
= (W™ (Pa) NN)(w ™ (Pa) N V).
Analogously for w=1(M), w=(U).

(c) For i; < m, i3 = n, the argument is analogous to (b).
(d) Let 41 = i3 = n. For z,y € SO(2n, F), we have

[.’E] = [y] & Pa.’l:Pg = PayPg,
so elements of [Wo, \W/Wq,, | represent different classes. Moreover,

SO(2n, F),
O(2n, F)\SO(2n, F),

Pa.’IIPg g
PyszPg C

SO

[z] # [sz],  [sz] # [y]-
Let z,y € SO(2n, F), [sz] = [sy]. Then,
PoszPg = PFusyPs,
sPyszPg = sPysyPp.

We conclude that the elements sw, where w € [Wqy \W/Wa, ], represent
all the classes of type [sz], z € SO(2n, F). Now, we get the following set of
representatives:

{Uosfzg {aa@ B0 |k =n - d}]
d

—even

U l:UOSdSn {Sqn(d, k)%}%’_l) lk=n-— d}] .
d—odd
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Since

QH(d7 k)SIOI?) for d even,
qn(d, k)n,n = (—1.—1)
S5Qn (d7 k)n,n B for d Odd,
it follows that
{qn(dv k)n,n | 0 S d S Tnin{ila'iZ};
maz{0, (i1 +i2 — n) —d} <k <minfi1, iz} — d}
is a set of representatives of P\ O(2n,F) / Q.

For w € [Wq, \IV/Wa,], we know by [BZ2] that w1 (P), w™!(M) and
w~!(U) are decomposable with respect to (N,17), and that w(Q), w(N) and
w(V') are decomposable with respect to (M, U).

Let w € [Wo \W/Wq,]. Then,

(sw) HP)NNV = (sw) (P,) N MsUg
=w tsPyswn MaUs =

(since w™1(sP,s) is decomposable with respect to (3, Us))

= (w™tsPysw N Ms)(w™ ' sPysw N Up)
= [(sw) ' (P) N N] [(sw) Y (P)NV].
The arguments for (sw)~! (M) and (sw)~!(U) are similar. For (sw)(Q), we
have
(sw)(Q) N MU = (sw)(P3) N MUy = s - (w(P3) NsMayssUys) - s =
(since w(Pg) is decomposable with respect to (s3{ys, sUqss))
= s (w(P3)NsMys)(w(P3) NslUss8) s
= [(sw)(Ps) N Ma][(sw)(P3) N Ua]
[(sw)(@) N M][(sw)(@) NU].

The arguments for (sw)(N) and (sw)(V) are similar. O

It can be easily verified that, in our case, the character £ from Theorem
2.1 is equal to 1. Now, by Theorem 2.1 and Lemma 6.1, we have

LEMMA 6.2. Let i1,i2 € {1,...n}, a = (i1), 8 = (i2), P = Qo =
MU, @ = Q3 = NV. Let ¢ be an admissible representation of M. Then
TN, ©ig,m(0) has a composition series with factors

innow b orap (o),
where N' = w Y (M)NN, M' = M Nw(N) and w € {gn(d, k)i 1, | 0 < d <
min{ii,ia},maz{0, (i1 +i2 —n) —d} < k < min{iy, iz} — d}.

The following lemma describes A’ and N’ from Lemma 6.2.
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LEMMA 6.3. Let w = gn(d, k)i, 4y, @ = (i1), 3 = (i2). Then,
NoNuw(Ng) =N,
where v = (k, i1 — d,i1,41 +is —d — k).
ProoF. Recall from [C] (Proposition 1.3.3) that for 8, @ C A and w €

[Wo\W/TWq] we have My Nw(Mq) = Mpru(a)-
a) Let 1,12 < n. If d is even, then w € [Wq, \W/WWq,, ] and we have
No Nw(Ng) = (Ma U sda) Nw(Ms U sMy)
= (M, nw(Mgs)) U (sMqy Nw{sd3)).
Ifi; +i2 —d — k < n, then s and w commute, so
NoNw(Ng) = (Mo Nw(Ma)) Us - (My Nw(d3)) = M, UsM, = N,.
If iy +i2—d—k = n, then by the proof of Lemma 6.1 we have sM,Nw(sMg) =
8, so
Ny Nw(Ng) = M,.
Since v = (k,iy — d, 11,11 + is — d — k = n), it follows that AL, = N,. If d
is odd, then w = w's, where w' € [U"Ql.l\ﬂ’/I«Tf'Qig] , w = gq,(d, k)g?i’, for
i1+1i—d—k<n,and w' = qn(d,k)gf:?g, for iy +is —d — k = n. Since 12 < n,
we have w(M3) = w's(M3) = w'(M3), so the argument is the same.
b) Let iy =n, iy < n. If d is even, then w € [Wq, \TW/Wq,, ], so
No Nw(Ng) = Mq Nw(MzUsMg) = M, Nw(Mz) = M,.
Since v = (k,n — d,n), we have A, = N,. If d is odd, then the proof is
same, since w = w's, where w' € [T'VQI.I \W/I'I/'Q‘.Q] and w{Mg) = w's(M3) =
w'(Mg).
c) Let i1 < n, 19 =n. If dis even, then w € [W'Qil \W/Wq, ], and

Na Nw(Ng) = (Mg U sMy) Nw(Ms) = My Nw(Mg) = M, = N,

because i; +is —d—k = n. If d is odd, then w = sw’, w' = ¢,(d, k)g?llg Now,
we have
NaNw(Ng) = MynNw(Mz) = Mg, N(sw')(Mgq,)
S(S(J\fgil )N ’UJ’(]\[Q‘.2 ) = S(ﬂ:[Qil N ’U}I(]\'_’[Qig N
= S(MQ,-lmw'(Q.-z)) = S(f\imeQ,-l_mQ.-lmQ,,)
= ‘/‘/‘[Qkﬁgil—dﬂnilﬂﬂn = l\’.’[.y = 17\7—7.
d) Let i, =13 = n. If d is even, then w € [ngl \W/WQ,.Q] , and
No Nw(Ng) = Ma Nw(Mg) =M, =N,
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If d is odd, then w = sw’, w' = ¢,(d, k)g;}z’_l). Now, we have
NoaNw(Ng) = MyNw(Mg)=s(s(My) Nw'(Mg)) =
s(Mq, Nw'(Ma,)) = s(Mq,na,_.na.) =

Ma,ng,_ane, = Ny

Il

a
We now do the same construction for even orthogonal groups that we
did for SO(2n, F). Let ¢ be an admissible representation of O(2n, F), 7 an

admissible representation of GL(m, F). Then, = ® ¢ is a representation of
Nimy = GL(m, F) x O(2n, F). Set

TXO = iN(m),G(w R o),
where G = O(2(m +n), F'). Note that here we use the notation we introduced

at the beginning of this section, so in,,,.¢ would be iy, if we used the
notation from|[BZ2].

PROPOSITION 6.4. Let w,m; and m be admissible representations of the
groups GL(n, F), GL(n1, F) and GL(n2, F), respectively. Let o be an admis-
sible representation of O(2m,F). Then, m1 % (72 X o) = (7 X m3) X 0 and
(mxo)”=2TXa. C

PRrooF. The proof is same as in the case of SO(2m, F'), but here we use -
Proposition 1.9. from [BZ2]. 0

Let

R(0) = (D Ra(0),
n>0

where R,(0O) denotes the Grothendieck group of the category of all finite
length smooth representations of O(2n, F). We shall define the structure of
an R-module on R(O). First, for irreducible smooth representations 7 € R
and ¢ € R(0), we put

TXo=3ss8.(Tx0).

Now, we extend X Z-bilinearly to R x R(O). The action x induces a Z-
linear mapping u : R ® R(0O) — R(O), which satisfies u(r ® o) = s.s.(m X o)
for m € R, o € R(O).

An argument analogous to that for R(S) gives

PROPOSITION 6.5. (R(O),u) is a Z.-graded module over R.

We can also achieve an R-comodule structure on R(O). For that purpose,
we shall use the Jacquet module. Let o be a smooth finite length representa-
tion of O(2n, F'). At the beginning of this section, we defined subgroups Q.
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of O(2n, F), where @ = (n1,...,nx) is an ordered partition of a non-negative
integer m < n. We have @, = N,U,, where

Ny 2 GL(n1,F) x --- x GL(ng, F) x O(2(n — m), F).
Define

Sa,(o)(ff) = TN,,0(2n,F) (o).

(Again, this is the notation from the beginning of this section.) s, (0)(c) is a
representation of N,, so we may consider $.5.(54,(0)(0)) € Rp, ® - ® Ry, ®
R,_m(0). For an irreducible smooth representation o € R(Q), we define

p(0) =Y 5.5.(5(k),(0)(0))-

k=0
We have p*(0) € R® R(0O). Now, we extend p* Z-linearly to p* : R(O) —
R® R(O).

PROPOSITION 6.6. {R(O), u*) is a Zy -graded comodule over R.

7. JACQUET MODULES OF INDUCED REPRESENTATIONS FOR O(2n, F)

Lemma 6.2 is the geometric lemma for O(2n, F). If we compare it with
the calculations Tadi¢ made in [T1] for Sp(n, F), we see that the geometric
lemma is exactly the same for those two groups. Now, we can use the further
calculations from [T1] to obtain the formula for p*(7 % o).

Let us fix a positive integer n and take i; € {1,..,n}. Let 7w be an
admissible representation of GL(i;, F) and ¢ an admissible representation of
0(2(n —1i1), F).

For i € {1,...,n}, let d and k be an integers which satisfy 0 < d <
min{iy,is}, maz{0, (i1 + iz —n) —d} < k < min{i1,iz}. For w = gn(d, k)i, i,
we have

7,.—1

w(diag(g1, 92,93, 94,1, "97%s "9z, T3, Tgr w Tt =

= diag(g1,94, "97 92k, 795,95, 925 T9i ),
where g1 € GL(k, F), g, € GL(i» — d — k, F), g3 € GL(d, F), gs € GL(i1 —
d—k,Fyand he O(2(n —i; —i2+d+ k), F).

LEMMA 7.1. Let
3~3-("'(k,i1—d—k,d)(i1)(77)) = Zﬂgl) ® 7r§2) ® 7T£3),

3-3-(5(i2-d——k)(0)(0)) = 271'](4)@0’]'.
J

Let P = Qi) = MU, Q = Qi,) = NV and w = ¢,(d, k)i, i,. Then,
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5.5.(In w-1(A)AN © wto TAmw(N) m(T®0)) =

—= ZZ ‘ ~(3)® (2)><10‘j

= ZZT X" (4) /11-2)>40’j
ZZ%E” ><7Ti ><7r](~4)®7r1(2) X 0.
t o J

Proor. By Lemma 6.3, we have

I

Ny Nw(Nig)) = Nikiy —dsi iy iz —d—k) -
It follows that

5.5.(T Mw(N). A1 (v ® a)) (27 ® ‘1_’-’ (3)> @ Z”M ® o
J

The above calculation gives w ™ (7 8 M@ M IT®0) = T Q@M QT3 @M Q0.
Since

w_l(‘N(il)) n ]v(iz) = *N(k,i2~d,i2,i1+ig—d»k)7

we have s.5.(Ix -1 (ar)nN © w! oTarnw(Ny A (T @ o)) =
= ZZW’(U X 7r;4) x 7?1(3) ® 7r£2) X 0.
g

Now, we use the commutativity of R to obtain the other equalities. |
Define a Z-bilinear mapping % : (R® R®@ R) x (R® R(0)) - R® R(0)
by defining
(M @M @m)X(Ty ©0) =7 XTa XT4 QT3 X0
for irreducible smooth representations m; of GL(n;, ), 1 =1,2,3,4, and an

irreducible smooth representation o of O(2m, F). Denote by s the homomor-
phism s : R® R — R ® R which satisfies s(r; @ r3) = ro ® 11, 71,72 € R.

The proof of the following theorem uses calculations from [T1].

THEOREM 7.2. Let & be an admissible finite length representation of
GL(i1,F) and o an admissible finite length representation of O(2(n—141), F).
Set

m*=(1@m*)osom*.
Then,
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PrOOF. From [T1], we have

31 Jqo ur(4.9) (i1—q) (r) (@ (g—7)
Sl s (BT s s @) ).
O ogge, VT
0<r<q
i3 —g+r=Il

n—i; Vp
W)= <Z 7 @oﬁn—“—m> ,
p=0 \v=1 )

n Jq ur(ig) vp

mi(m)*ut(e) = Y Z Z (ﬁz('il_Q))N

i2=0 j=1 u=1 v=1
o<1<n 0<¢1<11
0<p<n—i; 0Sr<g
I+p=iy t1—gtr=l

(Y 1 g (50T o gin—ir-n) )
(AN T x P e (69) 7 )

u u

It is shown in [T1] that

(1)
m*(m) % () =
n min{iy,i2} min{i;,i2}—d Jir—d ur(fti—d) Vig—d—k -
(d)
DY > 8,
i2=0 d=0 k=max{0,(i; +iz—n)—d} j=1 u=1 v=1

}
; (k) . (i1~d—k) .
% (’Y;Il—d))u X T]S‘Lg—d—k)_ ® (5-51.} d ) 1= o_l(ln——zl—lz-{-d'f-k))

On the other hand, we have

(m % o) Zss 5(i),(0) (T @ @)).

1.20

Let iz € {1,... ,n}. Then
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5.5.(8(i5),(0)(m @ o)) = (by Lemma 6.2) =

min{iy,iz2} min{ii,iz}—d

. -1
E E s.s.(zN(l,z),w_l(‘;\r(‘_l))mj\y(‘,z) o w o .

d=0 k=max{0,{i;+iz—n)—d}
w=gn (d,k)iq,iq
© TNty yMe(Niig)) Neiy (T ® 0))

As in [T1], for d and k fixed, we have

Jiy—d ur(j,i1—d) N
S.(T(k,h—d—k,d),(il)(’ﬂ') = Z Z (7](_11_ ))

j=1 u=1 u

oy (fa—d—k)
(), en”
u

Vig—d—k
5.5.(S(iz—d—k),(0)(0)) = Z T,£i2_d_k)@gl(lﬂ—il—iz+d+k)'

v=1

Now, it follows from Lemma 7.1 that

S.S.(S(h),(o) (71' X 0’))

min{il,iz} min{il,ig}—-d jil—-d uk(j,il—d) Vig—d—k

_ @\~
= > > (8)
d=0  k=max{0,(i1+ia—n)—d} j= u=1 v=1
(a—a)\ ¥ (i2—d—k) (i2—d)) =4k (n—i1—ia+d-+k)
X ('yj )u X T, ® (5]- )u X o, .

If i = 0, then

S(iz) ) (T X o) =107 0.

It follows

(m % o) Zss 8(iz),(0) (T * 7))

12 =0
n (min{il,iQ} min{i1,iz}—d Jiy—d ur(ji1i—d) Vig—a— k( )
i2=0 d=0  k=max{0,(iy+iz—n)—d} j=1 u=1 v=1

(i —d—k)

: (k) . : .
% (Aéu—d))u % 7_512—d——k) ® (5§11—d)> < O_‘(In——zl—zz+d+k)>.

u

Now, the above equality and (1) give the theorem.
Forri ®rs € R Rand r®s € R® R(0), set

(r®ry) % (r®s)=(r1 xr)®(ry xs).
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Extend x Z-bilinearly to x : (R® R) x (R ® R(0O)) - R® R(O). Set

M*=(m®@1l)o(~Q®m*)osom™.

Theorem 7.2 now becomes

THEOREM 7.3. For admissible finite length representations w of GL(41, F)
and o of O(2(n —4y), F), we have

p(m x o) = M*(r) x pu*(0).
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